

Lecture Notes in Computer Science 3840
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Mingshu Li Barry Boehm
Leon J. Osterweil (Eds.)

Unifying
the Software Process
Spectrum

International Software Process Workshop, SPW 2005
Beijing, China, May 25-27, 2005
Revised Selected Papers

13

Volume Editors

Mingshu Li
Chinese Academy of Sciences, Institute of Software
No. 4 South Fourth Street, Zhong Guan Cun, Beijing 100080, China
E-mail: mingshu@iscas.ac.cn

Barry Boehm
University of Southern California, University Park Campus
Los Angeles, CA 90089, USA
E-mail: boehm@cse.usc.edu

Leon J. Osterweil
University of Massachusetts, Department of Computer Science
Amherst, MA 01003, USA
E-mail: ljo@cs.umass.edu

Library of Congress Control Number: 2005937780

CR Subject Classification (1998): D.2, K.6.3, K.6, K.4.2, J.1

ISSN 0302-9743
ISBN-10 3-540-31112-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31112-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11608035 06/3142 5 4 3 2 1 0

Preface

This volume contains papers presented at SPW 2005, the Software Process Workshop
held in Beijing, P. R. China, on May 25-27, 2005, and prepared for final publication.

The theme of SPW2005 was “Unifying the Software Process Spectrum.” Software
process encompasses all the activities that aim at developing or evolving software
products. The expanding role of software and information systems in the world has
focused increasing attention on the need for assurances that software systems can be
developed at acceptable speed and cost, on a predictable schedule, and in such a way
that resulting systems are of acceptably high quality and can be evolved surely and
rapidly as usage contexts change. This sharpened focus is creating new challenges and
opportunities for software process technology. The increasing pace of software sys-
tem change requires more lightweight and adaptive processes, while the increasing
mission criticality of software systems requires more process predictability and con-
trol as well as more explicit attention to business or mission values. Emergent appli-
cation requirements create a need for ambiguity tolerance. Systems of systems and
global development create needs for scalability and multi-collaborator, multi-culture
concurrent coordination. COTS products provide powerful capabilities, but their ven-
dor-determined evolution places significant constraints on software definition, devel-
opment, and evolution processes.

The recognition of these needs has spawned a considerable amount of software
process research across a broad spectrum. Much of the research has addressed the
overall characteristics and needs of software processes, focusing on such issues as
process architectures, process behavioral characteristics, and how processes fit with
higher-level organizational systems and characteristics. We refer to these investiga-
tions as macroprocess research. Simultaneously, there has also been considerable
research directed towards the precise, complete, detailed and unambiguous definition
of software processes, focusing on such issues as detection of process flaws and
facilitation of the human–machine synergies inherent in software processes. We refer
to these investigations as microprocess research. A major goal of this workshop was
to suggest ways in which to integrate these two complementary lines of research to
create a rigorous, orderly discipline of software process engineering. One approach
to integration explored at the workshop addressed how high-level process behaviors
might be predicted, and modified, through lower-level analyses and optimizations.
Another explored how best to integrate objective microprocesses based on explicit
knowledge with more subjective collaboration processes based on tacit knowledge.

The workshop achieved its aim of bringing together a critical mass of leading
software researchers and practitioners in a forum for assessing current and emerging
software process capabilities with respect to the challenges, and for obtaining insights
into the software process research directions needed so as to address the challenges
and to make progress toward overriding goals. It included initial presentations by
leading international software process researchers and users, presentations of contrib-

Preface

VI

uted papers on process challenge areas and solution approaches, tool demonstrations,
and a closing panel on software process research directions.

In response to the call for papers, 111 submissions were received from 10 different
countries and regions: Australia, Canada, China, France, Germany, Hong Kong, Ja-
pan, New Zealand, UK and USA. Every paper was rigorously reviewed and held to
very high quality standards, and finally 30 papers were accepted as regular papers for
presentation at the workshop, representing a 27% acceptance rate for regular papers.
In addition, 18 were selected as poster papers.

SPW2005 consisted of five regular sessions — “Process Content” (8 papers),
“Process Tools and Metrics” (4 papers), “Process Management” (4 papers), “Process
Representation and Analysis” (7 paper) — and “Experience Reports” (7 papers), and
a poster session (18 papers). Eight software development support tools were demon-
strated in the workshop, including: Cost Xpert Project Estimation Tool of Cost Xpert
Group, USA; Spiral Pro of Software Process Group, Inc. USA; Mobile Tools for
Requirements Discovery of Johannes Kepler University Linz, Austria; Risk Assess-
ment and Tracking System of RATS Software Research Associates Inc., Japan; Con-
cern-Based Business Process Modeling of IBM China Research Laboratory, China;
Performance Testing Tool for Wireless Applications of The Hong Kong Polytechnic
University, Hong Kong; Integrated Software Process Services Management System
and UDCORE (User-driven Domain-specific COmponent-based Requirements Elici-
tation tool) of the Institute of Software, Chinese Academy of Sciences, China.

The SPW2005 program was highlighted by 11 keynote speeches, delivered by (in
alphabetical order by surname): Victor R. Basili (University of Maryland, “Evolving
Defect ‘Folklore’: A Cross-Study Analysis of Software Defect Behavior”), Barry
Boehm (University of Southern California, “The Future of Software Processes”), Jacky
Estublier (French National Research Center in Grenoble, “Software are Processes
Too”), Watts S. Humphrey (Carnegie Mellon University/SEI, “Software: A Paradigm
for the Future”), Ross Jeffery (University of New South Wales and NICTA, “Achiev-
ing Software Development Performance Improvement Through Process Change”),
Mingshu Li (Institute of Software at the Chinese Academy of Sciences, “Expanding
the Horizons of Software Development Processes: A 3-D Integrated Methodology”),
Leon J. Osterweil (University of Massachusetts Amherst, “Unifying Microprocess and
Macroprocess Research”), Arthur Pyster (Science Applications International
Corporation, “What Beyond CMMI Is Needed to Help Assure Program and Project
Success?”), H. Dieter Rombach (Fraunhofer IESE & University of Kaiserslautern,
“Integrated Software Process & Product Lines”), Wilhelm Schäfer (University of Pad-
erborn, “A Rigorous Software Process for the Development of Embedded Systems”),
and Brian Warboys (University of Manchester, “Active Models: A Possible Approach
to the Integration of Objective and Subjective Process Models”).

Among the 235 registered participants, 50 were from North America, Europe, Aus-
tralia, and Asian countries outside China. The others were from various Chinese cit-
ies, such as Beijing, Shanghai, Nanjing, Xi’an, Wuhan, Chengdu, Changchun, Guang-
zhou, Shenyang, Kunming, Hangzhou, Changsha, Zhengzhou, Zhuzhou, Luoyang and
they covered most of the best universities and research organizations in China.

Chaired by Leon J. Osterweil, SPW2005 ended with a closing panel on the discus-
sion of the future directions for software process research: “Where Are We Now?
Where Should We Go Next?” The panelists included: Barry Boehm, Mingshu Li,

 Preface

VII

Ross Jeffery, and Wilhelm Schäfer, representing SPW 2005 participants from North
America, Asia, Australia and Europe, respectively. The panel and audience reached a
strong consensus that the future software process challenges were real and significant;
that attractive new concepts and capabilities were emerging to address the challenges;
and that further research, experimental application, and international collaboration
would have significant payoffs. A follow-on workshop is being planned in concert
with ICSE 2006 in Shanghai.

A conference such as this can only succeed as a team effort. All of this work would
not have been possible without the dedication and professional work of many col-
leagues. We wish to express our gratitude to all contributors for submitting papers.
Their work forms the basis for the success of the workshop. We also would like to
thank the Program Committee members and reviewers because their work guarantees
the high quality of the workshop. Particular thanks also go to the keynote speakers for
giving their excellent presentations at the workshop.

We also wish to express our thanks to the organizers for their hard work. The
workshop was jointly organized by four units: ISCAS Laboratory for Internet Soft-
ware Technologies, China; ISCAS State Key Laboratory of Computer Science, China;
USC Center for Software Engineering, USA; and UMASS Laboratory for Advanced
Software Engineering Research, USA. We greatly appreciate the financial support
from The National Natural Science Foundation of China, the largest national grant
managing organization in China for fundamental research. We also want to acknowl-
edge the financial support from the Institute of Software, the Chinese Academy of
Sciences, a national research unit for fundamental research and development in soft-
ware. Finally, we acknowledge the editorial support from Springer for the publication
of these proceedings.

For more information, please visit our website at http://www.cnsqa.com/~spw2005.

June 2005 Program Co-chairs
Mingshu Li, Institute of Software, Chinese Academy of Sciences, P.R.China

Barry Boehm, University of Southern California, USA
Leon J. Osterweil, University of Massachusetts, USA

Software Process Workshop 2005

Beijing, China
May 25-27, 2005

General Chair

Mianheng Jiang, Chinese Academy of Sciences, China

Program Co-chairs

Mingshu Li, Institute of Software, Chinese Academy of Sciences, China
Barry Boehm, University of Southern California, USA
Leon J. Osterweil, University of Massachusetts, USA

Program Committee Members

Victor R. Basili University of Maryland, USA
Keith C.C. Chan Hong Kong Polytechnic University, Hong Kong, China
Sorana Cimpan University of Savoie at Annecy, France
Bill Curtis Borland Software Corporation, USA
Jacky Estublier French National Research Center in Grenoble, France
Anthony Finkelstein University College London, UK
Paul Grünbacher Johannes Kepler University Linz, Austria
Valker Gruhn University of Leipzig, Germany
Jinpeng Huai Beijing University of Aeronautics and Astronautics, China
Liguo Huang University of Southern California, USA
Watts S. Humphrey Carnegie Mellon University, USA
Hajimu Iida Nara Institute of Science and Technology, Japan
Katsuro Inoue Osaka University, Japan
Ross Jeffery University of New South Wales, Australia
Natalia Juristo Universidad Politécnica de Madrid, Spain
Kouichi Kishida Software Research Associates, Inc., Japan
Jyrki Kontio Helsinki University of Technology, Finland
Philippe Kruchten University of British Columbia, Canada
Barbara Staudt Lerner Williams College, USA
Jian Lü Nanjing University, China
Hong Mei Peking University, China
Flavio Oquendo University of South Brittany, France
Dewayne E. Perry University of Texas at Austin, USA

Organization X

Arthur Pyster Science Applications International Corporation, USA
David Raffo Portland State University, USA
H. Dieter Rombach University of Kaiserslautern, Germany
Kevin Ryan University of Limerick, Ireland
Walt Scacchi University of California, Irvine, USA
Wilhelm Schäfer University of Paderborn, Germany
Stanley M. Sutton Jr. IBM T. J. Watson Research Center, USA
Colin Tully Middlesex University, UK
Huaimin Wang National University of Defense Technology, China
Qing Wang Institute of Software, Chinese Academy of Sciences, China
Brian Warboys University of Manchester, UK
Alex Wolf University of Colorado at Boulder, USA
Ye Yang University of Southern California, USA

Organizing Committee Chair

Yongji Wang, Institute of Software, Chinese Academy of Sciences, China

External Reviewers

Jesal Bhuta
Wei Chen
Yue Chen
Zhihao Chen
Liping Ding
Shuanzhu Du
Lang Gou
Meng Huang
Juan Li
Nao Li
Kuien Liu
Mohammad S. Raunak
Fengdi Shu
Lei Tang
Lijing Tong
Jizhe Wang
Dan Wu
Zhanchun Wu
Junchao Xiao
Qiusong Yang
Feng Yuan
Chen Zhao
Xinpei Zhao

Listing of Posters

A Case Study of a Multimedia System Using an Integrated Approach of Usability
Evaluation

Sanxing Cao (Communication University of China),
Natalie L.S Pang (Monash University),
Dan Li (Communication University of China),
and Don Schauder (Monash University)

Measuring, Analyzing and Diagnosing a Single Software Process
Bo Gong (BeiHang University, and Institute of Command and
Technology of Equipment) and Xingui He (Peking University)

A Method of Component Selection within Component-based Software Development
Process

Jun Guo, Bin Zhang, Kening Gao, Hongning Zhu, and Ying Liu (Northeastern
University)

Negotiation-Based Service-Oriented Software Process in Peer-to-Peer Environments
Yuan He, Kuien Liu, Jian Zhai (Institute of Software, The
Chinese Academy of Sciences, and Graduate School of the Chinese
Academy of Sciences), and Jiang Guo (University of Toronto)

The Elements of Software Process Optimization: Dealing with the Process Dynamics
Masao Ito (Nil Software Corp.)

Toward Quantitative, Rational and Scientific Software Process
Zenya Koono (Nara Institute of Science and Technology)
and Hui Chen (Kokushikan University)

A Process Meta-Model Supporting Domain Reuse
Changyun Li (Zhuzhou Institute of Technology, and Zhejiang University),
Jin Gou (Zhejiang University), Wu Huifeng (Zhejiang University),
and Gansheng Li (Zhuzhou Institute of Technology)

Research on the Inheritance of Process Ontology
Changyun Li (Zhuzhou Institute of Technology, and Zhejiang University),
Xingmin Sun (Hunan University), Liao Lijun (Zhuzhou Institute of
Technology), and Yunliang Jiang (Zhejiang University)

Listing of Posters XII

A Soft Trading Service for COTS Components Using Parametric Contracts
Bo Ma (Institute of Software, Chinese Academy of Sciences,
and Graduate School of the Chinese Academy of Sciences),
Ralf Reussner (University of Oldenburg / OFFIS),
and Yi Zhang (Institute of Software, Chinese Academy of Sciences,
and Graduate School of the Chinese Academy of Sciences)

An Integration Framework of Configuration Management and Process Management
Xin Peng, Wenyun Zhao, Yijian Wu, and Chongxiang Zhu (Fudan University)

A User-Driven Requirements Elicitation Process with the Support of Domain
Knowledge

Fengdi Shu (Institute of Software, Chinese Academy of Sciences),
Yuzhu Zhao, and Jizhe Wang (Institute of Software, Chinese Academy
of Sciences, and Graduate School of the Chinese Academy of Sciences)

A Management Framework for Telecom Oriented Meta-modeling
Song Ouyang, Feng Yan, and Youliang Yang (Central South University)

Generating Implied Scenarios Based on Synthesized Statecharts
Hongyuan Wang, Ke Zhang, and Jiachen Zhang (Jilin University)

Extending MBASE to Support the Development of Secure Systems
Dan Wu, Ivana Naeymi-Rad, and Ed Colbert
(University of Southern California)

A MDA Based Approach for Merging CMM and EPM
Feng Yuan and Juan Li
(Institute of Software, Chinese Academy of Sciences, and
Graduate School of the Chinese Academy of Sciences)

A Workflow Reference Model Basing on Activity Network Diagram
Zhaohui Zhang, Dayou Liu, Shengsheng Wang (Jilin University),
and He Hu (Renmin University of China)

A Maintenance Process Framework for Formally Derived Software
Yujun Zheng (Institute of Software, Chinese Academy of Sciences,
and Systems Engineering Institute of Engineer Equipment)
and Jinyun Xue (Institute of Software, Chinese Academy of Sciences,
and Jiangxi Normal University)

A New Software Requirement Method Based on Subject, Predicate and Object Logic
Yunxiang Zheng, Hai Wan, Lei Li, and Chuyan Deng (Sun Yat-Sen University)

Table of Contents

Keynote Speech

Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect
Behavior

Victor Basili, Forrest Shull . 1

The Future of Software Processes
Barry Boehm . 10

Software Are Processes Too
Jacky Estublier . 25

The Software Process: Global Goals
Watts S. Humphrey . 35

Achieving Software Development Performance Improvement Through
Process Change

Ross Jeffery . 43

Expanding the Horizons of Software Development Processes: A 3-D
Integrated Methodology

Mingshu Li . 54

Unifying Microprocess and Macroprocess Research
Leon J. Osterweil . 68

What Beyond CMMI Is Needed to Help Assure Program and Project
Success?

Arthur Pyster . 75

Integrated Software Process and Product Lines
Dieter Rombach . 83

A Rigorous Software Process for the Development of Embedded Systems
Wilhelm Schäfer . 91

Active Models:A Possible Approach to the Integration of Objective and
Subjective Process Models

Brian Warboys . 100

XIV Table of Contents

Process Content

A Value-Based Process for Achieving Software Dependability
Liguo Huang . 108

A Development Process for Building OSS-Based Applications
Meng Huang, Liguang Yang, Ye Yang . 122

A Study on the Distribution and Cost Prediction of Requirements
Changes in the Software Life-Cycle

Chengying Mao, Yansheng Lu, Xi Wang . 136

Requirements Engineering Processes Improvement: A Systematic View
Anliang Ning, Hong Hou, Qingyi Hua, Bin Yu, Kegang Hao 151

S-RaP: A Concurrent, Evolutionary Software Prototyping Process
Xiping Song, Arnold Rudorfer, Beatrice Hwong, Gilberto Matos,
Christopher Nelson . 164

Aspect-Oriented Software Development and Software Process
Stanley M. Sutton Jr. 177

A Gradually Proceeded Software Architecture Design Process
Licong Tian, Li Zhang, Bosheng Zhou, Guanqun Qian 192

Process Patterns for COTS-Based Development
Ye Yang . 206

Process Tools and Metrics

Software Testing Process Automation Based on UTP – A Case Study
Wei Chen, Qun Ying, Yunzhi Xue, Chen Zhao 222

Evaluation of the Capability of Personal Software Process Based on
Data Envelopment Analysis

Liping Ding, Qiusong Yang, Liang Sun, Jie Tong, Yongji Wang 235

Project Management System Based on Work-Breakdown-Structure
Process Model

Akira Harada, Satoshi Awane, Yuji Inoya, Osamu Ohno,
Makoto Matsushita, Shinji Kusumoto, Katsuro Inoue 249

Spiral Pro: A Project Plan Generation Framework and Support Tool
Jizhe Wang, Steven Meyers . 262

Table of Contents XV

Process Management

A Process Improvement Framework and a Supporting Software
Oriented to Chinese Small Organizations

Bo Gong, Xingui He, Weihong Liu . 277

Incremental Workflow Mining Based on Document Versioning
Information

Ekkart Kindler, Vladimir Rubin, Wilhelm Schäfer 287

A Framework for Coping with Process Evolution
Brian A. Nejmeh, William E. Riddle . 302

Software Process Management: Practices in China
Qing Wang, Mingshu Li . 317

Process Representation and Analysis

Process Elements: Components of Software Process Architectures
Jesal Bhuta, Barry Boehm, Steven Meyers . 332

Process Programming to Support Medical Safety: A Case Study on
Blood Transfusion

Lori A. Clarke, Yao Chen, George S. Avrunin, Bin Chen,
Rachel Cobleigh, Kim Frederick, Elizabeth A. Henneman,
Leon J. Osterweil . 347

Translation of Nets Within Nets in Cross-Organizational Software
Process Modeling

Jidong Ge, Haiyang Hu, Ping Lu, Hao Hu, Jian Lü 360

M(in)BASE: An Upward-Tailorable Process Wrapper Framework for
Identifying and Avoiding Model Clashes

David Klappholz, Daniel Port . 376

Integrated Modeling of Business Value and Software Processes
Raymond Madachy . 389

Process Technology to Facilitate the Conduct of Science
Leon J. Osterweil, Alexander Wise, Lori A. Clarke,
Aaron M. Ellison, Julian L. Hadley, Emery Boose,
David R. Foster . 403

Process Definition Language Support for Rapid Simulation Prototyping
Mohammad S. Raunak, Leon J. Osterweil . 416

XVI Table of Contents

Experience Reports

Evolving an Experience Base for Software Process Research
Zhihao Chen, Daniel Port, Yue Chen, Barry Boehm 433

Experiences in Discovering, Modeling, and Reenacting Open Source
Software Development Processes

Chris Jensen, Walt Scacchi . 449

Application of the V-Modell XT – Report from a Pilot Project
Marco Kuhrmann, Dirk Niebuhr, Andreas Rausch 463

A Road Map for Implementing eXtreme Programming
Kim Man Lui, Keith C.C. Chan . 474

Automatically Analyzing Software Processes: Experience Report
Rodion M. Podorozhny, Dewayne E. Perry, Leon J. Osterweil 482

Status of SPI Activities in Japanese Software: A View from JASPIC
Kouichi Sugahara, Hideto Ogasawara, Teruyuki Aoyama,
Tetsuya Higashi . 498

A Survey of CMM/CMMI Implementation in China
Zhanchun Wu, David Christensen, Mingshu Li, Qing Wang 507

Author Index . 521

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 1 – 9, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving Defect “Folklore”:
A Cross-Study Analysis of Software Defect Behavior

Victor Basili1 and Forrest Shull2

1 Dept. of Computer Science, University of Maryland,
College Park, MD, 20742, USA

basili@cs.umd.edu
2 Fraunhofer Center - Maryland, 4321 Hartwick Road,

Suite 500, College Park, MD, 20740, USA
fshull@fc-md.umd.edu

Abstract. Answering “macro-process” research issues – which require under-
standing how development processes fit or do not fit in different organizational
systems and environments – requires families of related studies. While there are
many sources of variation between development contexts, it is not clear a priori
what specific variables influence the effectiveness of a process in a given con-
text. These variables can only be discovered opportunistically, by comparing
process effects from different environments and analyzing points of difference.

In this paper, we illustrate this approach and the conclusions that can be
drawn by presenting a family of studies on the subject of software defects and
their behaviors – a key phenomenon for understanding macro-process issues.
Specifically, we identify common “folklore,” i.e. widely accepted heuristics
concerning how defects behave, and then build up a body of knowledge from
empirical studies to refine the heuristics with information concerning the condi-
tions under which they do and do not hold.

1 Introduction

Answering “macro-process” research issues – specifically, being able to make state-
ments about the effectiveness of processes in different contexts, and understanding
how processes fit or do not fit in different organizational systems and with different
organizational characteristics – requires families of related studies. This is true be-
cause of two difficulties inherent in software process research:

• It is clear that there are many sources of variation between one development
context and another;

• It’s not clear a priori what specific variables influence the effectiveness of a
process in a given context.

That is, we expect it to be an almost impossible task to predict ahead of time what
factors are likely to crucially affect the results of applying a process in one environ-
ment or another: for example, the motivation of the practitioners, their experi-
ence/skill level with various tasks, the various business goals of the organization. Yet

2 V. Basili and F. Shull

we know that these variables do exist and we are able to reason about their influence
if we work bottom-up, that is, starting with the observation of process effectiveness in
various environments and identifying the possible causes of discrepancies.

For example, one study provided some indications that the application of a particu-
lar software inspection process was influenced by the experience of the developers
applying it: novice inspectors seemed to gain some improvement from the new tech-
nique while experts seemed to fall back on their own, proven practices [1]. This effect
was traced to a particular context variable in this study, the time limit given for the
inspection: Since the participants felt pressured to get the inspection completed in
time, experts fell back on their own techniques rather than try to deal with the learn-
ing curve. In a context where the time limit was open-ended or subjects were more
motivated to learn the new process, it is impossible to say whether the same effect
would still have been observed. Such unexpected inter-relationships between vari-
ables are always a possibility in software process research.

For this reason, we have argued [2] that knowledge at the macro-process level must
be built from families of studies, in which related studies are run within similar con-
texts as well as very different ones. At one level this ensures that conclusions are
verified and false conclusions are not drawn due to problems or idiosyncrasies with
any one study. For drawing macro-process conclusions, however, it also allows the
space of context variables to be explored opportunistically; conclusions about influ-
encing factors are drawn bottom-up, by understanding the context similarities and
differences that may have caused differences in process effectiveness.

Multiple authors have discussed the idea of software replication, that is, how to de-
sign related studies so as to document as precisely as possible the values of likely
context variables and be able to compare with those observed in new studies [e.g. 3, 4,
5, 6]. While such a top-down approach is important, given the overwhelming number
of potential context variables – including differences in developer experience and
motivation, in development tools and approaches, in other processes used, in business
goals (e.g. high quality products vs. fastest time to market) – we argue that a bottom-
up approach is also necessary, in which results from multiple individual studies can
be fitted together after the fact as appropriate. Such a bottom-up approach is neces-
sary for enabling recommendations to be made about process effectiveness in context.

To make such a bottom-up approach work, it is necessary to have an overall
framework that allows the relationships among individual studies to be understood so
that data can be accumulated and variations in effectiveness determined. Such a
framework allows independent researchers to relate the results of their studies more
easily to the growing body of knowledge so that macro-process conclusions can be
drawn.

In this paper, we illustrate this approach and the conclusions that can be drawn by
presenting a family of studies on the subject of software defects and their behaviors –
a key phenomenon for understanding macro-process issues. Specifically, we identify
some common “folklore,” i.e. widely accepted heuristics concerning how defects
behave, and then build up a body of knowledge to show whether empirical results can
confirm whether such heuristics are accurate and under which conditions.

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 3

2 Software Defects

The comparison of lessons learned about software defects between studies has been
complicated by the fact that there are multiple taxonomies of defects that have been
proposed over time (e.g. [7], [8], [9]). Thus building up a body of knowledge on de-
fects and their behaviors is made even more complicated: Not only do studies in dif-
ferent contexts have many different sources of context variation, which are impossible
to identify ahead of time as discussed above, but they may have additionally used
different vocabulary to describe similar types of defects.

To make sense of the knowledge learned about defects across multiple contexts and
taxonomies, we need to go to a higher level up abstraction, to what we call “folklore.”
Folklore in this context refers to the informal, subjective lessons learned by developers
based on experience. Due to the well-documented fact that human subjective experience
is not always the best basis for drawing generalizable lessons, as well as the fact that
experiences in one context may not always generalize to others, it is important to use
such lore to formulate testable hypotheses that can then be subjected to more formal
scrutiny. In this way, folklore is one source of information that should be used to focus
new empirical studies in high-payoff areas. The hope is that the basic heuristics encoded
in folklore reflect such basic knowledge about software phenomena that they are rela-
tively insensitive to the variations in the precise definition of defect.

To facilitate the comparison across studies, in this paper we will use the IEEE
definitions [10] for defects and related phenomena:

• Error: a defect in the human thought process made while trying to understand
given information, to solve problems, or to use methods and tools;

• Fault: a concrete manifestation of errors within the software (note that one
error may cause several faults and various errors may cause identical faults);

• Failure: a departure of the operational software system behavior from users’
expected requirements (a particular failure may be caused by several faults
and some faults may never cause a failure).

As examples of folklore about software defect behaviors, we introduce the follow-
ing heuristics and rationales:

• The vast majority of defects are interface defects. This heuristic describes the
common belief that implementing individual modules with clearly defined
functional requirements is rather straightforward. Instead, the majority of de-
fects is believed to come at the interfaces of such modules, that is, getting
them to work together to achieve higher-level functionality.

• Applying more sophisticated programming languages can eliminate a sig-
nificant number of defects, but not all. Another way of saying this is that
most implementation defects are believed to come from coding mistakes that
could be minimized by better programming languages, which would reduce
the likelihood of developers making such mistakes. This is consistent with
the belief that most code defects are introduced because of the complexity of
solving the problem on the computer, not from problems in analyzing the so-
lution to be produced in the first place.

4 V. Basili and F. Shull

• Small modules (say, modules with fewer than fifty LOC) are the least defect
prone. It is assumed that breaking functionality down into the smallest coher-
ent pieces, and implementing each in a separate module, minimizes the number
of defects introduced. Said another way, larger modules are assumed to have
on average more complexity, which leads them to be more error-prone.

• If you are not sure what to do – do something and fix it later. As a general
implementation strategy, it is assumed that the effort to modify code is not
prohibitive, so it is viable to implement functionality by adding code, testing
it, and perfecting the implementation over time.

• There are patterns in the defect classes found in projects within a particular
organization. This suggests that there are problems common to the organiza-
tion and application. Thus collecting data for a particular environment will
allow the organization to identify opportunities for improvement within that
organization.

3 Drawing Conclusions Bottom-Up

In this section, we give a brief overview of a collection of datasets that provide partial
evidence addressing the folklore introduced in Section 2. As was emphasized in our
discussion of building up bodies of knowledge from families of studies, each study in
the family need not be a “strict” replication of one another, with the same overall
design and data collection [2].

Also as proposed in [2], we use the Goal – Question – Metric paradigm (GQM) to
provide the framework that relates studies within the family to one another. The GQM
requires explicit identification of an object of study as well as a focus for the study
(i.e. a model of how the object of study is being characterized or evaluated). Specify-
ing both the object and focus of study helps to make similarities and differences
among studies explicit. All of the studies which produced data included in this collec-
tion, whatever their specific goals, all have GQMs which at a high level of abstraction
have the same form:

Analyze software defects in order to characterize them with respect
to various classification schemes from the point of view of the
knowledge builder in the development context in which they were
generated.

As a first pass for demonstration purposes, the datasets in our collection are ones
the authors are very familiar with. They include defect data from:

• Endres75: A new release of an operating system, where “defect” was defined
as any code fault that caused a failure during system testing. (Faults gener-
ated from unit or integration testing were not included.) [11]

• Weiss79: A simulator of various computer architectures, in which all defects
were found due to failures reported during the first year of operations after
system delivery. [12]

• Basili/Weiss81: The development of an on-board flight control program for a
new aircraft. Defects were defined as fixes necessary to the requirements

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 5

document, within a 15-month period after the requirements were baselined.
(Since the defects were not tracked over the entire lifecycle of the project,
this cannot be taken as a complete set of requirements defects.) The prob-
lems with the document were found during reviews as well as when it was
used as a basis for design. [13]

• Basili/Perricone84: A system designed for satellite planning studies at
NASA. Defect data was collected starting with the baselining of the code
through the three years of maintenance. [14]

• Mashiko/Basili97: A set of four projects dealing with communication soft-
ware. [7]

• Weiss/Basili85: A set of three projects dealing with ground support software
for satellites. [15]

• Selby/Basili91: A single release of a code library tool. [16]

4 Drawing Conclusions Across Studies

Results from abstracting up across our various data sets show that not all of the folk-
lore was an accurate reflection of software development realities:

The majority of defects are not interface-related. Five of our datasets had collected
enough information about the defects to categorize them somehow as interface or
non-interface related. The Endres75 dataset defined interface-related issues as any
issue that required a change to more than one module in order to fix. Defined this
way, the clear majority of defects (85% of the entries in the dataset) were non-
interface, i.e. required changes to only one module.

Using a similar definition, the other datasets were in agreement. In the Weiss79
dataset, 94% of defects were non-interface; in Basili/Weiss81 dataset it was 85%.
Concerning the Basili/Weiss85 dataset, although an absolute number is not given, the
statement is made that “interface errors are not especially troublesome.”

However, [14] offered a second definition of an interface defect: a defect is an in-
terface defect if one has to examine more than one module to understand how to fix
the defect. Thus even if only one module has to be changed, it can still be an interface
defect. Using this definition of interface defect, 39% of the defect could have been
classified as interface defects, and these interface defects were the largest single cate-
gory of defects – 39% of faults involved interface. Using a similar definition of inter-
face defects, [7] report a similar number of interface defects – 40%. Therefore, it can
be concluded that across all datasets, although the vast majority of changes made to
fix a defect were made to only one module, the need to examine more than one mod-
ule in order to make a fix was a common problem, even if it did not involve the ma-
jority of defects.

Where the datasets showed some disagreement was on the subject of how expen-
sive it was to correct the interface-related defects. Two datasets collected information
sufficient to address this issue: In Weiss79, interface design defects were relatively
inexpensive. However, in Basili/Weiss81 interface defects took more effort to fix.
Since the Basili/Weiss81 defects were collected in the requirements phase, while
Weiss79 were defects found in operation, interface defects may simply be more diffi-
cult to repair at the requirements level compared to other types.

6 V. Basili and F. Shull

Defects that could be addressed by better programming languages account for a
significant portion of defects, but less than half. Our datasets also contained informa-
tion about defect categories that can shed some light on what type of misunderstanding
on the part of developers caused the defect to enter the system in the first place.

In the Endres75 set, approximately half of the defects (46%) originated due to mis-
understanding the problem to be solved or potential solutions. A further 16% were
related to textual/clerical mistakes or to not following standards. Thus only 38% of
defects could have been avoided had improved programming techniques been used.

In Weiss79, only 31% of the defects were related to the implementation. The re-
mainder were related to requirements, design, or clerical issues.

In Basili/Weiss81, the requirements document contained more defects related to
the correctness or completeness of the solution (80%) than with the way it was repre-
sented in the given notation (18%). Thus, although in a different lifecycle phase, these
results can be taken to agree with the earlier datasets in the sense that the primary
cause of defects was misunderstanding of the problem to be solved.

Small modules are no less error-prone than large modules. Two datasets (En-
dres75 and Basili/Perricone84) traced the defects recorded back to the modules in
which they were found, and the size of those modules. In the Endres75 dataset the
defect rate (i.e. the number of defects per module divided by the size in LOC of the
module) is no different for large modules than for small ones. The Basili/Perricone84
data showed the counter-intuitive result that larger modules, within limits, may even
be less fault prone.

 “Do something and fix it later” is not always a safe strategy. In Selby/Basili91, it
was noted that during design and code review, the total time to correct a fault (iden-
tify and fix) of omission was less than the time to correct faults of commission. This
result was surprising, given the folklore. Mashiko/Basili97 supports this conclusion
when one considers all faults. However, when one limits the faults to those reported
by the customer, the results are not consistent, i.e., faults of omission, after delivery of
the system, are more expensive to fix than faults of commission when considering
customer reported faults. It seems that the context here makes the difference and ex-
amining that context offers the opportunity for some insight. During development
faults of omission tend to be smaller parts of the system, thus it is better to mark the
spot where there is a concern, minimizing the time to identify the fault, and define the
correct solution later. However, once a system is delivered, the faults of omission may
take on a different flavor, i.e. an omission fault might represent a complex functional
capability that the customer assumed was part of the system.

Both the Weiss79 and the Basili/Weiss81 datasets contained information about the
time-to-fix needed for defects in an environment where the customers’ needs were well
understood. For the faults found after delivery in Basili/Weiss81, the effort required to
make changes was in most cases relatively small; 68% of defects were repaired in less
than one hour. In fixes required to the requirements document described in Weiss79,
84% of defects were fixed in less than a few hours each. However, it should be noted
that in both cases a small minority took an exceptionally long time to repair; in Weiss79,
for example, 1% of the defects took more than a few days to repair.

It should also be noted that the Basili/Perricone84 study concluded that it’s more ex-
pensive to repair reused modules than ones developed from scratch. So, in some cases, it

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 7

may be more cost-effective to try out a solution and then throw away the early proto-
type, rather than try to continue to modify the early version of solutions until they work
correctly.

Patterns exist in defect classes found in projects within a particular organization.
The Basili/Weiss85 dataset was used to identify patterns in the change and defect
history of projects developed in NASA’s Software Engineering Laboratory. For ex-
ample, most defects in the development of ground support systems were due to prob-
lems in the design and development of single components. This was due in part to the
fact that systems were being developed by experienced developers and the single
components were coded by novice programmers. It should be noted that the
Basili/Perricone85 data showed that for a different application, in the same environ-
ment, a majority of the defects were due to requirements and functional specification.
The Mashiko/Basili97 data also exhibited a pattern in the defect classes, though this
pattern was quite different. Thus, there are patterns that can be detected within a given
context, although these patterns will not hold from one environment to another.

5 Summary

Having looked at a collection of datasets and abstracted up a set of conclusions on
specific topics, we should also examine what kinds of general lessons learned we
have found about cross-study conclusions. We feel that the work described in this
paper demonstrates that:

• There is value in multiple studies for both supporting and not supporting hy-
potheses. There are several instances above where the conclusions from mul-
tiple datasets all point in the same direction, thus making the overall conclu-
sion much stronger than if it came from any single study in isolation. And, in
several important instances, the results from additional studies identify im-
portant caveats by examining processes in new environments.

• Care must be taken to make sure that the objects of the comparison are actu-
ally like things that can support the conclusions being drawn. For example,
although all of the datasets described in this paper contain defect data, it was
necessary to know in each study the definitions of the various categories of
defect taxonomies (e.g. interface vs. non-interface), the definition of defect
(especially with respect to injection time, detection time, environment, sub-
jects, phase of data collection), etc.

• A researcher needs to vary the classification to check the effects along the
various values. For example, in this instance we saw that to investigate the
overall impact of interface-related defects, not only is it necessary to investi-
gate the relative number of interface defects in the dataset, but the relative
time required to fix those defects.

• There are insights to be gained from the collection and analysis of defects
according to different classification schemes, independent of the scheme.
Our results show that interesting abstractions can be drawn by comparing de-
fect information opportunistically, based on points of similarity where they
occur.

8 V. Basili and F. Shull

Based upon our experiences to date, we are evolving our methodology for building
an effective set of folklore using empirical evidence from multiple studies. The meth-
odology considers information found in papers published about the focus of the study.
There is a specific approach to reading and extracting information from the paper.
The information is extracted, summarized to create new knowledge that identifies
possible context variables and expands the domain of study that is reported in an
experiment in any one paper. This approach identifies three levels of abstraction: (1)
the hypotheses from a particular study as presented in a paper and the information that
can be extracted from that paper by identifying hypotheses, definitions, context
variables, etc., (2) a broadened hypothesis from a family of focused related studies,
built bottom-up by identifying the relevance of context variables to create integrated
knowledge from two or more papers, and (3) vetted guidance or advice based upon
empirical evidence abstracted so that it is useful to the software engineering
community. Such abstractions are necessary for presenting information relevant for
decision support to software developers and managers, for example through the Best
Practices Clearinghouse project funded by the US Department of Defense [17] which
aims at providing software developers and acquisition managers with robust knowl-
edge based on empirical data.

References

1. Basili, V. R., Green, S., Laitenberger, O., Lanubile, F., Shull, F., Sorumgaard, S.L.,
Zelkowitz, M.V.: The Empirical Investigation of Perspective-based Reading. Empirical
Software Engineering, An International Journal, Volume 1, Number 2, pp 133-164, Klu-
wer Academic Publishers, October 1996.

2. Basili, V. R., Shull, F., Lanubile, F.: Building Knowledge through Families of Experi-
ments, IEEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 456-473, July
1999.

3. Brooks, A., Daly, J., Miller, J., Roper, M., Wood, M. (1996). Replication of experimental
results in software engineering. Technical Report ISERN-96-10, Department of Computer
Science, University of Strathclyde, Glasgow.

4. Lott, C. M., Rombach, H. D.: Repeatable software engineering experiments for comparing
defect-detection techniques, Journal of Empirical Software Engineering, 1(3), 1996.

5. Wohlin, C., Runeson, P, Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering: An Introduction. Kluwer Academic Publishers: Boston.
2000.

6. Juristo N., Moreno, A. M. (eds.): Lecture Notes on Empirical Software Engineering.
World Scientific: New Jersey. 2003.

7. Mashiko, Y., Basili, V.R.: Using the GQM Paradigm to Investigate Influential Factors for
Software Process Improvement, The Journal of Systems and Software, Volume 36, Num-
ber 1, pp 17-32, January 1997.

8. Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., Wong, M.:
Orthogonal Defect Classification: A Concept for In-process Measurements, IEEE Transac-
tions on Software Engineering, November 1992.

9. Basili, V.R., Weiss, D.M.: A Methodology for Collecting Valid Software Engineering
Data, IEEE Transactions on Software Engineering, pp 728-738, November 1984.

10. IEEE. Software Engineering Standards. IEEE Computer Society Press, 1987.
11. [Endres75]

 Evolving Defect “Folklore”: A Cross-Study Analysis of Software Defect Behavior 9

12. Weiss, D.: Evaluating Software Development By Error Analysis: The Data from the Ar-
chitecture Research Facility, J. Systems and Software, V 1, 1979, 57-70.

13. Basili, V.R., Weiss, D.M.: Evaluation of the A-7 Requirements Document by Analysis of
Change Date, Proceedings of the Fifth International Conference on Software Engineering,
pp 314-323, March 1981.

14. Basili, V.R., Perricone, B.: Software Errors and Complexity: An Empirical Investigation,
Communication of the ACM, vol. 27, no. 1, pp 42-52, January 1984.

15. Weiss, D.M., Basili, V.R.: Evaluating Software Development by Analysis of Changes:
The Data from the Software Engineering Laboratory, IEEE Transactions on Software En-
gineering, pp 157-168. February 1985.

16. Selby, R.W., Basili, V.R.: Analyzing Error Prone System Structure, IEEE Transactions on
Software Engineering, pp. 141-152, February 1991.

17. Dangle, K., Hickok, J., Turner, R., Dwinnell, L.: Introducing the Department of
Defense Acquisition Best Practices Clearinghouse. CrossTalk, pp. 4-5, May
2005.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 10 – 24, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Future of Software Processes

Barry Boehm

University of Southern California,
University Park Campus, Los Angeles, CA 90089

boehm@cse.usc.edu
Copyright USC-CSE, 2005

Abstract. In response to increasing demands being put onto software-intensive
systems, software processes will evolve significantly over the next two decades.
This paper identifies seven relatively surprise-free trends – increased emphasis
on users and end value; increasing software criticality and need for dependabil-
ity; increasingly rapid change; increasingly complex systems of systems; in-
creasing needs for COTS, reuse, and legacy software integration; and computa-
tional plenty – and two “wild card” trends: increasing software autonomy and
combinations of biology and computing; and discusses their likely influences
on software processes between now and 2025. It also discusses limitations to
software process improvement, and areas of significant software process re-
search and education needs.

1 Introduction

Between now and 2025, ever-increasing demands will be put on computer software to
provide safe, secure, and reliable information technology; to provide competitive
discriminators in the marketplace; to support the coordination of multi-cultural global
enterprises; to enable rapid adaptation to change; and to help people cope with com-
plex masses of data and information. These demands will cause major differences in
the processes currently used to define, design, develop, deploy, and evolve a diverse
variety of software-intensive systems.

This paper elaborates on the nature of these increasing demands on software and
their process implications. Section 2 will identify seven relatively surprise-free trends
and two less-predictable “wild card” trends, and discuss their likely influence on
software processes between now and 2025. Section 3 will attempt to bound expecta-
tions about the perfectibility of software processes by discussing basic limitations of
software process improvement. Section 4 will describe some high-level software
process research and education areas that are likely to have significant payoffs in
addressing the software process challenges identified in Section 2, and Section 5 will
present the resulting conclusions.

2 Information Technology (IT) Trends and Their Influence on
Software Processes

The seven relatively surprise-free trends are:

1. An increased emphasis on users and end value;
2. Increasing software criticality and need for dependability;

 The Future of Software Processes 11

3. Increasingly rapid change;
4. Increasing IT globalization and need for interoperability;
5. Increasingly complex systems of systems;
6. Increasing needs for COTS, reuse, and legacy software integration;
7. Computational plenty.

The two “wild card” trends are:

8. Increasing software autonomy;
9. Combinations of biology and computing.

2.1 User/Value Emphasis Trends and Process Implications

A recent Computerworld panel on “The Future of IT” indicated that usability and total
ownership cost-benefits, including user inefficiency and ineffectiveness costs, are
becoming IT user organizations’ top priorities [2]. A representative quote from panel-
ist W. Brian Arthur was “Computers are working about as fast as we need. The bot-
tleneck is making it all usable.” A recurring user-organization desire is to have tech-
nology that adapts to people rather than vice versa. This is increasingly reflected in
users’ product selection activities, with evaluation criteria increasingly emphasizing
product usability and value added vs. a previous heavy emphasis on product features
and license costs. Such trends ultimately will affect software producers’ product and
process priorities, marketing strategies, and competitive survival.

Some technology trends strongly affecting usability and cost-effectiveness are in-
creasingly powerful enterprise support packages, data access and mining tools, and
Personal Digital Assistant (PDA) capabilities. Such products have tremendous poten-
tial for user value, but determining how they will be best configured will involve a lot
of product experimentation, shakeout, and emergence of superior combinations of
capabilities.

2.1.1 Software Process Implications

In terms of future software process implications, the fact that the capability require-
ments for these products are emergent rather than prespecifiable has become the pri-
mary challenge. Not only do the users exhibit the IKIWISI (I’ll know it when I see it)
syndrome, but their priorities change with time. These changes often follow a Maslow
need hierarchy, in which unsatisfied lower-level needs are top priority, but become
lower priorities once the needs are satisfied [35]. Thus, users will initially be moti-
vated by survival in terms of capabilities to process new workloads, followed by secu-
rity once the workload-processing needs are satisfied, followed by self-actualization
in terms of capabilities for analyzing the workload content for self-improvement and
market trend insights once the security needs are satisfied.

It is clear that requirements emergence is incompatible with past process practices
such as requirements-driven sequential waterfall process models and formal pro-
gramming calculi; and with process maturity models emphasizing repeatability and
optimization [39]. In their place, more adaptive [27] and risk-driven [6] models are
needed. More fundamentally, the theory underlying software process models needs to
evolve from purely reductionist “modern” world views (universal, general, timeless,

12 B. Boehm

written) to a synthesis of these and situational “postmodern” world views (particular,
local, timely, oral) as discussed in [45]. A recent theory of value-based software engi-
neering (VBSE) and its associated software processes [9] provide a starting point for
addressing these challenges. The associated VBSE book [4] contains further insights
and emerging directions for VBSE processes.

For example, the [24] chapter in the VBSE book addresses the need to evolve from
software products, methods, tools, and educated students strongly focused on individ-
ual programming performance to a focus on more group-oriented interdisciplinary
collaboration. Negotiation of priorities for requirements involves not only participa-
tion from users and acquirers on each requirement’s relative mission or business
value, but also participation from software engineers on each requirement’s relative
cost and time to develop and difficulty of implementation. As we will discuss further
under Globalization in Section 2.4, collaborative activities such as Participatory De-
sign [19] will require stronger process support and software engineering skill support
not only across application domains but also across different cultures.

Some additional process implications of people- and value- oriented trends are ad-
dressed in the ICSE 2000 Software Process Roadmap [21]. They include the need for
process modeling languages to allow for incomplete, informal, and partial specifica-
tion; the need for process-centered environments to be incremental and ambiguity-
tolerant; and for software process metrics and empirical studies to be value-driven.

2.2 Software Criticality and Dependability Trends

Software is increasingly becoming the most critical success factor for future products
(automobiles, aircraft, radios) and services (financial, communications, defense). It
provides both competitive differentiation and rapid adaptability to competitive
change. It facilitates rapid tailoring of products and services to different market sec-
tors, and rapid and flexible supply chain management.

Although people’s and organizations’ dependency on software is becoming in-
creasingly critical, dependability is generally not the top priority for software produc-
ers. In the words of the 1999 PITAC Report, “The IT industry spends the bulk of its
resources, both financial and human, on rapidly bringing products to market.” [41].

Recognition of the problem is increasing. ACM President David Patterson has
called for the formation of a top-priority Security/Privacy, Usability, and Reliability
(SPUR) initiative [38]. Several of the Computerworld “Future of IT” panelists in [2]
indicated increasing customer pressure for higher quality and vendor warranties, but
others did not yet see significant changes happening among software product vendors.

This situation will likely continue until a major software-induced catastrophe simi-
lar in impact on world consciousness to the 9/11 World Trade Center catastrophe
stimulates action toward establishing accountability for software dependability. Given
the high and increasing software vulnerabilities of the world’s current financial, trans-
portation, communications, energy distribution, medical, and emergency services
infrastructures, it is highly likely that such a software-induced catastrophe will occur
between now and 2025.

 The Future of Software Processes 13

2.2.1 Software Process Implications

Process strategies for highly dependable software systems and many of the techniques
for addressing its challenges have been available for quite some time. A landmark
1975 conference on reliable software included papers on formal specification and
verification processes; early error elimination; fault tolerance; fault tree and failure
modes and effects analysis; testing theory, processes and tools; independent verifica-
tion and validation; root cause analysis of empirical data; and use of automated aids
for defect detection in software specifications and code [8].

These have been used to achieve high dependability on smaller systems and some
very large self-contained systems such as the AT&T telephone network [37]. Also,
new strategies have been emerging to address the people-oriented and value-oriented
challenges discussed in Section 2.1. These include the Personal and Team Software
Processes [29, 30] and value/risk-based processes for achieving dependability objec-
tives [22, 28].

The major future challenges for software dependability processes are in scaling up
and integrating these approaches in ways that also cope with the challenges presented
by other future trends. These include the next four trends to be discussed below: rapid
change and agility; globalization; complex systems of systems; and COTS/legacy
integration. The remaining trends – computational plenty, autonomy, and bio-
computing – will offer further attractive solution avenues, but also further challenges,
as we will also discuss below.

2.3 Rapid Change Trends

The increasingly rapid pace of IT change is driven by technology trends such as
Gordon Moore’s Law (transistor density and performance doubles roughly every 18
months), plus the continuing need for product differentiation and tornado-like proc-
esses for new technology introduction [36]. Global connectivity also accelerates the
ripple effects of technology, marketplace, and technology changes. Rapid change also
increases the priority of development speed vs. cost in capitalizing on market win-
dows. A good example of successful software process adaptation to rapid change was
Hewlett Packard’s initiative to reduce product line software development times from
48 to 12 months [23].

When added to the trend toward emergent requirements, the pace of change places
a high priority on process agility and investments in continuous learning for both
people and organizations. Such investments need to be organization-wide. Many
organizations have invested in agility and continuous learning for their technical peo-
ple, but have left their administrative and contract people to propagate the THWADI
(That’s how we’ve always done it) syndrome. This usually leads to unpleasant sur-
prises when their agile technical processes run afoul of slow, outdated, and inflexible
procurement or approval procedures.

Completely eliminating THWADI is not a good idea either, as it includes an or-
ganization’s corporate memory and best practices. The big challenge is to determine
which legacy processes and principles to keep, modify, or eliminate.

14 B. Boehm

2.3.1 Software Process Implications

A similar challenge is presented by the needs to achieve high levels of agility while
simultaneously achieving the high level of discipline needed to develop highly de-
pendable systems. In Balancing Agility and Discipline [10], we provide an overall
framework for doing this. As shown in Figure 1, it involves a risk-driven spiral ap-
proach to determine whether a primarily agile or primarily plan-driven development
approach is best, or if both are needed. If the latter, it involves identifying the parti-
tions of the application most needing agility and encapsulating them in a plan-driven
framework. A critical factor is the ability to pass a Life Cycle Architecture (LCA)
milestone review before proceeding from concept exploration to development.

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Concept Exploration Spirals Development SpiralsLCA

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Concept Exploration Spirals Development SpiralsLCA

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Step 5.
Execute and Monitor

Step 4.
Tailor Life Cycle

Step 3.
Architecture
Analysis

Step 1.
Risk Analysis

Step 2.
Risk
Comparison

Rate the project’s
environmental, agility-

oriented and plan-driven
risks.

Uncertain
about

ratings?

Buy information via
prototyping, data

collection and analysis

Compare
the agile

and Plan-
driven risks

Go Risk-based
Agile

Agility risks
dominate

Plan-driven risks
dominate

Architect application to
encapsulate agile parts

Go Risk-based
Agile in agile

parts; Go Risk-
based Plan-

driven elsewhere

Yes

No

Go Risk-based
Plan-driven

Tailor life cycle process
around risk patterns

and anchor point
commitment milestones

Monitor progress and
risks/opportunities,

readjust balance and
process as appropriate

Neither dominate

Deliver incremental
capabilities according to

strategy
Note: Feedback
loops present,
but omitted for

simplicity

Concept Exploration Spirals Development SpiralsLCA

Fig. 1. Risk-Driven Spiral Approach to Balancing Discipline and Agility

For systems already in operation, a rapid pace of change requires a pro-active, risk-
driven monitoring and experimentation activity to identify and prepare for major
changes. An excellent example is the spiral process used to evolve the Internet (even
before the spiral model was defined and published). Using the approach shown in
Figure 2, the Internet principals were able to experiment, pilot, evaluate, and redefine
the Internet standards to evolve from wire-based communication through packet ra-
dio, satellite, and optical communication while providing continuity of service [17].
Another good example of technology monitoring, empirical experimentation, and
process improvement was the NASA Goddard/U. of Maryland/CSC Software Engi-
neering Laboratory [5].

Rapid change prompts an additional significant change in software engineering
education. This is to help students not only learn concepts, processes, and techniques,
but also to learn how to learn. In some of our software engineering courses, we have

 The Future of Software Processes 15

Approved
Internet

Standard

Approved
Internet

Standard

Approved
Draft

Standard

Approved
Draft

Standard

Approved
Proposed
Standard

Approved
Proposed
Standard

Unapproved
Proposed
Standard

IESG
Approval

IESG
Approval

IESG
Approval

IETF
Review

IETF
Review

IETF
Review

Working
Group
Review

Working
Group
Review

Working
Group
Review

Full
Implementation

Widespread
Implementation

and Test

Multiple
Implementation

and Test

Equipment

Working Group
Evolution

Working Group
Evolution

Working Group
Evolution

Unapproved
Draft

Standard

Unapproved
Internet

Standard

IESG = Internet Engineering Steering Group
IETF = Internet Engineering Task Force

Approved
Internet

Standard

Approved
Internet

Standard

Approved
Draft

Standard

Approved
Draft

Standard

Approved
Proposed
Standard

Approved
Proposed
Standard

Unapproved
Proposed
Standard

IESG
Approval

IESG
Approval

IESG
Approval

IETF
Review

IETF
Review

IETF
Review

Working
Group
Review

Working
Group
Review

Working
Group
Review

Full
Implementation

Widespread
Implementation

and Test

Multiple
Implementation

and Test

Equipment

Working Group
Evolution

Working Group
Evolution

Working Group
Evolution

Unapproved
Draft

Standard

Unapproved
Internet

Standard

IESG = Internet Engineering Steering Group
IETF = Internet Engineering Task Force

Fig. 2. The Internet Spiral Process [USAF-SAB Information Architectures Study, 1994]

addressed this challenge by adding assignments for students to obtain information
from as many sources as possible to evaluate the maturity of an emerging technology
and recommend a strategy that an organization could use with respect to adoption of
the technology. Other strategies for helping students learn how to learn, such as the
use of game technology, appear worth exploring.

2.4 Globalization and Interoperability Trends

The global connectivity provided by the Internet provides major economies of scale
and network economies [3] that drive both an organization’s product and process
strategies. Location-independent distribution and mobility services create both rich
new bases for synergetic collaboration and challenges in synchronizing activities.
Differential salaries provide opportunities for cost savings through global outsourc-
ing, although lack of careful preparation can easily turn the savings into overruns. The
ability to develop across multiple time zones creates the prospect of very rapid devel-
opment via three-shift operations, although again there are significant challenges in
management visibility and control, communication semantics, and building shared
values and trust.

On balance, though, the Computerworld “Future of IT” panelists felt that global
collaboration would be commonplace in the future. The primary driver would evolve
away from cost differentials as they decrease, and evolve toward the complementarity
of skills in such areas as culture-matching and localization [2]. Some key culture-
matching dimensions are provided in [26]: power distance, individual-
ism/collectivism, masculinity/femininity, uncertainty avoidance, and long-term time
orientation. These often explain low software product and process adoption rates
across cultures. One example is the low adoption rate (17 out of 380 experimental
users) of the more individual/masculine/short-term U.S. culture’s Software CMM by

16 B. Boehm

organizations in the more collective/feminine/long-term Thai culture [40]. Another
example was a much higher Chinese acceptance level of a workstation desktop organ-
ized around people, relations, and knowledge as compared to Western desktop organ-
ized around tools, folders, and documents [proprietary communication].

As with railroads and telecommunications, a standards-based infrastructure is es-
sential for effective global collaboration. The Computerworld panelists envision that
standards-based infrastructure will become increasingly commoditized and move
further up the protocol stack toward applications.

2.4.1 Software Process Implications

A lot of work needs to be done to establish robust success patterns for global collabo-
rative processes. Key challenges as discussed above include cross-cultural bridging;
establishment of common shared vision and trust; contracting mechanisms and incen-
tives; handovers and change synchronization in multi-timezone development; and
culture-sensitive collaboration-oriented groupware. Most software packages are ori-
ented around individual use; just determining how best to support groups will take a
good deal of research and experimentation.

One collaboration process that still has significant differences about its future is
open-source software development. Security experts tend to be skeptical about the
ability to assure the secure performance of a product developed by volunteers with
open access to the source code. Feature prioritization in open source is basically done
by performers: this is generally viable for infrastructure software, but less so for cor-
porate applications software. Proliferation of versions can be a problem with volun-
teer developers. But most experts, including the Computerworld futures panel, see the
current success of open source development for products like Linux, Apache, and
Firefox as sustainable into the future.

2.5 Complex Systems of Systems Trends

Traditionally (and even recently for some forms of agile methods), software devel-
opment processes were recipes for standalone “stovepipe” applications with high risks
of inadequate interoperability with other stovepipe applications. Experience has
shown that such collections of stovepipe applications cause unacceptable delays in
service, uncoordinated and conflicting plans, ineffective or dangerous decisions, and
inability to cope with rapid change.

During the 1990’s, standards such as ISO/ISE 12207 [31] began to emerge that
situated software project processes within an enterprise framework. Concurrently,
enterprise architectures such as the IBM Zachman Framework [48], RM-ODP [42]
and the U.S. Federal Enterprise Framework [20], have been developing and evolving,
along with a number of commercial Enterprise Resource Planning (ERP) packages.

These frameworks and support packages are making it possible for organizations to
reinvent themselves around transformational, network-centric systems of systems. As
discussed in [25], these are necessarily software-intensive systems of systems (SISOS),
and have tremendous opportunities for success and equally tremendous risks of failure.
Examples of successes have been Federal Express, Frito-Lay, and Wal-Mart; examples
of failures have been the Confirm travel reservation system, K-Mart, and the U.S. Ad-
vanced Automation System for air traffic control.

 The Future of Software Processes 17

2.5.1 Software Process Implications

Our work in supporting SISOS development programs has shown that the use of a
risk-driven spiral process with early attention to SISOS risks and systems architecting
methods [43] can avoid many of the SISOS development pitfalls [7]. A prioritized list
of the top ten SISOS risks we have encountered includes several of the trends we have
been discussing: (1) acquisition management and staffing; (2) require-
ments/architecture feasibility; (3) achievable software schedules; (4) supplier integra-
tion; (5) adaptation to rapid change; (6) software quality factor achievability; (7)
product integration and electronic upgrade; (8) software COTS and reuse feasibility;
(9) external interoperability; and (10) technology readiness.

In applying risk management to this set of risks, the outlines of a hybrid plan-
driven/agile process for developing SISOS are emerging. In order to keep SISOS
developments from becoming destabilized from large amounts of change traffic, it's
important to organize development into plan-driven increments in which the suppliers
develop to interface specs that are kept stable by deferring changes, so that the sys-
tems can plug and play at the end of the increment (nobody has yet figured out how to
do daily builds for these kinds of systems). But for the next increment to hit the
ground running, an extremely agile team needs to be concurrently doing continuous
market, competition, and technology watch, change impact analysis, COTS refresh,
and renegotiation of the next increment's prioritized content and the interfaces be-
tween the suppliers' next-increment interface specs. This requires new approaches not
just to process management, but also to staffing and contracting, which SISOS pro-
grams are in the process of wrestling with.

2.6 COTS, Reuse, and Legacy Integration Challenges

A recent ACM Communications editorial stated, “In the end – and at the beginning –
it’s all about programming.” [13]. Future trends are making this decreasingly true.
Although infrastructure software developers will continue to spend most of their time
programming, most application software developers are spending more and more of
their time assessing, tailoring, and integrating COTS products.

Figure 3 illustrates these trends for a longitudinal sample of small e-services appli-
cations going from 28% COTS-intensive in 1996-97 to 70% COTS-intensive in 2001-
2002, plus an additional industry-wide 54% COTS-based applications (CBAs) in the
2000 Standish Group survey [44, 46]. COTS products are particularly challenging to
integrate. They are opaque and hard to debug. They are often incompatible with each
other due to the need for competitive differentiation. They are uncontrollably evolv-
ing, averaging about to 10 months between new releases, and generally unsupported
by their vendors after 3 subsequent releases. These latter statistics are a caution to
organizations outsourcing applications with long gestation periods. In one case, we
observed an outsourced application with 120 COTS products, 46% of which were
delivered in a vendor-unsupported state [46].

Open source software, or an organization’s reused or legacy software, is less
opaque and less likely to go unsupported. But these can also have problems with in-
teroperability and continuing evolution. In addition, they often place constraints on a

18 B. Boehm

CBA Growth Trend in USC e-Services Projects

0

10

20

30

40

50

60

70

80

1997 1998 1999 2000 2001 2002

Year

P
er

ce
n

ta
g

e

Fig. 3. CBA Growth in USC E-Service Projects ⎯ *Standish Group, Extreme Chaos (2000)

new application’s incremental development, as the existing software needs to be de-
composable to fit the new increments’ content and interfaces. Across the maintenance
life cycle, synchronized refresh of a large number of continually evolving COTS,
open source, reused, and legacy software elements becomes a major additional
challenge.

In terms of the trends discussed above, COTS, open source, reused, and legacy
software will often have shortfalls in usability, dependability, interoperability, and
localizability to different countries and cultures. As discussed above, increasing cus-
tomer pressures for COTS usability, dependability, and interoperability, along with
enterprise architecture initiatives, will reduce these shortfalls to some extent.

2.6.1 Software Process Implications

COTS economics generally makes sequential waterfall processes (in which the pre-
specified requirements determine the capabilities) incompatible with COTS-based
solutions (in which the COTS capabilities largely determine the requirements; it’s not
a requirement if you can’t afford it). Some initial COTS-based applications (CBA)
development processes are emerging. Some are based on composable process ele-
ments covering the major sources of CBA effort (assessment, tailoring, and glue code
integration) [46, 47]. Others are oriented around the major functions involved in
CBA’s, such as the SEI EPIC process [1].

However, there are still major challenges for the future, such as processes for syn-
chronized multi-COTS refresh across the life-cycle; processes for enterprise-level and
systems-of-systems COTS, open source, reuse, and legacy evolution; and processes
and techniques to compensate for shortfalls in multi-COTS usability, dependability,
and interoperability.

2.7 Computational Plenty Trends

Assuming that Moore’s Law holds, another 20 years of doubling computing element
performance every 18 months will lead to a performance improvement factor of 220/1.5 =
213.33 = 10,000 by 2025. Similar factors will apply to the size and power consumption of
the computing elements.

*

 The Future of Software Processes 19

This computational plenty will spawn new types of platforms (smart dust, smart
paint, smart materials, nanotechnology, micro electrical-mechanical systems:
MEMS), and new types of applications (sensor networks, conformable or adaptive
materials, human prosthetics). These will present process-related challenges for speci-
fying their configurations and behavior; generating the resulting applications; verify-
ing and validating their capabilities, performance, and dependability; and integrating
them into even more complex systems of systems.

2.7.1 Potential Process Benefits

Besides new challenges, though, computational plenty will enable new and more
powerful process-related approaches. It will enable new and more powerful self-
monitoring software and computing via on-chip co-processors for assertion checking,
trend analysis, intrusion detection, or verifying proof-carrying code. It will enable
higher levels of abstraction, such as pattern-oriented programming, multi-aspect ori-
ented programming, domain-oriented visual component assembly, and programming
by example with expert feedback on missing portions. It will enable simpler brute-
force solutions such as exhaustive case evaluation vs. complex logic.

It will also enable more powerful software tools that provide feedback to develop-
ers based on domain knowledge, programming knowledge, or management knowl-
edge. It will enable the equivalent of seat belts and air bags for user-programmers. It
will support show-and-tell documentation and much more powerful program query
and data mining techniques. It will support realistic virtual game-oriented software
engineering education and training. On balance, the added benefits of computational
plenty should significantly outweigh the added challenges.

2.8 Wild Cards: Autonomy and Bio-computing

“Autonomy” covers technology advancements that use computational plenty to enable
computers and software to autonomously evaluate situations and determine best-
possible courses of action. Examples include:

• Cooperative intelligent agents that assess situations, analyze trends, and coopera-
tively negotiate to determine best available courses of action.

• Autonomic software, that uses adaptive control techniques to reconfigure itself to
cope with changing situations.

• Machine learning techniques, that construct and test alternative situation models
and converge on versions of models that will best guide system behavior

• Extensions of robots at conventional-to-nanotechnology scales empowered with
autonomy capabilities such as the above.

Combinations of biology and computing include:

• Biology-based computing, that uses biological or molecular phenomena to solve
computational problems beyond the reach of silicon-based technology.

• Computing-based enhancement of human physical or mental capabilities, perhaps
embedded in or attached to human bodies or serving as alternate robotic hosts for
(portions of) human bodies.

20 B. Boehm

Examples of books describing these capabilities are Kurzweil’s The Age of Spiri-
tual Machines [33] and Drexler’s books Engines of Creation and Unbounding the
Future: The Nanotechnology Revolution [14, 15]. They identify major benefits that
can potentially be derived from such capabilities, such as artificial labor, human
shortfall compensation (the five senses, healing, life span, and new capabilities for
enjoyment or self-actualization), adaptive control of the environment, or redesigning
the world to avoid current problems and create new opportunities.

On the other hand, these books and other sources such as Dyson’s Darwin Among
the Machines: The Evolution of Global Intelligence [18] and Joy’s article, “Why the
Future Doesn’t Need Us” [32], identify major failure modes that can result from at-
tempts to redesign the world, such as loss of human primacy over computers, over-
empowerment of humans, and irreversible effects such as plagues or biological domi-
nance of artificial species. From a software process standpoint, processes will be
needed to cope with autonomy software failure modes such as undebuggable self-
modified software, adaptive control instability, interacting agent commitments with
unintended consequences, and commonsense reasoning failures.

As discussed in Dreyfus and Dreyfus’ Mind Over Machine [16], the track record of
artificial intelligence predictions shows that it is easy to overestimate the rate of AI
progress. But a good deal of AI technology is usefully at work today and, as we have
seen with the Internet and World Wide Web, it is also easy to underestimate rates of
IT progress as well. It is likely that the more ambitious predictions above will not take
place by 2025, but it is important to keep both positive and negative potentials in
mind in risk-driven experimentation with emerging capabilities in these wild-card
areas between now and 2025.

3 Limitations to Software Process Perfectibility

Some of the negative wild-card scenarios above indicate that achieving perfectibility
of software engineering and its processes will be difficult. Here are some other limita-
tions that bound such expectations.

Brooks’ Four Essentials Plus Two – Brooks’ “No Silver Bullet” article and its up-
date in [11] identify four “essential” (vs. “accidental”) difficulties making it unlikely
that a “silver bullet” solution for software development will be found. These four
difficulties and their recent trends are: complexity (growing with larger COTS com-
ponents, systems of systems, and the needs for competitive differentiation); confor-
mity (growing with the increased needs for dependability and interoperability);
changeability (growing with the increasing pace of technology, marketplace, and
competitor changes); and invisibility (causing more difficulties due to COTS opacity
and increases in complexity). For 21st century software, two further essential difficul-
ties involve the centrality of software (its criticality to products and services, and to
stakeholders’ power bases) and the need for community-oriented products and proc-
esses (compounded by globalization, multiple cultures, and unfamiliar new models of
electronic collaboration). Silver bullet solutions look even less likely as we consider
these trends and the additional complexity problems with wild-card technologies.

Lampson’s Continuing Software Crisis [34] – Lampson points out three reasons
why the software crisis will always be with us: (1) Moore’s Law enables the feasibil-

 The Future of Software Processes 21

ity of new applications, requiring new and often complex software; (2) It is easier to
handle complexity via software as compared to elsewhere, making it good engineer-
ing practice to address system complexities via software; and (3) Physical laws im-
pose few limits on software applications, making it easy to overreach with proposed
software solutions.

Conway’s Law and Its Converse – Conway’s Law [12] and its extension to user
organizations states that, “The structure of a computer program reflects the structure
of the organizations that build and use it.” Its converse states that, “We will learn how
to build perfectly functioning software as soon as we learn how to build perfectly
functioning organizations.” It is not likely that this will happen by 2025, or for some
time thereafter.

4 Areas of Significant Research and Education Needs

4.1 Software Process Research Needs

These research needs are roughly prioritized by strengths of needs, based on the re-
sults of USC-CSE workshops with its industry and government affiliates.

1. Lean, Hybrid Processes for Balancing Dependability and Agility. The trends in
simultaneous need for high dependability in Section 2.2 and high agility in Section
2.3 dominate here. Additional concerns for special cases are the additional need for
scalability and incrementality for large, software-intensive systems of systems in-
volving COTS and legacy systems as discussed in Sections 2.5 and 2.6; and the
needs to address multi-location and multi-cultural development as discussed in
Section 2.4. Using a value-risk-based approach as discussed in Section 2.1 is an at-
tractive approach option. Other specific concerns are metrics for gauging progress
during concurrent engineering, and performing concurrent engineering of multiple
quality attributes.

2. Integrated Technical and Acquisition Processes. As discussed in Section 2.3, im-
provements in administrative and contracting processes tend to lag behind im-
provements in technical processes, causing the technical process to become over-
constrained and unstable. Again, balancing dependability and agility is important,
and the ability to administer and incentivize collaborative efforts that are perform-
ing concurrent plan-driven increments and agile next-increment preparation across
multiple supplier chains as discussed in Section 2.5.1 are important.

3. Empirically-Evolved Process Languages, Methods, Metrics Models, and Tools.
The need for such capabilities to be incremental and ambiguity tolerant, and to al-
low for incomplete, informal, and partial specifications are important, as are tech-
niques for bridging gaps between less and more formal specifications and gaps or
inconsistencies across life cycle phases or suppliers. The use of empirical evalua-
tion testbeds to accelerate maturity and transition of research results, and to support
collection of baseline process data for evaluating improvement priorities is impor-
tant as well. A further attractive avenue is the development of capabilities to capi-
talize on computational plenty, as discussed in Section 2.7. The empirical frame-
work could also be extended to monitor and evaluate progress and risk areas in the
wild card autonomy and bio-computing areas.

22 B. Boehm

4. Virtual Process Collaboration Support. Shifting the GUI focus from individual
performance to distributed team, multi-stakeholder, and multi-cultural collabora-
tion is a significant need, as discussed in Section 2.1.1 and 2.4.1.

5. Game Technology for Process Education and Training. Game engines comple-
mented by virtual reality modeling and simulation have become tremendously
powerful, and provide an excellent support base for developing “acquire and de-
velop the way you train; train the way you acquire and develop” capabilities.

4.2 Software Process Education Needs

Some key skills much in demand are combinations of computer science and applica-
tions domain skills; COTS assessment, tailoring, and integration skills; stakeholder
teambuilding and negotiation skills; combinations of technical and acquisition skills;
and education in technologies emerging from the research areas above. Real-client
project courses are the strongest mechanism for these kinds of education. The game
technology discussed above will become a valuable addition to both education and
training.

As discussed in Section 2.3.1, the most important future educational need is the
need to learn how to learn.

5 Conclusions

In response to increasing demands being put on software-intensive systems, software
processes will evolve significantly over the next two decades. The basic vocabulary
will be different, with “goals” and “objectives” replacing such terms as “require-
ments”, and “system evolution” replacing “software maintenance”. Value-neutral
methods will be largely replaced by value-based methods. The diversity of system
stakeholders and values will increase the emphasis on collaborative processes to re-
solve multidimensional decision issues. Essential practices and skills will increasingly
emphasize the integration of software engineering and systems engineering; the abil-
ity to integrate software components in place of traditional programming in most
software development areas; and the accomplishment of most software development
via user programming. The most important skill of all as the pace of change continues
to accelerate will be the skill of learning how to learn.

Although perfectibility of software processes is unlikely, there are a number of
software process research and education initiatives that would generate a high return
on investment in meeting future IT challenges with better software solutions.

References

1. Albert, C., and L. Brownsword. Evolutionary Process for Integrating COTS-Based Sys-
tems (EPIC): An Overview. CMU/SEI-20030/TR-009. Pittsburgh, PA: Software Engineer-
ing Institute, 2002

2. Anthes, G.: The Future of IT. Computerworld, (March 7, 2005) 27-36
3. Arthur, W. B.: Increasing Returns and the New World of Business. Harvard Business Re-

view (July/August, 1996) 100-109

 The Future of Software Processes 23

4. Aurum, A., Biffl, S., Boehm, B., Erdogmus, H., Gruenbacher, P. (eds.): Value-Based Soft-
ware Engineering. Springer Verlag (2005)

5. Basili, V., Zelkowitz, M., McGarry, F., Page, J., Waligora, S., Pajerski, R.: Special Report:
SEL’s Process-Improvement Program. Software (November, 1995) 83-87

6. Boehm, B.: A Spiral Model for Software Development and Enhancement. Computer
(May, 1988) 61-72

7. Boehm, B., Brown, A.W., Basili, V., Turner, R.: Spiral Acquisition of Software-Intensive
Systems of Systems, CrossTalk (May, 2004) 57-63

8. Boehm. B., Hoare, C.A.R. (eds.): Proceedings, 1975 International Conference on Reliable
Software, ACM/IEEE (April, 1975)

9. Boehm, B., Jain, A.: An Initial Theory of Value-Based Software Engineering. In: Aurum,
A., Biffl, S., Boehm, B., Erdogmus, H., Gruenbacher, P. (eds.): Value-Based Software En-
gineering, Springer Verlag (2005)

10. Boehm, B., Turner, R.: Balancing Agility and Discipline. Addison Wesley (2004)
11. Brooks, F.: The Mythical Man-Month (2nd ed.). Addison Wesley (1995)
12. Conway, M.: How Do Committees Invent?, Datamation (April, 1968) 28-31
13. Crawford, D.: Editorial Pointers. Comm. ACM (October, 2001) 5
14. Drexler, E.K.: Engines of Creation. Anchor Press (1986)
15. Drexler, K.E., Peterson, C., Pergamit, G.: Unbounding the Future: The Nanotechnology

Revolution. William Morrow & Co. (1991)
16. Dreyfus, H., Dreyfus, S.: Mind over Machine. Macmillan (1986)
17. Druffel, L., Loy, N., Rosenberg, R., Sylvester, R., Volz, R.: Information Architectures that

Enhance Operational Capability in Peacetime and Warfare. USAF-SAF Study Report
(February, 1994)

18. Dyson, G. B.: Darwin Among the Machines: The Evolution of Global Intelligence, Helix
Books/Addison Wesley (1997)

19. Ehn, P. (ed.): Work-Oriented Design of Computer Artifacts, Lawrence Earlbaum Assoc.
(1990)

20. FCIO (Federal CIO Council).: A Practical Guide to Federal Enterprise Architecture, Ver-
sion 1.0. (February, 2001)

21. Fuggetta, A.: Software Process: A Roadmap. In: Finkelstein, A. (ed.): The Future of Soft-
ware Engineering. ACM Press (2000)

22. Gerrard, P., Thompson, N.: Risk-Based E-Business Testing. Artech House (2002)
23. Grady, R.: Successful Software Process Improvement. Prentice Hall (1997)
24. Gruenbacher, P., Koeszegi, S., Biffl, S. Stakeholder Value Proposition Elicitation and

Reconciliation. In: Aurum, A., Biffl, S., Boehm, B., Erdogmus, H., Gruenbacher, P. (eds.):
Value-Based Software Engineering, Springer Verlag (2005)

25. Harned, D., Lundquist, J.: What Transformation Means for the Defense Industry. The
McKinsey Quarterly, (November 3, 2003) 57-63

26. Hofstede, G.: Culture and Organizations. McGraw Hill (1997)
27. Highsmith, J.: Adaptive Software Development. Dorset House (2000)
28. Huang, L.: A Value-Based Process for Achieving Software Dependability. Proceedings,

Software Process Workshop 2005 (May, 2005)
29. Humphrey, W.: Introduction to the Personal Software Process. Addison Wesley (1997)
30. Humphrey, W.: Introduction to the Team Software Process. Addison Wesley (2000)
31. ISO (International Standards Organization).: Standard for Information Technology –

Software Life Cycle Processes. ISO/IEC 12207 (1995)
32. Joy, B.: Why the Future Doesn’t Need Us: Wired (April, 2000)
33. Kurzweil, R., The Age of Spiritual Machines. Penguin Books (1999)
34. Lampson, B.: Computing Meets the Physical World. The Bridge (2003) 4-7
35. Maslow, A.: Motivation and Personality. Harper and Row (1954)
36. Moore, G.: Inside the Tornado. Harper Collins (1995)

24 B. Boehm

37. Musa, J.: Software Reliability Engineering. McGraw Hill (1999)
38. Patterson, D.: 20th Century vs. 21st Century C&C: The SPUR Manifesto. ACM Comm.

(March, 2005) 15-16
39. Paulk, M., Weber, C., Curtis, B., Chrissis, M.: The Capability Maturity Model. Addison

Wesley (1994)
40. Phongpaibul, M., Boehm, B.: Improving Quality Through Software Process Improvement

in Thailand: Initial Analysis. Proceedings, ICSE 2005 Workshop on Software Quality
(May, 2005)

41. PITAC (President’s Information Technology Advisory Committee).: Report to the Presi-
dent: Information Technology Research: Investing in Our Future (1999)

42. Putman, J.: Architecting with RM-ODP. Prentice Hall (2001)
43. Rechtin, E.: Systems Architecting. Prentice Hall (1991)
44. Standish Group: Extreme Chaos. http://www.standishgroup.com (2001)
45. Toulmin, S.: Cosmopolis. University of Chicago Press (1992)
46. Yang, Y., Bhuta, J., Port, D., and Boehm, B.: Value-Based Processes for COTS-Based

Applications. IEEE Software (2005, to appear)
47. Yang, Y., and Boehm, B.: A Contextualized Study of COTS-Based E-Service Projects.

Proceedings, ICCBSS 2005 (February, 2005)
48. Zachman, J.: A Framework for Information Systems Architecture. IBM Systems Journal

(1987)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 25 – 34, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Are Processes Too

Jacky Estublier

LSR-IMAG, 220 rue de la Chimie BP53,
38041 Grenoble Cedex 9, France
Jacky.Estublier@imag.fr

Abstract. A process defines the way activities are organized, managed,
measured, supported and improved to reach a goal. It has been shown, 15 years
ago [1] that processes are software too; more precisely that their description can
also be software. We hypothesize that a system can be characterized by its goal
and by answering the questions: why, what and how.

We show that software process work investigated only a tiny subset of
processes, where only the how have been addressed. “Meta-process” research
tried to address the why to change a process model, but was largely unfruitful

This paper first relates processes, software production and humans in the
framework of the meta pyramid proposed by the OMG MDA. We show that
programs and process models are fully similar, but not at the same level in the
meta pyramids. Therefore the claim: software are processes too.

The meta pyramid framework is used to show and contrast new and original
potential uses of process technology. It is shown in particular that strategic
software management requires a kind of process support where the what is not
humans, but the software itself. Finally it is shown that autonomic computing
will soon require process support where the why, the what and the how will
have to be fully formalized and the process models automatically executed.

We believe that this new and demanding context will foster new research on
process modeling and support.

1 Introduction

A process is the way activities are organized, managed, measured, supported and
improved to reach a goal. For example, in the software process, the activity is
software development (design, implementation, test, …) and the goal is to deliver the
planned software product.

A process model is the formal expression of a part of the process, with the goal to
understand, communicate, improve, support or automate the process. Process
technology supports a process in order to consistently reach the goal within
predefined time, budget, and quality constraints.

The process, therefore, encodes a part of the company know-how which otherwise
is only in the performer's head. It is acknowledged that this (partial) transfer of know-
how allows the company to master its assets, to transfer more easily the know-how to
newcomers, to increase repeatability, and to allow process analysis and improvement.

From this perspective, in the software process community, the goal is the
repeatability of the process with optimal human resource consumption, focusing on

26 J. Estublier

how the job (designing, developing and maintaining a software) should be done. The
job is performed by humans on documents (what) on the time scale of a software
project (weeks and months) [2] [3] [4].

It is interesting to see that any interactive software system also has a goal to
support (and constrain) human activities in order to reach a goal in a repeatable and
predictable way, optimizing the human resource. From this perspective, interactive
software is a process support system. How, is often defined by the functions the
system supports and what is often the values of some data managed by the software
system. Time scale is minutes.

The software process line of work, and most interactive programs, hypothesize that
the context is constant (technology, market, goals). But the context permanently
evolves, on a larger time scale (years), and successful software (and models) must
evolve to adapt to its changing context. This long-term evolution is also a process,
often carefully planned (strategic view of the product). The goal is to adapt the
software product (what) to new markets and technologies, changing (how) the
software product content. The time scale is years. This is why software evolves. So
far, this kind of process has not been formally described and supported.

Today, in autonomic computing for example, a software must evolve continually at
execution, changing its architecture and its features, under the constraints of its
environment. This is typically what a process is. The goal is to adapt to evolving
contextual conditions, why is to maintain an optimal software service, what is the
software system, how is architectural and feature changes; in the time frame of
seconds. Because of the very short time frame, these changes must be performed fully
automatically, and therefore the why, how and what must be formalized.

We discuss these new dimensions of processes, at the light of the MDA
framework, and we show what are the differences and synergies.

2 Meta-pyramids

The “meta” prefix is used very often in research, but it is a relative notion. A meta-
language is a language that describe languages; meta-data is data that describes data,
and a meta-model is a model that models model. The “meta” notion occurs at
different levels, in different domains and under different terms.

2.1 The Software Meta-pyramid

The meta notion can be composed. For instance a meta-meta-model is a model that
describes meta-models. Clearly each composition step leads to a level that is
increasingly difficult to grasp. In practice after a few levels of abstraction, adding
more levels is not useful. Figure 1 presents the classical “meta-pyramid”.

The language technology provides a good example of meta-tower. The Backus
Normal Form (BNF) is a meta-language that is useful for describing languages. One
might use the BNF grammar to describe the Java or C++ grammar. The Java grammar
describes how to write valid Java programs [5] [6][7].

 Software Are Processes Too 27

M+3 Meta - Meta - Model

Meta - Model M+2

M+1 Model

M+0 Instance

MOF

UML MM

Java MM

C# MM
Cobol MM

EJB MM

ACME Banking Apps

FOO Banking Apps Z Bookstore Apps

ACME Banking State 3pm Z Bookstore state 9pm

FOO Banking State 10am

alternatives

Z MM

of
entities

Fig. 1. The MDA Software pyramid [8]

The relationship between two levels is the “conformity” relationship. Conformity
can be defined in different ways. It can be the instantiation conformity (an instance
conforms to its class); it can be linguistic conformity (a sentence conforms to the
language in which it is written), ontological conformity (an instance conforms to the
definition of its ontological class) and so on. MDA uses instantiation conformity
between M+0 and M+1, linguistic conformity otherwise.

At the lowest level (M+0), instances (or objects) represent abstractions of real
world entities (e.g., “tom” is a client of the ACME bank). Each state of the program
execution is a model (an abstraction) of a state in the real world. The program is a
model of the evolution of the real world.

M+1 is the level where programs reside. Program are models describing the
application concepts (e.g., “client” and “account”) and the rules that govern all
possible states (e.g., “balance>0”).

The meta-model level (M+2) describes the concepts that are used to describe
models. For instance the concepts of “class” and “association” are used in UML class
diagrams, the concepts of “class”, “method”, “field”, and “inheritance” are used in
Java programs, etc.

At the meta-meta-model level (M+3), there is the MOF. The MOF is used to
describe itself, and to describe arbitrary meta-models including meta-models for
UML, Cobol, Java, C, etc. Roughly speaking the MOF is the equivalent of the BNF in
the context of UML.

2.2 The Software Process Meta-pyramid

Aside from the MDA pyramid, called here the technology pyramid, we can find the
human pyramid, representing the humans working at each level. In this pyramid, the
conformity relationship is informal: the persons at one level define the tools and
methods to be used at the next lower level [9].

At the model level are software developers; they produce the software. One level
higher, the software experts are designing and developing the technologies needed for
the developers, including programming languages (compilers), middleware and other
piece of enabling technology. These persons are much less numerous than the

28 J. Estublier

software developers. At the meta-meta-level are a few specialists that develop (meta)
tools for the software specialists (compiler compilers, meta parsers and so on).

As claimed long ago, a software process is itself software [1], therefore, the
process pyramid is also a technology pyramid. But process execution “supports” the
work performed by the software developers, which are the process' end users. The
process model, developed by the software experts, specifies how the software
developers' job has to be done. The Process Support System (PSS) is the language
(and associated support tools) in which models are written; it is created by metaware
experts. We find the usual technology pyramid, one level higher than the traditional
one, showing clearly that the claim “software processes are software too” is justified,
but one step higher.

In software processes, software production is supported, the goal of the processes
is support and automation. The software process community has considered the most
critical issue to be the modeling and support of activities in a non-deterministic world;
non-deterministic because the humans that perform the job (who) are non-
deterministic. In these software processes, human are producing, consuming and
changing “products,” which are the final product, the targeted software (what). To
increase efficiency, predictability, and reduce errors, the process, when supported,
prohibits the user from doing anything, and instead lets him perform only some
predefined task, in a predefined order; usually the process engine handles the
“products” on behalf of the user.

Program

 Enabling
technology

PSS

Program m ers

End users

Soft. experts
Process M odel

 Software Engineering Process Enginering

 Software Hum ans Software Process

Support

Build

M etaw are experts

Process execution

Program execution

Fig. 2. Software engineering and process engineering

Now consider an interactive program. The program simply manages some data
(product) on behalf of its users, it prohibits the user from doing anything with the data
and instead proposes only predefined operations (activities) in a predefined order; it
handles the issues around concurrent work on the same data. The program is very
similar to a process model, and the machine to a process engine. We can say the
program supports its users in pretty much the same way as a process supports its
users. A model (program) expresses how humans are supposed to interact with
software artifacts (data); it expresses the sequence of actions (how) to be performed

 Software Are Processes Too 29

by these humans of these artifacts (what) to reach a goal. In both cases the goal is the
repeatability of the process, the consistency of the resulting data and the optimization
of human time. This shows that our claim “software are processes too” is fully
justified.

The relationships between the human and technology pyramids are build and
support. At a given level, the humans are building the tools at the same level in the
technology pyramid. As an exception, at the base level, the end users are not
(necessarily) developing any software.

The execution of software succeeds one level down in the technology pyramid,
using the instantiation conformity (see fig 1). Therefore, these tools, when executed (1
level down) are supporting the work performed by the human at that level. It is the
typical relationship between a process and the humans it “manages” or supports.

This consideration is true for any interactive software; this is true for the Process
Support System (PSS), that supports the software expert in defining the process
model, and it is also true for most of the enabling technology found at the M2 level of
the technology pyramid: IDEs and other tools are supporting the software engineers
work.

This is why we claim that “software are processes too”. This analogy, once
established, makes it interesting to revisit process technology and its use.

3 New Uses of Processes

3.1 Program Coordination

Orchestration and choreography are nice names for the coordination of independent
programs. Indeed, it means that the what are programs and that the goal is to provide
control to these program in order to reach a goal. These program can be seen as
performing an activity, in which case orchestration and choreography can be seen as a
process, with a goal to implement a complex application, acting on other programs
(the what), providing control to these program (the how) [18].

In contrast with software processes, the job is not performed by a human, but by
programs. Programs are usually deterministic, hence, coordination languages are seen
as programming languages, with the same characteristics and constraints. But
communication often occur through the internet, which is not fully reliable,
introducing another reason for non-determinism. This is why exception handling is an
important issue. The point of program coordination, since it is fully automatic, is to
get clear an unambiguous semantics; it is a microprocess line of work [10] [12][14].

It is interesting to see that this kind of automated coordination is recognized by the
software engineering community as being a process (under name workflow), even if
no humans are involved in their execution. Indeed, “process (or workflow) driven”
XX is becoming a common expression to indicate that process technology is used to
coordinate XX [15].

3.2 Meta Process

In most work on “meta-processes”, the meta-process is not the level above the process
in the meta pyramid, but a completely different process, which (tries to) support the

30 J. Estublier

software experts when updating/changing a process model, in order to solve the
discrepancies found during process execution (process instance evolution) [11], to
adapt the model to new methods and tools (process evolution), or to improve the
model (process improvement).

Indeed the work on “meta-processes” were among the first attempts to formalize
the know-how of software experts when deciding to react to contextual changes
during process execution. This know-how is the analysis of the changes, and the
decision of what changes are to be performed in order to maintain some fundamental
properties of the process (the why). Considering that the process model is also a
program, the “traditional” software process, defining how to change the model, can be
applied [17] [3].

Programmers

End users

PSS

Process Model

Process execution

Process execution

PSS

Process Model

 Meta Process Humans Software Process

Metaware experts

Soft. experts

Fig. 3. The Meta-process pyramid

It is interesting to see that virtually all the work performed on meta-processes
addressed why to change the model, and what to change; leaving how to change to the
“traditional” software process. This is an important difference.

Unfortunately, the least we can say, is that meta-processes have not been
successful so far. This is not surprising, since modeling the why (modeling
motivations, choices in non deterministic space, behavior in non planned context..) is
intrinsically more complex than modeling the how.

The time scale of such meta-processes is weeks for process instance evolution, but
years for process adaptation and software improvement.

3.3 Process for Strategic Software Evolution

The long process by which a software product evolves from its current state to a
future desired state is often carefully planned. For example, a development plan may
state that product XX, currently on Linux must be available also on Windows XP,
must support multi-threading and must provide support for YY and ZZ features in the
next 2 years. For a professional product, it is likely that the long list of changes to be
performed to reach the goal will be analyzed and the process will be identified (steps,
duration, resources …). Companies would like to have support during this long period

 Software Are Processes Too 31

of time, for example, for each change to be performed (e.g., normal maintenance) to
assess if it is consistent with the long term goal or not. This is similar to civil
engineering: before performing work is an area, checks are performed to see if there
are conflicts with other planned future work (highway, …).

This is typical software process: it formalizes an evolution to reach a goal (the
future desired state of the software), it contains a lot of know-how, and has to be
performed in a highly non-deterministic context (technology and market evolve
permanently at that time scale).

This long-term process is different from the “usual” one in the sense that it focuses
on the structure and technical content of the software (the what) while traditional
processes focuses the humans and documents (semantically neutral from the process
perspective). It defines the changes (what) that must be applied to the content and
structure of the software, in order for the software evolve as planned. The entities the
process acts upon are not humans, but the software itself, not files, but its content and
structure.

A C M E B a n k in g A p p s

P ro g ra m

P ro g ra m e x e c u tio n
A C M E B a n k in g S ta te 1 0 a m

 E n a b lin g
te c h n o lo g y

P S S

P ro c e s s M o d e l

T e c h n o lo g y ,
n e e d s a n d m a rk e t
E vo lu tio n

Y e a rs

P ro c e s s e x e c u tio n

S tra te g ic P ro c e s s S o ftw a re

Fig. 4. Strategic software evolution

It means the strategic process should control and coordinate the different
production processes (governing how the changes are to be performed). In general, it
involves the coordination of two or more different processes, possibly handled by
different process engines, in different geographical locations. These issues have been
addresses by the Workflow Management Coalition (WfMC), but with many
restrictions [20][21]. The problem still needs to be addressed in a more general
context [19].

3.4 Process for Dynamic Software Evolution

The fact modern software applications are gradually supported by a network of
computers, has dramatic consequences. Provided the number of machines potentially
involved in such an application (up to thousands), the variability of the network
bandwidth and availability, and even the mobility of some “machines” (laptops, PDA,
phones), the administration of these complex software application cannot be done

32 J. Estublier

 manually. It gives birth to so called autonomic computing systems. These systems
are commonly defined as exhibiting self-monitoring, self-configuration, self-
optimization, self-healing, and/or self-protection [22][23].

ACME Banking Apps

Program

Program execution
ACME Banking State 10am

 Enabling
technology

Model of
Evolution

PSS

Process Model

Software Autonom ic Process

Seconds

Process execution

Fig. 5. Dynamic software evolution

This means that autonomic systems are permanently changing their architecture
and their features in response to the changing context. The goal of these changes is to
maintain a service in an evolving and non-deterministic world. The why of these
changes is that something occurred in the environment which hampers the software
application to provide an optimal service (or no service at all). An autonomic software
system must analyze the new context, and decide what to change in order to restore
optimal service (the why). Since the autonomic system performs the change, it must
therefore know how to perform the change.

The needs and ambitions of autonomic systems is very similar to those of meta-
processes, but with a major difference: meta-processes have a time scale of years, and
therefore are at least partially performed by humans. In autonomic computing, these
changes occur in the time frame of a few seconds and are performed on many
machine simultaneously: decisions must be made and performed fully automatically.
It is very interesting to consider that autonomic computing will require processes that
fully formalize the why, the what and the how.

4 Conclusion

Process technology has explored a number of issues and technologies, but with
implicit hypothesis : humans are doing the job, the process expresses how to perform
the job, in a rather stable world. The difficult issue is the non-deterministic of
humans. From the process point of view, the software product (the what) is a set of
documents whose content is not really of concern. Work on meta-processes tried to
address other issues, the product (the process model) being known and changed to
adapt to changes that have occurred in the environment. The meta-process work tried
to address the what and the why. Unfortunately, this work was not so successful.

In recent years, process technology has been used for a number of other purposes,
in which the what became the content and structure of programs (or models), where

 Software Are Processes Too 33

the major issue is no longer human non-determinism, but the non-determinism of
context evolution, either over very long periods of time (market, needs and
technology) or very short periods of time for widely distributed and dynamic
applications executing in non-predictable environments (mobility, bandwidth,
availability, services and so on). This evolution considers software as both a process
and the subject of a process, blurring even more the traditional distinction between
processes and software.

We believe that this new and demanding context should resurrect the old work
performed on meta-processes and foster a new trend of research activity on process
support in general, and on how to formalize the why and what in processes.

Acknowledgement

We are grateful to Jean-Marie Favre for the discussion and initial ideas leading to that
short paper. I hope an extended version will be produce in common soon.

References

[1] L. Osterweil. “Processes are software too”. Proceedings of the 9th international
conference on Software Engineering. Monterey, California, United States, Pages: 2 –
13. 1987

[2] Conradi, R., Fernstrom, C., Fuggetta, A., Snowdown, B. Towards a Reference
Framework for Process Concepts. In Proc. EW SPT’92, 2nd European Workshop on
Software Process Technology, Trondheim, Norway (Sept. 1992)

[3] J.C. Derniame (ed). « Software Process : Principles, Methodology and Technology ».
LNCS 1500. Springer Verlag 1999.

[4] B. Curtis, M.. I. Kellner, J. Over. "Process Modeling", Communications of the ACM,
Volume 35, No. 9, September 1992.

[5] Dsouza, D. “Model-Driven Architecture and Integration: Opportunities and Challenges”
Version 1.1, document available at www.kinetiuym.com, February 2001.

[6] OMG Model Driven Architecture A Technical Perspective Architecture Board MDA
Drafting Team Draft 21st February 2001

[7] John Poole. “Model-Driven Architecture: Vision, Standards And Emerging
Technologies”. ECOOP 2002.

[8] J.M. Favre. “CacOphoNy: Metamodel-Driven Architecture Reconstruction”. Working
Conference on Reverse Engineering (WCRE 2004). November 2004, Delft, The
Netherlands

[9] J.M.Favre, S. Ducasse "Using Meta-Model Transformation to Model Software
Evolution". ATEM2004, Workshop with WCRE 2004) Delft, The Netherlands,
November 8th-12, 2004. And in Electronic Notes in Theoritical Computer Science

[10] C. Godart, F. Charoy, O.Perrin and H. Skaf-Molli: “Cooperative Workflows to
Coordinate Asynchronous Cooperative Applications in a Simple Way.”. 7th International
Conference on Parallel and Distributed Systems (ICPADS’00). Iwate, Japan, July 2000

[11] P.Y. Cunin, R.M. Greenwood, L. Francou, I. Robertson and B. Warboys. “The PIE
Methodology - Concept and Application”. 8th European Workshop on Software Process
Technology (EWSPT). Dortmunt, Germany. June 19, 2001.

[12] G. Valetto, G. Kaiser. Using Process Technology to Control and coordinate Software
Adaptation. ICSE, Portland May 2003.

34 J. Estublier

[13] Wise, A., Cass, G.A., Staudt Lerner, B., McCall, E.K., Osterweil, L.J., Sutton Jr., S.M.:
Using Little-JIL to Coordinate Agents in Software Engineering. Proceedings of the
Automated Software Engineering Conference ASE 2000, Grenoble, France (September
2000) 155-163.

[14] Estublier, J., Sanlaville, S.: Business Processes and Workflow Coordination of Web
Services. IEEE International Conference on e-Technology, e-Commerce and e-Service
(EEE-05), Hong Kong (March 2005).

[15] Estublier, J., Villalobos, J., Le, A.T., Sanlaville, S., Vega, G.: An Approach and
Framework for Extensible Process Support System. 9th European Workshop on Software
Process Technology EWSPT 2003, Helsinki, Finland (September 2003).

[16] Leymann, F.: Web Services Flow Language (WSFL 1.0). IBM Software Group (May
2001).

[17] Minh Ngoc Nguyen, Reidar Conradi: "The Software Meta-process: Taxonomy and
Assessment", p. 167-175, Proc. 3rd Int'l Conference on Software Process (ICSP'3), IEEE-
CS Press, 10-11 Oct. 1994 Washington.

[18] Leymann, F., Roller, D.: Workflow-based applications. IBM System Journal. Vol. 36,
No.1 (1997) 102-123.

[19] Jacky Estublier, Pierre-Yves Cunin, Noureddine Belkhatir. « An architecture for process
support interoperability”. ICSP 5, Pages 137-147. 15-17 June 1998 Chicago, Illinois,
USA.

[20] Workflow Management Coalition: Interface 1: Process Definition Interface. WfMC TC-
1016 (August 1996)

[21] Workflow Management Coalition "Workflow Standard - Interoperability - Abstract
Specification", Document Number WFMC-TC-1012, Version 2.0b, 30 November 1999.

[22] IBM Systems Journal: Special Issue on Autonomic Computing, Vol. 42, No. 1, Jan 2003.
[23] J.O. Kephart and D.M. Chess, The Vision of Autonomic Computing, IEEE Computer,

Vol. 36, No. 1, pp. 41-50, Jan 2003.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 35 – 42, 2005.
© Springer-Verlag Berlin Heidelberg 2005

The Software Process: Global Goals

Watts S. Humphrey

Software Engineering Institute (SEI) of Carnegie Mellon University,
4500 Fifth Avenue, Pittsburgh 15213, USA

watts@sei.cmu.edu

Abstract. The software industry appears to have reached a plateau. While im-
provements have been made in the last 20 years, progress has been limited in
scope and degree. Researchers, tool and method developers, and process spe-
cialists are all doing creative and promising work. However, as we continue
making impressive technical and process advances, and even though occasional
projects produce extraordinary results, broad and effective use of even gener-
ally-available best processes and methods has been slow and limited.

Where new processes and methods have been properly introduced, the re-
sults have generally been positive. This would be considered success by many
definitions but most software work continues to be done with ill-defined proc-
esses, poor tools and methods, and ineffective management systems. Modern
software work involves many topics and there are many different specialties.
Because our field is now so broad and so many different topics are now impor-
tant, we have developed a wide variety of disciplines which each has its own
experts. Unfortunately, these experts all have different views and, because we
don’t agree among ourselves on what is important, our story is incoherent. To
improve our industry so that it can meet the growing demands of society, we,
the software process research community, must develop a coherent, consistent,
and forceful position.

1 The Issues

Few of the issues in software work are complex, but their significance is not obvious
to even highly-qualified and perceptive managers and executives. It is not that the
issues we raise are unimportant, but that most executives face a constant stream of
many important issues and are deluged with specialized solutions to the many parts of
their software operations. Without a clear and compelling way to present the software
process story, each of our individual technical successes has too narrow a scope to be
a priority for those who lead and control today’s software development work. If our
process, method, and tool advances do not address goals that are already near the top
of their priority lists, busy executives will feel that, while possibly important, incorpo-
rating these advances in their work is not anything they must address right now.

It is as if we were building the Tower of Babel. We work on this enormous edifice
but we can’t even communicate among ourselves. It is not surprising that we have
trouble communicating with our users. The problem is goals. What important goals
do we face and what do we recommend as goal priorities? Should we really recom-
mend that our potential users apply every one of our advances at once, or is there

36 W.S. Humphrey

some order and framework we could agree upon? To get our work on the priority list
of busy people, we must address the goals that are important to them. And we must
do it in a way that makes sense, is not technically controversial, and that fits coher-
ently with what other experts tell them.

2 What We Need

So we need goals, but our current goals are overly focused. We must not just con-
sider the goals of one or two people; everyone must be involved. We all work on this
enormous elephant of a problem but we each work on only a small part: if one person
concentrates only on the trunk, or the tusks, or the toenails then no one can describe
the entire beast. And, what is worse, those of us who work on tusks or trunks don’t
recognize the legs or toenails as important, and we are even likely to belittle what is
actually very good and necessary work. We are not only foregoing the likely syner-
gies among our efforts, but we are not even aware that such synergies could exist.
Few of us have the time to even consider them.

We need to understand our own goals and also to see where our goals fit into an
overall framework that characterizes both the local and the systemic problems of the
entire field of software process and technology. Further, since our process concepts
must address the entire universe of software issues, we must consider all of the com-
munities involved: the consumers who use the software products and services; the
suppliers who produce software systems, products, and services; and the generators
who produce the processes, tools, methods, environments, technologies, and skills
that the consumers, suppliers, and generators need to do their work. As members of
the generator group, we must understand the goals of our own work but also under-
stand how these goals address the needs of the three classes of constituents. With
such a coherent framework, we could tell a compelling story, and we could support
each other while doing so. Because the problems will not get better by themselves
and because the need for solutions is growing daily, a logical and coherent goal
framework for the entire software field would have an enormous impact. Developing
such a framework for the software process research community would be a useful
start and might motivate an effort to produce a coherent set of goals for all of software
technology.

3 A Goals Framework

To produce a coherent and meaningful set of goals, we must consider both how proc-
ess work fits into the entire software field and how process research relates to the
broader spectrum of process activities. The ultimate focus of all software-related
goals must be on the software users. If these users don’t sooner or later benefit from
our work, our products will not be used or our activities well-supported. This means
that the first goals to define are for those groups that supply products and services
directly to software users.

Developers and service providers are interested in processes only if these processes
appear likely to help them produce more attractive products, provide more effective

 The Software Process: Global Goals 37

services, or improve their business performance. Therefore, our goals must ultimately
concern ways to help product developers and servicers produce better products for
lower costs and on shorter schedules. This, in turn, requires that we provide process-
related products and services that will help both developers and servicers produce
these better products.

From this point, the next step in the goals discussion must consider the groups that
provide process-related products and services to software developers and servicers.
The goals for these groups are much like those of the product developers and ser-
vicers. They will be interested in process research work only if it can help them to
produce more attractive process-related products and services or to improve their own
business performance.

The next logical step would appear to be to define the goals for process research.
However, goals like those for product developers are not appropriate for research
groups. Research groups are not in the business of identifying market opportunities,
defining and developing products, or providing user services. Our business is devel-
oping knowledge and understanding, so it is more appropriate for the process research
community to think in terms of questions than goals. What are the critical questions
that the process developers and service providers face in their work, and what might
the process research community do to help address these questions? Presumably, by
having answers to the right set of questions, the people who provide process products
and services would be better able to do their jobs.

4 Critical Questions

While there are many ways to group the critical process questions, this paper divides
them into four categories.

Designing processes
Using processes
Analyzing processes
Supporting processes

There are many questions that one could ask in each area, but based on recent work
at the SEI, the following appear to be some of the more fundamental ones.

5 Designing Processes

Here, one of the most basic questions is the following.
- To what extent is it possible to design software development processes that

are both sufficiently precise to provide useful guidance and sufficiently gen-
eral to be widely applicable?

Work to date with the Personal Software Process (PSP)SM shows that, at least for
individual developers, a single simple process can be used by most software develop-
ers to guide the development of small programs [Humphrey]. This work has also
shown that, with a precise and well-defined process and sufficient motivation, devel-

SM Personal Software Process and PSP are service marks of Carnegie Mellon University.

38 W.S. Humphrey

opers will actually change their behavior and produce higher-quality and work on
more predictable schedules than they did before.

This same PSP work also shows that such a process can constrain the programming
style of some users. While relatively simple process modifications can make these
processes suitable for almost any programming style, few software developers have
the skill and motivation to make such changes themselves, particularly if their initial
process experiences felt constraining.

While the results to date appear helpful, substantial additional work is required to
produce a broader answer to the question of process precision vs. generality. This
work should include steps like the following.

- Identify the particular facets or sub-processes of software work that could
profitably use precise but generic processes.

- Define how these sub processes should relate.
Establish a generalized architectural framework for these processes, with appropri-

ate standards for nomenclature, measures, data formats, and interfaces.

6 Using Processes

Regarding process use, one fundamental open question is the following.
- What combination of process features, tool support, user training, and user

experience is required to enable broad and effective use of a process?
Experience to date shows that a substantial preparatory effort is required before

software developers will use a defined process on their own. Even after they are
using it, however, the consistent and effective use of that process is still widely vari-
able. While many teams of developers have successfully used the Team Software
Process (TSP)SM, many of the processes that they used were ones that they had per-
sonally defined under the guidance of an experienced TSP coach [Davis]. Then, with
proper coaching and management support, these teams have generally obtained im-
pressive results.

Continued effective use of these team-defined processes appears to require sub-
stantial management support and ongoing professional team coaching. The problems
that cause these needs concern process tool support and automation; developer ex-
perience, education, and training; the quality of the coaching provided; and the con-
sistency and nature of management support.

One question where an answer could help clarify the process usage issues is as fol-
lows.

- If developers had been required to use defined and measured processes when
they first learned to write programs during their formal education, would
they be more likely to use processes consistently and effectively later in their
careers?

While some universities have started to introduce process concepts and methods in
initial programming courses, not enough developers have been trained in this way to
provide a reliable answer to this question. Another important usage question concerns
the developers’ working environment.

SM Team Software Process and TSP are service marks of Carnegie Mellon University.

 The Software Process: Global Goals 39

- If developers worked in an environment where consistent and regular use of
defined and measured processes was normal, would new members of these
groups learn and use these processes more readily?

Limited experience indicates that the answer is probably yes, but experience also
shows that there will be exceptions. A few developers will refuse to follow generally
accepted practices regardless of their benefits or of management and peer pressure.
Typically, such developers change jobs under these conditions. A third and related
usage question concerns creativity.

- Would the broad and effective use of defined processes enhance developer
creativity?

While there is insufficient evidence to date to answer this question, early experi-
ence in the medical profession provides an interesting and possibly pertinent analogy.
Before the late 1800s, the practice of medicine was severely limited by what was then
called sepsis. We now know that sepsis was caused by bacterial infection. Since
patients almost always died of sepsis after extensive or complicated surgery, there
was little demand for such procedures, and the practice of surgery was severely lim-
ited. Even though surgeons had many creative ideas, and many surgical tools and
methods had been invented, it was not until Lister introduced antiseptic techniques
around 1870 that advanced surgical methods began to be widely used and that the
startling advances we have since seen in surgical technology could be developed.

Unfortunately, with current software practice, the severity of cost, schedule, qual-
ity, safety, or security problems often results in the premature demise of our projects.
While there is no way to prove the point, it seems likely that the current rudimentary
state of software practice is limiting the nature of software applications in much the
way that sepsis limited the practice of surgery. On the positive side, there is growing
evidence that all of these problems could be solved or substantially reduced by the
proper use of suitably defined and measured software processes and practices.

7 Analyzing Processes

One of the more interesting and possibly most fundamental set of process questions
concerns our ability to study processes independently of the people and projects that
enact them. One such question is the following.

- What can we learn about the usefulness and performance of processes by
studying the processes themselves?

One way to think about this question is to consider the degree to which process
performance can be characterized independently of the people or projects that enact
that process. The SEI has PSP data on many thousands of process enactments by
several thousand software developers. Because the PSP, as taught in the SEI’s stan-
dard course, consists of six upwardly-compatible processes, developer performance
can be examined across the range of processes [Hayes]. Even though the perform-
ance variation among individuals is generally larger than the performance variation
across process levels, statistical studies have shown that the variation between process
levels is significant. On average, the SEI has found that process differences can cause
significant changes in the performance of individuals and even of large groups of
developers.

40 W.S. Humphrey

However, the really important issue is not learning about a process by studying the
results of using that process, it is learning about the process from studying the process
itself. For example, if we could devise a framework and measurement system for
characterizing the performance of process elements, what could we say about the
performance of various combinations of these elements? Based on what we can de-
duce from the PSP data, we are a long way from answering this broader question.
While it is not clear that we ever could draw useful conclusions about a process with-
out studying data on its enactment, it seems likely that, if we were to ever do so, we
must use scientific principles to develop verifiable theories.

8 The Scientific Method

To follow the scientific method, we must follow these steps.
- Produce theories about our processes.
- Make hypotheses about our theories.
- Postulate experiments to test these hypotheses.
- Conduct and measure these experiments.
- Use the experimental data to either verify the hypotheses or to modify the

theories and hypotheses and repeat the experimental cycle.
Hopefully, after conducting enough scientifically-based experiments on enough

enactments of a sufficiently varied family of processes, this approach would yield a
family of experimentally-verified theories which could guide useful process analysis.
If we could ever get to this point, a few of the more interesting questions we might
address would be the following.

- To minimize cost and schedule, what would be the optimum balance of de-
velopment, defect prevention, quality assessment, and defect repair activi-
ties?

- To maximize planning accuracy at each stage of a process, what is the proper
mix of planning and development activities for any given process or process
family?

Another series of questions might address process performance limits. An example
is the following.

- Are there limits to the quality levels that skilled developers can achieve with
a process or process family and, if so, how do these limits vary with the tools
and methods used?

Finally, there is the more fundamental question which is at the root of many soft-
ware research activities.

- Are there limits to software process automation and, if there are, what are
they and how can we characterize them?

While great strides have been made in automating many aspects of the software
development process, there is some essence of this process that appears unlikely to
ever be automated. It concerns those aspects of the work involving learning, commu-
nicating, motivating, committing, and adapting. Could we somehow characterize the
limits of software process automation and define ways to measure our progress
against these limits?

 The Software Process: Global Goals 41

Such a demonstrably sound theoretical foundation for our work would be of tre-
mendous value. To help advance scientifically sound studies of the software process,
the SEI is willing to consider requests for using its large volume of PSP and TSP data
for qualified research studies.

9 Supporting Processes

The many important categories of process support include training, coaching, man-
agement, and tools. Of these, the one area that would be of most immediate value is
tool support. The two principal areas of tool support are support for enacting existing
processes and support for developing or enhancing processes.

10 Tool Support for Enacting Processes

Regarding tool support for supporting process enactment, the single biggest complaint
developers have about using almost any process is inadequate tool support. To facili-
tate scientifically-sound process studies, the highest priority focus should be auto-
mated data gathering. For this, the tool should

- use the data that are potentially available from the development environment
- provide maximum assistance to the developers in performing whatever data-

gathering tasks they must perform
- analyze the current and historical data and draw useful inferences regarding

project and product status
- generate individual and team reports on project and product status

To capitalize on the potential for automated data gathering, analysis, and reporting,
we will likely need to integrate process support tools into development environments.

11 Tool Support for Developing and Enhancing Processes

As we have learned from the PSP and TSP work, many of the process needs of devel-
opment teams are unique to that team, project, and time. Therefore, tool support
could greatly facilitate process development and evolution. As teams gain experi-
ence, their process needs change. So, if they are to continue using the process, that
process should also change. Similarly, as teams use processes, they find areas where
the process is inconvenient, incomplete, or even incorrect, and must be updated.
While the frequency and magnitude of these changes is generally low during a pro-
ject, each new project invariably requires new or modified processes.

The PSP and TSP facilitate this process evolution process by using a Process Im-
provement Proposal (PIP) form that developers are encouraged to submit whenever
they see process problems or have process improvement ideas. The PIP provides a
way to both capture many improvement ideas from developers and to give all process
users a sense of ownership and control over the processes they use. Some important
questions about process development and enhancement support are the following.

42 W.S. Humphrey

- How do you modify a process that is currently being used?
- How do multiple developers work effectively together with a common team

process while individually using tailored personal processes?
- How can process data be gathered and managed so that these data can be

used to analyze dynamic and varied processes?

12 Next Steps

Hopefully, the SPW 2005 discussions and proceedings will provide a useful first step
in assembling a coherent set of critical questions for software process research. While
this in itself would be an enormous contribution, an even greater achievement would
be to use this work as the springboard for developing a coherent and comprehensive
goals framework for the entire field of software research and engineering. I hope that
the issues I have raised with this paper will provide a starting point for the goals dis-
cussion that is needed to launch the next wave of technological advancement in the
software industry.

References

1. N. Davis and J. Mullaney, “Team Software Process (TSP) in Practice,” SEI Technical Report
CMU/SEI-2003-TR-014.

2. Will Hayes and James W. Over, "The Personal Software Process: An Empirical Study of the
Impact of PSP on Individual Engineers," SEI Technical Report CMU/SEI-97-TR-001.

3. Watts S. Humphrey, PSP: A Personal Improvement Process for Software Engineers, Read-
ing, MA: Addison Wesley, 2005.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 43 – 53, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Achieving Software Development Performance
Improvement Through Process Change

Ross Jeffery

Empirical Software Engineering Program, National ICT Australia & School of Computer
Science and Engineering, The University of New South Wales,

Locked Bag 9013, Alexandria, NSW, 1435, Australia
ross.jeffery@nicta.com.au

Abstract. This paper summarizes the results of process improvement activities
in two small software organizations. One of these made use of macro process
modelling. These results, along with the reported results of CMMi adoption, are
interpreted in the light of organizational theory, a process improvement research
framework, and process innovation theory. It is concluded that the evidence
supports process innovation or variations on innovation as a means of achieving
large scale improvements in productivity or quality. It also argues (1) for the
use of the process research framework to identify research limitations, and (2)
that consideration of process alone is unlikely to provide sufficient evidence for
generalization.

1 Introduction

In a presentation made at the pre-ICSE 2006 Workshop on International Cooperation
in Software Engineering in Shanghai [1], the argument was made that evolutionary
process improvement in the Allette Systems corporation context studied has had only
limited success in significantly changing their performance in software development.
The process modelling and experience management technologies developed for Al-
lette Systems have been beneficial to the organization and shown a positive return on
investment. But these technologies have not provided an order of magnitude im-
provement or significant multiplier for software development efficiency or effective-
ness in this organisation. Thus it was not that improvement had not occurred, but that
it was a relatively small improvement, and we believed that to achieve truly signifi-
cant continuing improvement, revolutionary change was needed if significant inroads
into productivity and quality were to be achieved. In this paper we explore the con-
text in which software process improvement occurs and the topic of process innova-
tion. We compare this with the research in process modelling, process improvement
and experience management that has been carried out in the software engineering
research community in recent years.

In sections two, three and four the paper introduces concepts from the literature
which provides the means by which interpretation of the industrial case studies pre-
sented later is provided. In section two of the paper we provide background to the
context in which process improvement will occur. In section three we present a

44 R. Jeffery

means of interpreting the research type applied to process improvement. In section
four we investigate the proposition that process innovation rather than process im-
provement is a necessary condition to significant performance changes. Here we use
the work of Davenport to make this argument. The paper then compares these frame-
works and arguments with process modelling and process improvement activities
carried out in two SME’s.

2 The Process Improvement Context

Software process improvement does not occur in a vacuum. One easy way of visualis-
ing this is the model provided in the Scott Morton MIT90’s framework [2]. This is
shown in Figure 1. This model shows that improvements to process occur within an
organization and within an organizational culture.

Fig. 1. MIT90’s Framework

In addition technology, strategy, individual roles and skills and the organizational
structure will all interact with the processes and any process improvement activities.
We return to examples of this in the case studies and research frameworks presented
later in the paper.

STRUCTURE

PROCESSES

INDIVIDUAL
ROLES & SKILLS

TECHNOLOGY STRATEGY

CULTURE

Organization
Boundary

External Environment

 Achieving Software Development Performance Improvement 45

3 A Process Improvement Research Framework

In the paper by Sambamurthy and Kirsch [3] a software development process research
framework is presented which provides a useful background for our considerations in
software process improvement. This framework classifies software process literature
into four categories:

Factors-oriented which associates contextual factors with process outcomes.
This category includes research that treats process as a black box and investigates the
relationships between input, context and output variables. The results of this research
might enable improvement in outcomes as a consequence of change or control of
inputs and context.

Process as explanation.
This type of research takes on step further than the factors-oriented work. It involves
the use of process logic to explain why outcomes result from factors. Thus it is a
logic-based rather than empirically-based explanation of the outcomes.

Process as a category of concepts.
In this category of process research the researchers explicitly investigate processes
and then test associations between the process variables and outcomes.

Process as a sequence of events.
This category of research recognizes that processes are a sequence of events and in-
vestigates that sequence and the relationships between the documented sequences and
outcomes that can be associated with the sequences.

Input/Context Process Output

1. Factors-oriented

2. Process as explanation

3. Process as concepts4. Process as sequence

Fig. 2. Process Research Framework

From this investigation the authors conclude that systems development processes
are “the tasks undertaken to construct a …system, and the management of this effort,
by a group of stakeholders with agendas, who engage in transactions over time
within an institutional context by applying structure to their work with a set of tools
and methodologies, and who judge outcomes of their efforts and act accordingly.”
The concepts in italics are considered the core concepts to guide process research in a
way that will make it more likely to address the inherent complexities of process
enactment within organizations. It can also be noted that there is an echo of the
MIT90’s framework in this definition. The concepts can be diagrammed as in Figure
2. In this figure the fours categories of research are shown. Category 1 seeks relation-
ships between inputs/context and outcomes; category 2 seeks to explain these

46 R. Jeffery

relationships from process; category 3 explores the process factor relationships and
category 4 seeks a deeper understanding of process sequence and its impact.

All of these are valid research categorizations but the question remains as to which
research strategy will provide significant output improvement opportunities in an
industrial context?

4 Davenport’s Model

In his book Davenport [4] argues that continuous process improvement might achieve
5% to 10% improvement in performance levels but that increases in the order of 50%
to 100% are needed to be competitive. Admittedly he is discussing business process
rather than software process, but if your business is software then they are a part of
the same puzzle. Craig and Yetton [5] identify six themes of Davenport’s work as
illustrated in Table 1 which is taken from their paper

Table 1. Process improvement versus process innovation

 Process Improvement Process Innovation
Level of change Incremental Radical
Starting point Existing processes Clean slate
Frequency of change One-time/continuous One-time
Time required Short Long
Participation Bottom up Top down
Typical scope Narrow, within functions Broad cross functional
Risk Moderate High
Primary enabler Statistical control Information technology
Type of change Cultural Cultural/structural

This work supports the argument that radical change will be necessary to achieve

significant performance change. There is some dispute concerning the need to start
from a clean slate because the organization is always going to be dependant on the
capabilities of the people and these capabilities are anchored in the current technolo-
gies, processes and environment. It has also been recognised that innovation will be a
higher risk strategy, and that failure to achieve a 100% improvement in one year will
likely be worse than success at achieving a compound 10% improvement each year
for seven years say. However there has been some support for this strategy in indus-
try. For example a company in Canberra has adopted one of the agile methodologies
and report significant improvements in productivity and quality through what was a
radical change in development process

Craig and Yetton highlight six themes of Davenport’s work. These are:

1. Process innovation is different to process improvement.
2. Process innovation must be undertaken explicitly.
3. Process innovation is technology dependent.
4. Process innovation is large scale change with people and organization as key

enablers.

 Achieving Software Development Performance Improvement 47

5. Process innovation should be guided by a vision linked to strategy.
6. Process innovation can be undertaken in all types of industries and processes.

But then they proceed to illustrate by example some of the weaknesses of Daven-
port’s argument and instead provide evidence for what is termed a “dynamic im-
provement” model which is shown as column three in Table 2

Table 2. Dynamic Improvement

 Dynamic Process
Improvement

Process Innovation

Level of change Incremental Radical
Starting point Existing Processes Clean slate
Frequency of change Continuous One-time
Time required Long Long
Participation Top down /bottom up Top down
Typical scope Broad cross functional Broad cross functional
Risk Moderate High
Primary enabler Technology Technology
Type of change Individual roles and skills

 / technology/ management
 processes

Cultural/structural

The essential difference in the Craig and Yetton argument is that the evidence sug-

gests that (1) it may not be possible to pursue a strategically directed change in process,
(2) that the risk of this large-scale change is too high, and (3) that a more complex ex-
pression of organizational dynamics is needed to understand the evidence concerning
process improvement. “Implementing process redesign is itself the real activity, out of
which strategic options will emerge. It is not a planned, top down process that begins
with strategy formation and structural design, followed by implementation.” [5]

5 The Allette Case

The work carried out with Allette Systems is documented in a number of publications
but most fully in the recent Information and Software Technology paper [6]. In this
work we have been developing intra-net instantiated macro process models and tech-
nologies for the generation of these models. In addition we have initiated a software
process experience base and a process model-integrated time recording system.

In the software engineering domain, several Electronic Process Guides (EPGs) of
proprietary processes like RUP [7] and Mentor [8] have been available for some time,
and tools such as Spearmint [9], ARIS [10] and Adonis [11] have been developed to
generate EPGs. Some studies showing the application of knowledge management in
software engineering are the experience factory work of Basili et al. within NASA
Goddard’s SEL [12] and the Daimler-Chrysler research center project [13]. Research
has also been done on tools to support experience storage and retrieval [14], [15],
[16], [17], [18].

Most publications on the experience gained in organisations that have used soft-
ware engineering repositories present qualitative descriptions of the setup of, and

48 R. Jeffery

lessons learned. For example, Conradi and Dingsoyr [19] provided notes on the ex-
perience repositories in four organisations. Lindvall et al. [20] outlined three case
studies and described some high level lessons learned and Brossler [21] describes
experience in one company. More recently, Schneider and Hunnius [22] identified
user guidance, usability, process conformance, feedback mechanism and maintain-
ability as quality aspects that determined the chances for success of an experience
repository based on their work at Daimler-Chrysler. But it must be concluded how-
ever that this work does not appear to have provided software development perform-
ance improvement of the order that would be desired to achieve a competitive advan-
tage for the companies pursuing these technologies. This supports the experience in
Allette Systems. The technology used in Allette is shown in Figure 3.

Fig. 3. EPG Generation

UML activity diagrams are used to graphically specify the processes. These are
then exported into XML Metadata Interchange (XMI) format. An XSLT translator is
then used to transform the exported XMI using EXtensible Stylesheet Language
(XSL) and JavaScript scripts that define the layout and functionality of produced
EPGs. The UML modelling tool used is Enterprise Architect [23] and the XSLT
translator used is Xalan [24]. Figure 4 shows an example page of the EPG/ER. Each
page of the EPG/ER consists of two frames. The diagrammatic overview on the left-
hand side displays the UML diagram of the process that supports browsing and
hyper-navigation of the process. The description section on the right-hand side dis-
plays the description of the currently displayed entity and any textual attributes such
as entry and exit criteria and responsibilities.

In evaluating this technology we found that the EPG/ER is extensively used in the
organisation and remains in regular use. Furthermore, users appear to have learned to
create more sophisticated forms of experiences such as lessons learned for reuse. The
results validate the effectiveness of the tool as an SPI tool by bringing about not only
benefits such as improved documentation and release of experts from guidance of
novices, but also a bolstered confidence in the organisation to plan and execute soft-
ware projects. These results serve as supporting evidence that user guidance is an

 Achieving Software Development Performance Improvement 49

Fig. 4. Layout Example of the EPG/ER

Fig. 5. Estimation Screen

50 R. Jeffery

important attribute for effective experience repositories [22] and that processes pro-
vide a natural and logical structure for people to consider their work [25].

Current process modelling research with this organization concerns an analysis of
the process enactment and a comparison with the documented process model. We
expect that this research will provide further evidence concerning process improve-
ment in this organization. In addition to the EPG/ER work we also developed a
tailored development cost estimation tool. This tool contains the basic Allette produc-
tivity relationships, cost drivers and empirical values for the Allette cost drivers (see
[26] for details of the research behind this tool). A screen capture from this tool is
shown in Figure 5.

Thus even if the results are so positive for this technology, we need to consider
other strategies if we are to enable order of magnitude improvements in software
development performance.

6 The CMMi Results

The SEI has recently released data concerning reported improvements from CMMi
adoption (http://www.sei.cmu.edu/cmmi/results.html 15th April 2005). This is “quan-
titative information from 18 organizations that have reported results that can be ex-
pressed as performance changes over time.” In this data it is clear that for the organi-
zations reporting, the variance in the data is high. This provides support for the asser-
tions in sections 2, 3 and 4 above that process is only a part of the improvement puz-
zle. The data also shows that significant gains are possible. It is difficult to determine
the nature of the change from the information provided by the SEI however. It is
likely, given the descriptions provided that many of the changes reported have oc-
curred in cases where the change has been dynamic or revolutionary. This is typically
the case when a level one organization moves to level three, say. There is clear evi-
dence in one Australian organization that moving from level three to level five has not
delivered large improvements in productivity or quality but that moving from level
one to three had delivered these. It is disappointing that the reported statistics do not
provide details such as contained in the MIT90’s framework or the framework used to
describe process innovation or improvement. Without this data it is impossible to
identify the reasons for the high variance in the data or any causal relationships. So at
this stage it must be concluded that this evidence is still insufficient to provide insight
into the complexities of process improvement and its relationship with performance.

7 Discussion

In the case of Allette Systems we made a one-off process change at the sequence level
via the EPG/ER and studied its impact on outcomes. This is an example of the re-
search framework category 4 research type. We also undertook a research framework
category 1 research project in identifying the effort estimation factors and values. In
making these changes in the organization we have:

1. Introduced new technology,
2. Made use of existing skills in the organization,

 Achieving Software Development Performance Improvement 51

3. Modified the software process and made it explicit,
4. Slightly modified the structure of the organization by changing some roles

for individuals.

We have not affected the business strategy however. Thus these interventions are an
example of a dynamic improvement process according to the Craig and Yetton model.
One element that we believe is important but seems not to have been addressed in this
type of literature is the issue of organization size. We hypothesize that one of the
major determinants of appropriate improvement strategy will be organizational unit
size. If the organization is small, we believe that dynamic process improvement and
possibly process innovation can achieve large scale positive outcomes. However if the
organizational unit is large then we hypothesize that continuous process improvement
will most often be the appropriate model. There is evidence that large scale change in
large organizations can be achieved, such as in moving from CMM level one to level
three. There is also evidence that this is a costly and time consuming activity [see 27].
It is suggested that the success of this initiative is dependent on the clear and precise
definition of the change required and the management of that change. The issue be-
comes one of managing the organizational change.

The set of models presented can also be used to explain behavior we have seen in
other organizations in Australia. For example, one medium sized software organiza-
tion that has adopted agile processes reported in a private communication (April 13th
2005) that their process change can be classified as part innovation and part dynamic
improvement. The level of change was seen as radical but implementation was incre-
mental. The initial starting point was existing processes but more recently they have
moved to a clean slate application. Thus the change can be seen as a one-time change
but it continues to evolve. Risk was seen as moderate because it was managed via
incremental adoption and the type of change was more cultural than skill based. These
are highlighted in Table 3. Significant organizational benefits are claimed. An earlier
study in the organization had rejected CMM-based continuous improvement. The
overriding conclusion is that the process improvement implemented was part dynamic
improvement and part innovation.

The industrial implications of these models and cases are, (1) Competitive advan-
tage through process improvement is more likely to be achieved via dynamic process

Table 3. SME Process Improvement Example

Dynamic Process Improvement Process Innovation
Incremental ------------ Radical
Existing Processes -------------- Clean slate
Continuous ------------ One-time
Long Long
Top down /bottom up Top down
Broad cross functional Broad cross functional
Moderate Risk High Risk
Technology Technology
Individual roles and skills / technology/

management processes
Cultural/structural

52 R. Jeffery

improvement or process innovation, (2) large organizations are likely to use
continuous process improvement unless they approach innovation through incre-
mental strategies or large-scale change management, (3) small organizations are well
placed because of their size to implement process innovation or dynamic process
improvement, (4) organizations need to recognise that software process improvement
needs to be considered in the context of individual roles and skills, organizational
strategy and size, available technology and organizational structure. The research
implications are that, (1) the process improvement framework can position the re-
search method and highlight the likely outcomes and limitations of the research, (2)
consideration of process alone is unlikely to provide sufficient evidence for generali-
zation.

References

1. R. Jeffery, Presentation at Pre-ICSE 2006 Workshop on Research Directions in Software
Process, 14 and 15 October, 2004, Shanghai, China.

2. M.R. Scott Morton, The Corporation of the Nineties, Oxford University Press, Oxford,
1991.

3. V.Sambamurthy & L.J.Kirsch, An Integrative Framework of the Infortmation Systems De-
velopment Process, Decision Sciences, 31,2, Spring ,2000, pp. 391-411.

4. T.H.Davenport, Process Innovation: Reengineering Work Through IT, Harvard Business
School Press, Boston, 1993.

5. J.Craig & P.Yetton, Business Process Redesign: A Critique of Process Innovation by
Thomas Davenport as a Case Study in the Literature, Australian Journal of Management,
Australian Graduate School of Management, 17,2, December, 1992

6. F.Kurniawati & R.Jeffery, The Use and Effects of an EPG/ER in a Small Software Organi-
zation, accepted for publication in Journal of Information & Software Technology.

7. P. Kruchten, “Rational Unified Process – An Introduction”, Addison-Wesley, 2000
8. Object-Oriented, Managing Successful Software Projects with Process MeNtOR, Object

Oriented Pty Ltd, 1998
9. U. Becker-Kornstaedt, D. Hammann, R.Kempkens, P. Roesch, M. Verlage, and J. Zettel,

Support for the Process Engineer: The Spearmint Approach to Software Process Definition
and Process Guidance., Proceedings of the 11th Conference on Advanced Information Sys-
tems Engineering CaiSE’99, 1999, pp. 119-133

10. ARIS. 2000: www.ids-scheer.de.
11. Adonis. 2001: www.boc.at.
12. V. Basili, G. Caldiera and H.D. Rombach, “The Experience Factory”, Encyclopedia of

Software Engineering vol. 1, J.Marciniak, Ed. John Wiley Sons, 1994, pp. 469-476.
13. K. Schneider, “LIDs: A Light-Weight Approach to Experience Elicitation and Reuse”,

Product Focused Software Process Improvement: Second International Conference vol.
LNCS 1840, 2000, pp. 407-424.

14. K. Althoff, A. Birk, S.Hartkopf, W.Muller, M.Nick, D.Surmann and C. Tautz, “Systematic
Population, Utilization and Maintenance of a Repository for Comprehensive Reuse”, Pro-
ceedings of the 11th International Conference on Software Engineering and Knowledge
Engineering, 1999, pp.25-50.

15. F. Houdek and H. Kempter, “Quality Patterns – An approach to packaging software engi-
neering experience”, Proceedings of the 1997 Symposium on Software Reusability vol. 22,
1997, pp. 81-88

 Achieving Software Development Performance Improvement 53

16. S.Henninger, J. Schlabach, “A Tool for Managing Software Development Knowledge”,
Proceedings of Product Focused Software Process Improvement: Third International Con-
ference vol. LNCS 2188, 2001, F. Bomarius, Komi-Sirvio, S, Ed. Springer, pp. 182-195.

17. B. Lewis, “On-Demand KM: A Two-Tier Architecture”, IT Professional vol. 4, 2002, pp.
27-33

18. Y. Ye and G. Fischer, “Supporting Reuse by Delivering Task-Relevant and Personalized
Information”, Proceedings of 2002 International Conference on Software Engineering,
2002, pp.513-523

19. R. Conradi and T. Dingsoyr, “Software Experiences Bases: a Consolidated Evaluation and
Status Report,” Proceedings from the 2nd International Cofnerence on product focused
Software Process Improvement (PROFES 2000), vol. LNCS 1840, 2000, pp. 391-406

20. M. Lindvall, M. Frey, P. Costa and R. Tesoriero, “Lessons learned about Structuring and
Describing Experience for Three Experience Bases, “ Proceedings of the third Interna-
tional Workshop. Advances in Learning Software Organisations (LSO 2001, 2001), pp.
106-119

21. P. Brossler, “Knowledge Management at a Software Engineering Company – An Experi-
ence Report,” Proceedings of the Workshop on Learning Software Organisations, 1999,
pp. 77-86

22. K. Schneider, J. von Hunnius, “Effective Experience Repositories for Software Engineer-
ing”, Proceedings of the 25th International Conference on Software Engineering, 2003, pp.
534-539

23. Enterprise Architect 2003: http://www.sparxsystems.com.au/
24. Xalan-Java. 2003: http://xml.apache.org/xalan-j/index.html
25. H. Holz, A. Konnecker and F. Maurer, “Task-Specific Knowledge Management in a Proc-

ess-centered SEE,” Proceedings of the 3rd International Workshop on Advances in Learn-
ing Software Organisations, 2001, pp. 163-177

26. M.Ruhe, R.Jeffery & I.Wieczorek, Cost Estimation for Web Applications, Proceedings of
25th International Conference on Software Engineering, IEEE Computer Society, Los
Alamitos, California, 2003, pp. 285 – 294

27. The Report of the Software Quality Accreditation Working Party, Software Quality Ac-
creditation in the Australian Context, Australian Government, Department of Communica-
tions, Information Technology and the Arts, February, 2005, 39pp.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 54 – 67, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Expanding the Horizons of Software Development
Processes: A 3-D Integrated Methodology*

Mingshu Li

State Key Lab of Computer Science and Lab for Internet Software Technologies,
Institute of Software at Chinese Academy of Sciences,

No. 4 South Fourth Street, Zhong Guan Cun, Beijing 10 00 80, China
mingshu@iscas.ac.cn

Abstract. This paper investigates how to define and improve software devel-
opment processes. Based on examining the software development during last
two decades, it proposes a breakthrough point of an updated view of require-
ments, called Great Requirements, and presents a 3-D integrated software engi-
neering methodology for improving software development activities. It expands
the horizons of possible future software development processes.

1 Introduction

Software, as the core of any modern product or service, is becoming increasingly
important. However, most software projects are unsuccessful. The Standish Group
(www.standishgroup.com) found in its survey (2004 3rd Quarter Research Report)
[1], as shown in Figure 1, only 29% of the pro-
jects finished on time, on budget, with required
features and functions; and 18% were canceled
before delivery or delivered but never used.
Moreover, the remaining projects, 53%, which all
finished late, over budget and/or with less than
the required features and functions. The problems
associated with software development are critical
issues. Improving software development proc-
esses is a key challenge for software community.

SE (Software Engineering), from 1968, intro-
duced tremendous techniques for software development to combat the “software cri-
sis”. It is defined as “the establishment and use of sound engineering principles in
order to obtain economically software that is reliable and works efficiently on real
machines”[2], or “the application of a systematic, disciplined, quantifiable approach
to the development, operation and maintenance of software; that is, the application of
engineering to software”[3].

* Supported by the National Natural Science Foundation of China (Grant Numbers: 60273026,

60473060) and the Hi-Tech Research and Development Program (863 Program) of China
(Grant Numbers: 2004AA112080, 2005AA113140).

Fig. 1. Most Software Projects are
not Successful

Challenged
53%

Succeeded
29%

Failed
18 %

 Expanding the Horizons of Software Development Processes 55

There are hundreds of definitions for SE and all of them stress on the term of “en-
gineering”. Philippe Kruchten argued in [4]: “Is software development really a form
of engineering? Or is it just some kind of elaborate craftsmanship? Are we just fool-
ing ourselves thinking that we are doing engineering? If so, it is certainly not from
lack of trying hard over the last 20 years. But maybe we tackled the problem from the
wrong end: we tried to impose techniques from other engineering disciplines onto
software development models without understanding the real nature of software”. He
explored SE’s five key differentiating characteristics from other engineering fields: it
has limited usable underlying theory, it is very “soft” by nature, it has high techno-
logical churn, it has no manufacturing cost, and it has few international borders.

The “software crisis” presented several decades ago never seemed to materialize.
As an engineering discipline, SE still has a long way to go before it matures and is
able to produce quality software products through quality software development
processes.

2 Related Work

A software development methodology can be defined as [5]: (1) an integrated set of
software engineering methods, policies, procedures, rules, standards, techniques,
tools, languages, and other methodologies for analyzing, design, implementing, and
testing software and (2) a set of rules for selecting the correct methodology, process,
or tools for use. The SE-based software development methodologies generally used in
the past and on today include Structured Analysis and Design [6], Object-Oriented
Methods [7], Agile Methods [8], CASE Tools [9], CBSE (Component-Based Software
Engineering) [10], AOSD (Aspect-Oriented Software Development) [11], and so on.

SE is a layered technology, from a quality focus, an organizational commitment to
quality, to process, methods, and tools [12]. SE process is the glue that holds the tech-
nology layers together and enables rational and timely development of computer soft-
ware; SE methods provide the technical how-to’s for building software; and SE tools
provides automated or semi-automated support for the process and the methods.
There are eight fundamental SE notions that form the basis for an effective discipline
of SE [13]: (1) abstraction; (2) analysis and design methods and notations; (3) user
interface prototyping; (4) software architecture; (5) software process; (6) reuse; (7)
measurement; (8) tools and integrated environments.

The software development process is sometimes called the software life cycle, be-
cause it describes the life of a software product from its conception to its implementa-
tion, delivery, use, and maintenance [13]. The Waterfall Model is the oldest software
development process model. It suggests a systematic, sequential approach to software
development that begins at the system level and progresses through five distinct and
linear stages: requirements, design, implementation, testing and maintenance. There
are some drawbacks of the Waterfall Model, e.g., it imposes a project management
structure on system development; it is inflexible in handling requirement changes; it
presents a manufacturing view of software development and tells us nothing about the
typical back-and-forth activities that lead to creating a final software product.

56 M. Li

The push for software process improvement came as a response to the failures of
software projects [14]. The success of total quality management (TQM) has inspired
the software process movement. The origins of software process maturity can be
traced back to the principles of product quality management that have existed for
nearly 70 years. The effective use of software technology is limited by several factors
[15]: an ill-defined process, inconsistent implementation, and poor process manage-
ment. Software technology cannot be fully effective until these problems have been
adequately addressed.

A software process can be defined as the coherent set of policies, organizational
structures, technologies, procedures, and artifacts that are needed to conceive, de-
velop, deploy, and maintain a software product [16]. More specifically, the software
process sets out the technical and management framework for applying methods,
tools, and people to the software task, while the process definition identifies roles and
specifies tasks [17]. Viewing software development as a process has significantly
helped identify the different dimensions of software development and the problems
that need to be addressed in order to establish effective practices. The focus of SE
process research during the past two decades mostly concentrated on Process Model-
ing [18], Process Programming [19], PSEEs [20], and Software Process Manage-
ment, Improvement, and Assessment like ISO 9000 [21] and SEI-CMM/CMMI [22].

CMMI ® (Capability Maturity Model® Integration) was released by the Software
Engineering Institute (SEI) at Carnegie Mellon University in January 2002 [23]. It is
designed to help organizations improve their product and service development, acqui-
sition, and maintenance processes. The SEI continues to advocate the adoption of
CMMI models as the best process improvement models available for product and
service development and maintenance. These models build on and extend the best
practices of the Capability Maturity Model for Software (SW-CMM®), the Systems
Engineering Capability Model (SECM), and the Integrated Product Development
Capability Maturity Model (IPD-CMM). There are 25 Process Areas (PA) in Con-
tinuous Representation of CMMI and they are divided into 4 categories: (1) Process
Management; (2) Project Management; (3) Engineering; (4) Support.

CMMI provides a systematic perspective on organizational process improvement.
However, it stresses too much only about the managerial aspects of software devel-
opment. It does not give an implementation details and is a little bit difficult for small
size software organizations to adopt it without a full guidance of methods and tools.
Also it does not suit highly flexible, dynamic, market-driven, innovative software
organizations very well. And it is at over cost in the beginning period and hardly
affordable for some software organizations.

Addressing software development problems and issues is not just a matter of intro-
ducing some effective tool and environment. It is insufficient to select a reasonable
lifecycle strategy either. It must be paid attention to the complex interrelation of a
number of organizational, cultural, technological, and economic factors [16].

SE economics tries to measure software quality and process characteristics [24].
COCOMO II (COnstructive COst MOdel) [25], is a fully documented and widely
accepted model, which targets the estimation of software projects. CORBA (Cost
Estimation, Benchmarking, and Risk Assessment) and Web-CORBA [26], combines

 Expanding the Horizons of Software Development Processes 57

expert knowledge with data on a small number of projects to develop cost estimation
models, which can also be used for risk analysis and benchmarking purpose.

Most SE economics methods lack software project management and technology de-
tails, which makes them risky in cost/duration estimation and control.

In a short summary of the related work, people usually only paid attention to some
key technologies independently, such as software development programming and
tools, project management, software process improvement, schedule and cost estima-
tion, and so on. Some elements necessary to develop software successfully were often
discussed too abstractly and obviously, or even ignorantly.

3 The Horizons of Software Development Processes

In 1990, Robert Balzer presented eight unresolved process support problems in his
paper entitled “What We Do and Don’t Know about Software Process” [27]: (1) Ab-
straction/instantiation relationships between generic and specific processes and be-
tween specific processes and their enactments; (2) Involve people in automated proc-
esses; (3) Measure process; (4) Measure process progress; (5) Use process status as
basis for prediction; (6) Improving process; (7) Change process in midstream; (8)
Manage inconsistency & incompleteness.

A lot of efforts had been made during past years, e.g., eight systems were demon-
strated at ISPW9 [28]: Hakoniwa, from Osaka University (Japan); LEU, from Lion
Gesellschaft fur Systementwicklung mbH (Germany); MVP-S, from University of
Kaiserslautern (Germany); Oikos, from Pisa University (Italy); Oz, from Columbia
University (USA); Synervision, from HP (USA); Regatta, from Fujitsu (Japan); SPADE,
from Politecnico di Milano (Italy). Some of them have newer versions more recently.
Based on Oz, OzWeb extends to a hypermedia collaboration environment in which peo-
ple may collaborate by accessing and manipulating hypermedia documents [29].

However, most problems mentioned above still remain to date. As a matter of fact,
few (if any) of the proposed approaches have been transferred into industrial practice
[16]. There are several problems related to defining process from industrial experi-
ence[30]: (1) Attempting to define a “one-size-fits-all” process or process framework
for different kinds of systems where knowledge content and knowledge availability is
quite different; (2) Failing to differentiate between knowledge discovery and knowl-
edge application in process definition; (3) Attempting to define a single level of ab-
straction for all process types; (4) Depositing our process knowledge in book form or
leaving it in brain form rather than developing automated systems that assist the
knowledge acquisition and application process; (5) Not properly allowing for the
nature of the learning activity in setting up processes, particularly the nature of cogni-
tion and problem understanding.

We have to think about what should be a starting point in further improving soft-
ware development processes? Requirements may be a good choice. Getting require-
ments right might be the single most important and difficult part of a software project
[31]. Requirements engineering (RE) denotes both the process of specifying require-
ments by studying stakeholder needs and the process of systematically analyzing and
refining those specifications. Despite heterogeneous terminology throughout the

58 M. Li

literature, RE must include four separate but related activities: elicitation, modeling,
validation, and verification. In practice, they will most likely vary in timing and inten-
sity for different projects.

Numerous tools are available to support RE [32], e.g., Ciliber-RM, Borland; CARE
(Computer-Aided RE), Sophist Technologies; DOORS, Telelogic; IRqA (Integral
Requisite Analyzer), TCP Sistemas & Ingenieria; Reqtify, TNI-Valiosys; Requisite
Pro, IBM Rational; RM Trak, RM Trak; RTM Workshop, Integrated Chipware; Tru-
ereq, Truereq; Vital Link, Compliance Automation. The worst thing that can happen
in RE is that the set of requirements, however expressed, doesn’t accurately represent
the users’ needs and consequently leads the team down the wrong development path.
The risk is greatest at several points [33]: (1) Overlooking a crucial requirement; (2)
Inadequate customer representation; (3) Modeling only functional requirements; (4)
Not inspecting requirements; (5) Attempting to perfect requirements before beginning
construction; (6) Representing requirements in the form of designs.

To address the system development challenges of the 21st century, people must re-
think RE’s role in software development and integrate the processes of RE with sys-
tem implementation [34]. The artificial separation of these activities leads to a situa-
tion where customers do not realize how much time and effort is required to deliver
their requirements, and where suppliers can not deliver the best value to customers
using their specialist knowledge and existing software.

We should revisit software characteristics to better understand the nature of soft-
ware. Some presentations of my conclusions are learnt from Osterweil’s paper title to
give an updated view of the classic understanding [19].

3.1 Requirements Are Software Too

The traditional software requirements document is not a complete specification of the
software to be implemented. During software development processes, requirements
always change. Requirements are about wants and needs, but people usually don’t
know what they want until they know it exists. Requirements and other software arti-
facts may change throughout the whole development phase and even after that. No
one can understand them completely before starting system development or even
operational use. Stakeholders have to continue to gain new insights into the require-
ments. Requirements are not only engineered within the traditional requirements
analysis stage, but also throughout the whole life cycle; and requirements are not only
functional/non functional specifications, but also need to guarantee achieving quality
goals, being on time and within budget, etc.

3.2 Software Is a Process Too

Although the industry is moving toward component-based assembly (like a car and a
house), most software continues to be custom built. It is due to the lack of a strong
underlying theory to rigorously define the software components and especially their
interfaces, like in the classic industry. A process is a set of practices performed to
achieve a given purpose; it may include tools, methods, materials, and/or humans.

 Expanding the Horizons of Software Development Processes 59

The task of software development needs effective cooperation from all of the tools,
methods, materials, and/or humans, through the software process.

3.3 Software Is Not Software Only

Software, like other design work, is developed or engineered. It is not mechanized or
manufactured in the classical sense and not able to be totally preplanned in a stan-
dardized and detailed process model. Although software consists of program codes
plus documents, it has to be produced in an integration way not only from software
technologies/tools, but also from process managements, and human efforts. All the
codes and documents may be seen, but not able to be inspected by machines. Humans
play the most important role. Software in development and/or in use has to consider
all the stakeholders, how to involve the right people, no matter how busy they are or
how difficult they understand the software, at the right time, and at the right
place…particularly the users! It is impossible to improve quality and productivity
through importing some equipment like that in traditional manufacturing industry.
Software is always potentially complicated, even for a system whose software is com-
paratively less important. We must develop software by integrating the technical,
cognitive, social, organizational processes and others necessary to satisfy the re-
quirements.

Recently, the focus on individual productivity has gradually evolved to a focus on
development/tools integration, process integration and collaboration among humans.
A number of emerging approaches were introduced for their potential to set new di-
rections of software development processes. Some of the approaches are still in an
academic stage, others are at the level of small market shares. They broaden the hori-
zons of possible future developments.

From last 90s, software development processes have evolved to integration or uni-
fication trends: e.g., WinWin Spiral Process Model (Humans and Process Framework)
[35]; OPT (Organization and Process Together) Approach [36]; ACME Integrating
Process and Collaboration [37]; Integrating the reference models for software proc-
esses (human activities) and for CASE environments (machinery activities) [38];
Open Process Architecture Toaster Model [39]; Both products and processes may
benefit from analysis in terms of families and family relationships [40]; Multi-View
Process Modeling Project (MVP-Project) [41]; Pynode framework which integrates
different aspects, e.g. product, process, role, etc, in a unified manner [42]; Reuse-
works integrating concepts, processes, models and tools [43]; RUP (Rational Unified
Process)[44]; COSE (Component-Oriented Software Engineering) [45]; Agile Soft-
ware Quality Assurance [46]; PRAISE (Process and Agent-based Integrated Software
development Environment) [47]; Assumptions on all three objects of people, proc-
esses and products [48].

Many of the practical challenges in SE are not limited to technological issues.
Managements, communications, personnel relationships, and other factors often have
a substantial impact on a software project’s success. Next section will discuss a three-
dimensional integrated methodology.

60 M. Li

4 A 3-D Integrated Methodology

Figure 2 shows the famous Technology-Process-Human triad for a software project
success. In this triad, all three items are
almost at the same importance. Without
process, it is impossible to leverage all the
resources. Without technology, it will be
difficult to deal with this ever-changing
world. Lastly, humans always play a very
important role in coordinating process and
technology.

The Technology-Process-Human triad
may also be considered the “glue” that uni-
fies the other aspects of software development processes. It is easy to imagine that a
software supplier improves its quality and productivity through improving its tech-
nology. Also, it should try to improve its software development process and human
involvements all the way. However, the software supplier seldom improves them
together. Usually these elements are not integrated and have to be remedied by human
efforts. Software development processes should be improved integrating from three
perspectives, Technology, Process, and Human.

Recently, the focus on individual productivity has gradually evolved to a focus on
team efforts or integrated tools. This expanded view incorporates the benefits gained
from integrations among technologies, processes and humans. Based on the Technol-
ogy-Process-Human triad conception and successful SE methodologies in the past, we
present a 3-D integrated methodology for software development processes.

TRISO-Model (TRidimensional Integrated SOftware development Model) is a 3-D
integrated model, described in three dimensions: SE Technology, SE Process and SE
Human, as shown in Figure 3. It is written as:

TRISO-Model = (SE Technology, SE Process, SE Human)

where SE Technology perspective focuses on software product; SE Process perspec-
tive on software management; SE Human perspective on software cost.

The horizontal axis, described in terms of software managements, represents SE
Process and shows disciplines that logically group the process activities. The vertical
axis represents SE Technology and shows the life cycle aspects of software product
development. The third axis is SE Human and shows a cost estimation before or at
different phases.

TRISO-DEVELOPER (TRidimensional Integrated SOftware DEVELOPment En-
viRonment) is a 3-D integrated SE environment.

TRISO-Model and TRISO-DEVELOPER represent the 3-D integrated methodology
for software development processes. It is a kind of solid concept and approach, with
multiple perspectives.

As shown in Figure 4, a TRISO-DEVELOPER Integrated Framework consists of
six integrations: (1) Development Integration; (2) Process Integration; (3) Service
Integration; (4) Data Integration; (5) Management Integration; and (6) Use Integra-
tion. The former three are internal integrations, and the later three are external
integrations.

Fig. 2. Technology-Process-Human Triad

Technology Process

Human

A
B

D

C

 Expanding the Horizons of Software Development Processes 61

SE Technology

SE Process

SE Human

Cost
Perspective

M anagement
Perspective

Product
 Perspective

SE
Technology

SE
Process

SE
Human

Use Integration

Data Integration

Management Integration

Service Integration

Development Integration Process Integration

Fig. 3. A 3-D Integrated Software Fig. 4. TRISO-DEVELOPER: Integrated Framework
Development Model TRISO-Model

Usually the task of software development is unable to be achieved simply by only
one or even a few tools, and it needs effective integration from all the perspectives
through the software development process. TRISO-DEVELOPER Integrated Frame-
work suggests integrated relationships and a hierarchically ordered decomposition.
For internal integrations, three systems/platforms may be developed for integrating
development technologies as a SE Technology-based system/platform, integrating
process improvements as a SE Process-based system/platform, and integrating human
services as a SE Human-based system/platform respectively. For external integra-
tions, the SE Technology-based system/platform may be integrated with the SE Proc-
ess-based system/platform through data integration; the SE Process-based sys-
tem/platform may be integrated with the SE Human-based system/platform through a
management integration; and the SE Human-based system/platform may be integrated
with the SE Technology-based system/platform through a use integration. All the
three systems/platforms and six integrations, no matter internal or external, should
progress toward lower-level modules, starting with the high-level abstraction, to meet
component integration’s synthetic nature. By addressing high-priority requirements at
high-level abstract before considering low-priority ones, we can significantly reduce
project costs and duration.

5 Practical Experiences

Based on our 3-D integrated methodology, ISCAS makes a lot of efforts in improving
software development processes, as shown in Figure 5: (1) Research: requirements
elicitation, process modeling, measurement model, knowledge management, collabora-
tive work and so on; (2) Platforms: development of an integrated framework with three
platforms, PQM (Quality Management), PPE (Product Engineering) and PSS (Service
Support); (3) Tools: integration of each platform with a series of tools providing a col-
laborative working environment for senior managers, project managers, developers,
SQAs, customers, suppliers and so on. PQM includes four tools: PM (Project Manage-
ment), PAL (Process Asset Library), MA (Measurement and Analysis) and SQA (Soft-
ware Quality Assurance). PPE also includes four tools: UDCORE (User-driven Do-
main-specific Component-based Requirements Elicitation), TFrame (Test Framework),

62 M. Li

Fig. 5. Related Work in ISCAS

KnowM (Knowledge Management) and SPE (Software Product Evaluation). PSS cur-
rently provides customer service (CS), general information service (IS), training service
(TS) and supplier service (SS).

TRISO-DEVELOPER presents a 3-D integrated solution based on the mainstream
SE achievements: (1) SE Technology, i.e., “Requirements” Dimension, based on
Waterfall development. Those features are considered in developing, e.g., develop-
ment methodologies, domain analysis, creative activities, culture, functional require-
ments and nonfunctional requirements such as look and feel, ease of use, operational
environment, performance, maintainability, security, legality, efficiency, flexibility,
repeatability, evolvability, and visibility. (2) SE Process, i.e., Process Dimension,
based on CMMI management. Those features are dealt with in managing, e.g., soft-
ware process and quality assurance, as well as improvability, usability, sustainability,
and robustness. (3) SE Human, i.e., Economy Dimension, based on COCOMO II
Service Support (in progress). We need to pay more attention to human/cost (the use
of the time, money, etc), risk, predictability and so on.

The software characteristics revisited in Section 3 have expanded the role of tradi-
tional requirements in software developments. Requirements now should be taken as
a solid abstract in real world or problem world, rather than only a specification of
software in computer or solving world. So, we give a new name to them, Great Re-
quirements.

Different stakeholders, like domain experts, system analysts, software engineers,
software testers, SQA, SEPG, project managers, senior managers, managers, users,
customers, and so on, are highly collaborative, interactive during software development.
We distinguish them into three kinds of stakeholders: SE technology stakeholders, SE
process stakeholders and SE human stakeholders, and we leave the most important

 Expanding the Horizons of Software Development Processes 63

33.3333%

33.3333%

33.3333%

SE
Process

Stackeholders

T
ec

hn
ol

og
y

SE

Stakeholders

Human Stakeholders
SE

Project/ Product

U
sers

So
ft

w
ar

e

Software
Development

Processes

Process

Economy

COCOMO - based
Estimation

ProcessManagement
Project

M
anagement

E
ngineering

Support

Mainten

-ance

Tes
tin

g

Im
pl

em
e-

nt
at

io
n

D
es

ig
n

R
eq

ui
re

m
en

t R
eq

ui
re

m
en

ts

Testing

Implementation

Design

Requirement

Economy

Process

Process
Management

Project
Management

Engineering
Support

COCO
O

-ba
se

d

Esti
mati

on

Maintenance

Great Requierements

M

Fig. 6. TRISO-DEVELOPER: Integrated Fig. 7. TRISO-DEVELOPER: A 3-D
Implementation and 3D Stakeholders Solid View

Maintenance CMMI Management COCOMO -based Estimation

Testing CMMI Management COCOMO - based Estimation

Implementation CMMI Management COCOMO -based Estimation

Requirement CMMI Management COCOMO -based Estimation

Design CMMI Management COCOMO - based Estimation

Product Perspective Management Perspective Cost Perspective

Fig. 8. TRISO-DEVELOPER: Integrated Life Cycle

stakeholders, users/customers, as independent ones. The integrated implementation and
3D stakeholders are shown in Figure 6. The core part is software development proc-
esses. The foundation for improving software development processes is the 3-D model
layer and then followed by the implementation layer, currently based on waterfall,
CMMI and COCOMO II. Of course, different people may have other choices. The third
layer is stakeholders. All the three layers provide a fully support for software pro-
ject/product users.

Figure 7 shows a 3-D solid view of TRISO-DEVELOPER. The horizontal axis
Process shows CMMI-based four categories, process management, project manage-
ment, engineering, and support. The vertical axis Great Requirements (in contrast
with traditional term of “requirements”) shows a Waterfall-based 5 staged life cycle
aspects of software product development. The third axis Economy shows a COCOMO
II-based cost estimation.

64 M. Li

Information
Service

Coordination
Service

Customer
Service

Training
Service

Requirement
Acquisition

Knowledge
Management

Use and
Feedback

Verification

Validation

Process Quality

Usage Quality
User Quality

Request

External Quality
Request

Internal Quality
Request

Internal Quality

External Quality

Process
Management

Project
Management

System Test

Measurement
Analysis

Evaluation
System

Toolkit for Quality Management

Toolkit for Product Engineering

Toolkit for Service Support

Product
Evaluation &

Test

Fig. 9. TRISO-DEVELOPER: Quality View of the System Integrations

Fig. 10. TRISO-DEVELOPER: Applications in China

Figure 8 shows the integrated life cycle of TRISO-DEVELOPER. It’s not a se-
quential process, but an integrated solid iteration among products, managements and
cost perspectives. The iteration can be treated as a miniature waterfall life cycle. It

 Expanding the Horizons of Software Development Processes 65

also shows that TRISO-DEVELOPER, similar to agile methods, deals with unstable
and volatile requirements by using a number of techniques, i.e., (1) simple planning,
(2) short iteration, (3) earlier release, and (4) frequent customer feedback.

Figure 9 shows TRISO-DEVELOPER quality view of the system integrations of our
three current platforms and toolkits: Quality Management, Product Engineering and
Service Support.

As shown in Figure 10, our TRISO-DEVELOPER-based system has been used in
many areas in China, including 8 of the total 11 national software industry bases Bei-
jing, Shanghai, Guangzhou, Xi’an, Chengdu, Jiangshu, Zhuhai and Changsha; all of
the National Hi-Tech Planning Program (863) software incubators Beijing, Shanghai,
Guangdong, Xian, Sichuan, Shenyang, Henan and Kunming; and more than 130 soft-
ware organizations. Applications of our products have generated tremendous eco-
nomic and social benefits. According the statistical data from 10 representative soft-
ware organizations, the total net-savings has exceeded 40 million dollars due to the
use of our systems.

6 Conclusions and Future Work

Requirements exist in situation beyond the defined scope in traditional software de-
velopments, i.e. requirements analysis and system design. They run through the whole
life cycle of software developments. Also they have to be involved in achieving qual-
ity goals, being on time and within budget, etc. In contrast to traditional methodolo-
gies, this paper presented a new conception, Great Requirements. It needs a multiple
dimensional integrated methodology.

We believe software development processes may be fully improved only in some
integrated way. A new direction of SE methodologies may be needed to think about
more in the future: Integrated Software Engineering. It expanded the horizons of
possible future software development processes.

Tony Hoare presented in his Turing Award lecture [49], “There are two ways of
constructing a software design: One way is to make it so simple that there are obvi-
ously no deficiencies, and the other way is to make it so complicated that there are no
obvious deficiencies”. The idea presented in this paper may result in more compli-
cated and more interactive in developing software projects, and leave new challenges
to software development processes.

Acknowledgements

The presentation was supported partly by the National Natural Science Foundation of
China (Grant Numbers: 60273026, 60473060) and the Hi-Tech Research and Devel-
opment Program (863 Program) of China (Grant Number: 2004AA112080). Also, I
appreciate all the help offered by my colleagues (particularly to Qing Wang, Yongji
Wang, Chen Zhao, Zhanchu Wu, Hui Jiang, Hui Lei, Ye Chen and Fengdi Shu) and
students (specially to Jizhe Wang, Xinpei Zhao, Da Yang, Juan Li, Feng Yuan, Xia
Liu, Qiusong Yang and Lang Gou) in the Lab for Internet Software Technologies,
Institute of Software at Chinese Academy of Sciences.

66 M. Li

References

1. The Standish Group, 2004 Third Quarter Research Report, www.standishgroup.com
(2004)

2. P.Naur and B.Randall (eds.): Software Engineering: A Report on a Conference Sponsored
by the NATO Science Committee. NATO, Brussels, Belgium (1969)

3. IEEE Standard 610.12:1990, Glossary of Software Engineering Terminology, IEEE Stan-
dards Association (1990)

4. P.Kruchten: Putting the “Engineering” into “Software Engineering”. In: Proc. of the 2004
Australian Software Engineering Conference (ASWEC’04) (2004)

5. R.H.Thayer and M.Dorfman (eds.): System and Software Requirements Engineering.
IEEE Computer Society Press Tutorial (1990)

6. E.Yourdon and L.Constantine: Structured Design. Prentice-Hall (1979)
7. I.Jacodson, G.Booch and J.Rumbaugh: The Unified Software Development Process. Addi-

son-Wesley (1999)
8. K.Beck and C.Andres: Extreme Programming Explained: Embrace Change. 2nd edition,

Addison-Wesley (2005)
9. T.Bergin et al.: Computer-Aided Software Engineering: Issues and Trends for the 1990s

and Beyond. Idea Group (1993)
10. A.W.Brown and K.C.Wallnau: The Current State of CBSE. IEEE Software (Sept./Oct.

1998) 37-46
11. http://www.aosd.net
12. R.S.Pressman: Software Engineering: A Practitioner’s Approach. 5th edition, McGraw-

Hill (2001)
13. S.L.Pfleeger: Software Engineering: Theory and Practice. 2nd edition, Prentice-Hall

(2001)
14. S.Zahran. Software Process Improvement: Practical Guidelines for Business Success. Ad-

dison-Wesley (1998)
15. W.S.Humphrey: Managing the Software Process. Addison-Wesley (1989)
16. A.Fuggetta: Software Process: A Roadmap. In: Proc. of 22nd Int. Conf. on Software Engi-

neering - Future of Software Engineering (2000) 25-34
17. W.S.Humphrey. A Discipline for Software Engineering. Addison-Wesley (1995)
18. A.Finkelstein, J.Kramer and B.Nuseibeh (eds.): Software Process Modeling and Technol-

ogy. Research Studies (1994)
19. L.J.Osterweil: Software Processes are Software too. In: Proc. of 9th Int. Conf. on Software

Engineering (ICSE 9) (1987) 2-13
20. P.K.Garg and M.Jazayeri: Process-Centered Software Engineering Environments. IEEE

Computer Society (1996)
21. International Standard: ISO 9001 Quality Management System – Requirements (2000)
22. http://www.sei.cmu.edu/
23. M.B.Chrissis et al.: CMMI: Guidelines for Process Integration and Product Improvement.

Addison-Wesley (2003)
24. B.W.Boehm: Software Engineering Economics. Prentice-Hall (1981)
25. B.W.Boehm et al.: Software Cost Estimation with COCOMO II. Prentice-Hall (2000)
26. M.Ruhe, R.Jeffery and I.Wieczorek: Cost Estimation for Web Applications. In: Proc. of

25th Int. Conf. on Software Engineering (ICSE 25) (2003) 270-279
27. Robert Balzer: What We Do and Don’t Know about Software Process. In: Proc. of the 6th

Int. Software Process Workshop (ISPW 6) (28-31, October, 1990) 61-64
28. M.H.Penedo: ISPW 9 Process Demonstrations – Summary. In: Proc. of the 9th Int. Soft-

ware Process Workshop (ISPW 9) (5-7, October, 1994) 19-32
29. G.E.Kaiser et al.: An Architecture for WWW-based Hypercode Environments. In: Proc. of

19th Int. Conf. on Software Engineering (ICSE 19) (1997)

 Expanding the Horizons of Software Development Processes 67

30. P.G.Armour: The Laws of Software Process: A New Model for the Production and Man-
agement of Software. CRC Press (2004)

31. H.F.Hofmann and F.Lehner: Requirements Engineering as a Success Factor in Software
Projects. IEEE Software (July/August 2001) 58-66

32. R.Wieringa and C.Ebert: RE’03: Practical Requirements Engineering Solutions. IEEE
Software (March/April 2004) 16-18

33. B.Lawrence, K.Wiegers and C.Ebert: The Top Risks of Requirements Engineering. IEEE
Software (November/December 2001) 62-63

34. Ian Sommerville: Integrated Requirements Engineering: A Tutorial. IEEE Software (Janu-
ary/February 2005) 16-23

35. B.Boehm and P.Bose: Humans and Process Frameworks: Some Critical Process Elements.
In: Proc. of the 9th Int. Software Process Workshop (ISPW 9) (5-7, October, 1994) 82-84

36. C.B.Seaman and V.R.Basili: OPT: Organization and Process Together. In: Proc. of the 9th
Int. Software Process Workshop (ISPW 9) (5-7, October, 1994) 57-59

37. J.E.Arnold: Toward Collaborative Software Process. In: Proc. of the 9th Int. Software
Process Workshop (ISPW 9) (5-7, October, 1994) 107-109

38. T.Ajisaka: Meta-Integration for Process Integrated CASE Environments. In: Proc. of the
9th Int. Software Process Workshop (ISPW 9) (5-7, October, 1994) 62-66

39. B.Boehm and S.Wolf: An Open Architecture for Software Process Asset Reuse. In: Proc.
of the 10th Int. Software Process Workshop (ISPW 10) (17-19, June, 1996) 2-4

40. S.M.Sutton, Jr. and L.J.Osterweil: Product Families and Process Families. In: Proc. of the
10th Int. Software Process Workshop (ISPW 10) (17-19, June, 1996) 109-111

41. M.Verlage: Towards Software Process Modules. In: Proc. of the 10th Int. Software Proc-
ess Workshop (ISPW 10) (17-19, June, 1996) 112-114

42. D.Avrilionis et al.: A Unified Framework for Software Process Enactment and Improve-
ment. In: Proc. of the 4th Int. Conf. On Software Process, 2-6 December (1996) 102-111

43. C.D.Klingler and R.Creps: Integrating and Applying Processes and Methods for Product
Line Management. In: Proc. of the 4th Int. Conf. On Software Process, 2-6 December
(1996) 102-111

44. P.Kruchten: The Rational Unified Process—An Introduction. Addison-Wesley (2000)
45. A.H.Dogru and M.M.Tanik: A Process Model for Component-Oriented Software Engi-

neering. IEEE Software (March/April 2003) 34-41
46. M.Huo et al.: Software Quality and Agile Methods. In: Proc. of the 28th Annual Interna-

tional Computer Software and Applications Conference (COMPSAC’04) (2004)
47. C.-H.Chang et al.: An Integrated Software Development Environment with XML Internal

Representation. In: Proc. of the 28th Annual International Computer Software and Appli-
cations Conference (COMPSAC’04) (2004)

48. J.Carver, J.VanVoorhis and V.Basili: Understanding the Impact of Assumptions on Ex-
perimental Validity. In: Proc. of the 2004 International Symposium on Empirical Software
Engineering (ISESE’04) (2004)

49. C.A.R Hoare: The Emperor’s Old Clothes. In: C.B. Jones (ed.), Essays in Computing Sci-
ence, Prentice-Hall (1989)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 68 – 74, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Unifying Microprocess and Macroprocess Research

Leon J. Osterweil

Laboratory for Advanced Software Engineering Research,
Department of Computer Science,

University of Massachusetts,
Amherst, MA 01003, USA
ljo@cs.umass.edu

Abstract. This paper proposes the unification of two complementary
approaches to software process research. The two approaches can be
characterized as macroprocess research, focused on phenomenological
observations of external behaviors of processes, and microprocess research,
focused on the study of the internal details and workings of processes. The
paper suggests that it is time to bring these approaches together with the goal of
using microprocess methods to provide definitive explanations of observed
macroprocess behaviors. The paper suggests that this unification could lead to
improved understandings leading to improvements in software development
practice. The paper observes that such positive outcomes have resulted when
the macro- and micro- approaches have been synthesized in domains such as
Economics, Physics, and the Life Sciences.

1 Introduction

The recent years have been gratifying for the community of people who focus
attention on the importance of process. Process has long been recognized by
manufacturing industries as the key to achieving control over such core issues as costs
and quality levels. In such industries there is considerable agreement that “quality
products result from quality processes”, for example. Recognition of the possibility
that these same ideas hold for software development has been more recent. One key
event in advancing the importance of process was the 1984 Software Process
Workshop [1], held at Runnymede, England, although many will point out that there
had already been a focus on process (e.g., in large companies such as IBM), prior to
this event.

The past two decades have seen a steady growth in interest in the application of
process to the solution of many problems and issues in software development. Process
has been identified as being a vehicle for controlling development costs and achieving
product quality (in strong analogy to the situation in industries that manufacture
tangibles). Process has also been identified as a vehicle for supporting more effective
training, for superior project coordination, for improved management visibility
(leading to more effective management), and for studying how to achieve the most
effective deployment of resources.

With this diversity of applications of software process, it is no wonder that there is
also a diversity of approaches to the development of process technology. This paper

 Unifying Microprocess and Macroprocess Research 69

explores the possibility that two complementary types of software process technology
research might be integrated so as to support each other and provide substantial
benefits to the development community.

We propose the term macroprocess research to describe investigations that have
emphasized the study of overall behaviors of process, and the term microprocess
research to describe investigations that have emphasized the study of the internal
workings of processes. There seems to be a natural complementarity between these
two approaches, with the former investigating gross external effects, and the latter
investigating the root causes of these observed effects. In this way, this dichotomy
strongly mirrors similar dichotomies in such other disciplines as economics, physics,
and the biological sciences. As in those other disciplines, it seems promising to
consider the integration of these approaches.

This paper proposes that software process research increasingly focus on the
systematic investigation of how external process behaviors are definitively explained
(and potentially improved) by examination (and modification) of the internal structure
and details of the processes themselves.

2 Macroprocess Research

We propose that macroprocess research be characterized as investigations whose
focus is on the study of the external behaviors of processes. Such behaviors include
the speed of execution of processes, the characteristics of the software products they
produce, the way in which resource infusion affects product nature and process speed,
and the effect of changes in production timetables upon products, and the processes
themselves. Much of this research emphasizes the determination of appropriate
measures of such characteristics as product quality, worker productivity, and process
efficiency. It is not surprising, and indeed appropriate, that much of this research is
empirical in nature.

Some of the most notable directions in this research are represented by such
projects as the Software Engineering Institute’s Capability Maturity Models (e.g.,
CMM and CMMI) [2, 3], the Experience Factory project [4, 5], and the many
attempts to define measures of software quality and process characteristics [6]. It is
undeniable that these efforts have had a noticeable positive effect on the way in which
software is developed, and upon industrial understanding of many of the principal
issues that need to be understood if software development is to be practiced as an
order, disciplined, predictable activity. These is, for example, now a general
understanding that, despite the obvious difficulties, effective measures must be
defined and applied to software products in order to determine their size, cost, and
quality. There is general agreement that processes themselves must be studied in order
to determine how to change them in order to achieve desired improvements.

As the macroprocess work progresses, however, it becomes increasingly apparent
that there will be considerable value in complementing a strictly external,
phenomenological view of software process by investigations of process internals in
order to develop explanations of the causes of observed phenomena. Later in this
paper, we support this view with some analogies. For now, however, we simply
suggest that the desire to understand why something works is more than just natural

70 L.J. Osterweil

human curiosity. Knowing the cause of a phenomenon provides an avenue for
approaching its control. We may observe that there seems to be a linear relationship
between cost decrease and infusion of additional resources. But does that linear
relationship extrapolate indefinitely? Or can the relationship be expected to hold only
over a restricted range of circumstances? If so, then how can that range of
circumstances be characterized? Certainly additional empirical studies can provide
additional insight, but a firm grip on the causes of a phenomenon can provide
predictive power that should be expected to reduce the need for empirical studies, or
eliminate them entirely.

The macroprocess research community has demonstrated a clear recognition of the
need to determine the causes of the external behaviors that have been observed and
codified. Often the search for causal relations has been based upon empirical studies
and statistical investigations. Other approaches have been based upon process models.
At this point, the macroprocess approach begins to take on the character of
microprocess research.

3 Microprocess Research

We propose that microprocess research be characterized as investigations that focus
on investigation of the precise specification of the details of software processes, for
the purpose of inferring how those details effect the external behaviors of the
processes. Much of this research has focused on the identification of languages and
semantic features that are effective in supporting precise process definition. Other
research has focused on the use of such linguistic features to describe and define
specific processes (e.g., system evolution [7]). These process descriptions and
definitions are then sometimes used as the basis for supporting process automation, or
semi-automation, and for supporting reasoning about and analysis of these processes.
An important goal of some of this work is to create a discipline of process
engineering, in which process definitions can be crafted to deliver desired process
behaviors, and product characteristics.

Some examples of work in this area include the Process Instance Evolution (PIE)
Project [8], as well as process language efforts such as Adele [9, 10], Spade/Slang
[11], Marvel/Oz [12, 13], and Little-JIL [14, 15]. It is worth noting that there are
parallel efforts at identifying languages effective in supporting definitions of process
in other domains. For example workflow research aims to support definition of
business processes, and enterprise framework modeling aims to support definition of
internet-based processes for supporting innovative business models that use emerging
network technologies [16]. A common theme in all of this research is the
determination of how to characterize processes effectively, so that they can be carried
out more satisfactorily, and so that their properties (both positive and negative) can be
predicted accurately.

As such microprocess research can be seen both as providing something that
macroprocess research needs, and needing something that macroprocess research
provides. A key goal of microprocess research is to provide detailed, accurate, low-
level definitions of processes, and reasoning capabilities that are able to predict and
explain the high level phenomena discovered by macroprocess investigations. On the

 Unifying Microprocess and Macroprocess Research 71

other hand, the phenomena that have been identified, and shown to be of greatest
interest, by macroprocess research seem to be of central importance to microprocess
research, in indicating the phenomena whose explanation seems to be of greatest
interest and importance. Given that there are an infinite number and variety of process
properties that might be studied, and a wide spectrum on analysis approaches that
might be applied to process definitions, microprocess research needs a focus on the
phenomena of greatest interest. Macroprocess research can provide just such a focus.

Here too, we note that microprocess research is just beginning to identify, and
evaluate, process properties about which reasoning seems possible and useful. In this
respect, microprocess research is beginning to address issues that might more
accurately be characterized as macroprocess subject matter.

Thus, it seems that the two approaches, macroprocess and microprocess, are
starting to reach tangency with each other, and have much to offer each other. The
suggestion that an integration of these research directions therefore seems both logical
and timely.

4 Some Analogies

The use of complementary approaches such as those suggested here is certainly not
unique, and is indeed long predated by, similarly complementary approaches in such
other disciplinary areas as Economics, Physics, and the Life Sciences. The success of
such complementarity should be instructive and encouraging.

Economists have long distinguished among themselves using the complementary
approaches of macroeconomics and microeconomics. The analogy to software
process is particularly striking. Macroeconomics studies large-scale phenomena, and
the gross behaviors of economies in response to large-scale forces. Such relations as
how economic growth responds to interest rates, and fiscal policy are within the
purview of macroeconomics. Microeconomics, on the other hand, emphasizes the
creation of models of smaller scale behaviors and phenomena, seeking to use them to
explain and predict the phenomena of macroeconomics. Thus, for example,
microeconomists may employ systems of linear inequalities, and analytic approaches
such as game theory, using complex mathematics, in order to explain the behaviors
and properties of markets that have been observed by macroeconomists. This
dichotomy seems to provide a strong and close parallel to our suggestions about the
complementarity between microprocess and macroprocess research. To go further
with this analogy, it seems important to note that microeconomics can support a
diversity of reasoning about its models, but the reasoning that is most important and
most relevant is that which is directed towards explanation of behaviors whose
importance has been established by macroeconomists.

Physics provides other analogies that seem interesting and relevant. Early
physicists, such as Boyle, determined that air was “springy”. When enclosed in an
airtight container, pressure on the enclosed air was resisted, and when the pressure
was released, the air sprang back. Compressing the air seemed to heat it up. Careful
investigations of this, and other, external behavioral phenomena eventually resulted in
the formulation of Boyle’s Law, which related air pressure, volume, and temperature.
Boyle’s Law provided useful guidance for centuries before an explanation of this

72 L.J. Osterweil

behavior was provided by statistical mechanics. Eventually it was explained that air
consists of myriad molecules bouncing unceasingly off of each other and the sides of
containers. Mathematics was used to demonstrate how this internal structure and
behavior explained Boyle’s Law. Conversely Boyle’s Law’s external verification of
the predictions of statistical mechanics helped confirm the hypothesis that air is
composed of molecules with elastic properties, leading to innumerable other scientific
advances. Other examples from Physics are not hard to find. We note, for example,
that various behaviors of electricity were observed, and even described by formulas,
before physics determined the root causes of these behaviors. Light was bent and
focused long before its wavelike nature was understood. But that understanding led to
better engineering of light.

Indeed, Physics provides a long list of illustrations that the observation of
phenomena generally precedes their explanation, but that the explanations generally
lead to improved management and engineering of the phenomena. The Life Sciences
provide more examples of this.

Physicians, and primitive healers before them, have had growing success in
treating human ailments simply by observing external phenomenology. Even the
earliest healers understood that bleeding and high fevers were dangerous and
problematic. They focused attention on controlling them long before there was an
understanding of the role of blood (and hence the danger posed by its loss), or the
specific impact of increased body temperature upon the functioning of the body’s
organs and systems. The importance of cleanliness, both in public health, and in
treatment therapies, was observed long before there was a recognition of the
existence, and dangers posed by, microorganisms. Once the nature of microorganisms
was understood, and the details of the processes by which they caused disease
understood, superior therapies (e.g., antiseptics and antibiotics) could be deployed to
greater effect.

Currently we are seeing that basic understandings of DNA, molecular biology, and
cell biology are leading to clearer understandings of viruses, and are leading to the
more effective treatment of maladies ranging from the common cold to cancer. It is
noteworthy that these advances are being derived from micro-level understandings of
their causative factors, while phenomenological observation of these diseases has
been relatively ineffective in advancing their treatment.

Thus, there seem to be numerous examples of the complementarity of macro- and
micro- level research in other disciplines, and considerable reason to expect that
parallels with software process research are valid. This seems to us to add more
credence to the suggestion that this complementarity should be studied and pursued.

5 Future Directions

As macroprocess research and microprocess research continue to widen their scopes,
their intersections can be expected to continue to increase. What seems needed now is
some consensus about one or more projects that have the potential to cause each to
gain a better understanding of the other, and to find in the other the sort of
complementarity that will lead to added value for both. While there would seem to be

 Unifying Microprocess and Macroprocess Research 73

many such projects, one will be suggested here, more in the spirit of being specific
than in an attempt to be prescriptive or exhaustive.

A principal problem in software project management is the need to determine what
mix of skills and other resources are needed at different phases of a software project
in order to maximize productivity. Numerous empirical studies have suggested
various behaviors that seem useful and applicable. Thus, for example, there have been
numerous examinations of software design. These studies have suggested, for
example, that experienced designers tend to be more productive and effective than
novices, especially on larger, more unprecedented, projects. But highly experienced
designers may be overkill for some less ambitious projects. Similarly, adding more
designers seems to be effective in larger projects. But it is all too possible to put too
many designers to work on a project. Empirical studies have come up with statistics
and numerical measures that suggest how to quantify these qualitative observations.
Still, however, the quantifications are generally interpolations and extrapolations from
relatively small sets of observations. And the possibility that some of these observed
behaviors may be affected by yet-undetermined factors still exists.

It would seem reasonable to propose that microprocess approaches might help
here. Microprocess research [17] has resulted in the development of definitions of
processes that seem to help novices produce better designs more rapidly. These
processes seem to rely importantly upon the ability to apply design constraints over
specified scopes, and upon the ability to accurately describe, and thus more
effectively support, the elusive notion of “rework”. This seems to be a good example
of how microprocess research, focused on developing appropriate process definition
language constructs, and using them to develop more precise and accurate process
definitions, can develop understandings of the nature of a key software process like
design. We suggest that understandings such as these, drawn from microprocess
research be used to create definitions of specific design processes, indicating precisely
how various designers, of various skill levels, and other resources, could be used to
develop designs. We suggest it might then be possible to then apply analyzers and
reasoning approaches to explore how different numbers and mixes of resources and
design expertise levels might affect the progress of a design. Many different design
processes have been defined, and more could be defined. But macroprocess research
would, in this case, be used to suggest specific characteristics and desiderata in a
design process that would make it particularly worth studying, and would then focus
the process definition and analysis.

Other such integrative projects would seem to be relatively easy to identify. Joint
pursuit of them would seem to offer important benefits for both macroprocess and
microprocess research, and for the overall discipline of software engineering.

Acknowledgments

This material is based upon work supported by the US National Science Foundation
under Award Nos. CCR-0427071, CCR-0204321 and CCR-0205575. The views and
conclusions contained herein are those of the author and should not be interpreted as
necessarily representing the official policies or endorsements, either expressed or
implied, of The National Science Foundation, or the U.S. Government.

74 L.J. Osterweil

References

1. Software Process Workshop, in Software Process Workshop. 1984. Runnymede, England.
2. Paulk, M.C., et al., Capability Maturity Model Version 1.1. IEEE Software, 1993: p. 18-

27.
3. Capability Maturity Model® Integration. http://www.sei.cmu.edu/cmmi/
4. Basili, V.R. Software Development: A Paradigm for the Future, in COMPSAC'89. 1989.

Orlando, FL.
5. Basili, V.R., The Experience Factory and its Relationship to Other Quality Approaches, in

Advances in Computers. 1995, Academic Press, Inc.
6. Boehm, B.W., Software Engineering Economics. 1981, Englewood Cliffs, NJ: Prentice-

Hall.
7. Valetto, G. and G. Kaiser. Using Process Technology to Control and Coordinate Software

Adaptation, in Twenty-fifth International Conference on Software Engineering. 2003.
Portland, OR.

8. Cunin, P.Y., et al. The PIE Methodology - Concept and Application, in EWSPT-8. 2001.
Witten, Germany: Springer-Verlag.

9. Estublier, J. A Configuration Manager: The Adele Data Base of Programs, in Workshop
on Software Engineering Environments for Programming-in-the-Large. 1985.
Harwichport, MA.

10. Estublier, J., et al. An Approach and Framework for Extensible Process Support System, in
9th European Workshop on Software Process Technology (EWSPT 2003). 2003. Helsinki,
Finland.

11. Bandinelli, S., A. Fuggetta, and S. Grigolli. Process Modeling in-the-large with SLANG, in
Second International Conference on the Software Process. 1993. Berlin, Germany: IEEE
Computer Society Press.

12. Kaiser, G.E., P.H. Feiler, and S.S. Popovich, Intelligent Assistance for Software
Development and Maintenance. IEEE Software, 1988. 5(3): p. 40-49.

13. Ben-Shaul, I.Z. and G. Kaiser. A Paradigm for Decentralized Process Modeling and its
Realization in the Oz Environment, in 16th International Conference on Software
Engineering. 1994.

14. Wise, A., Little-JIL 1.0 Language Report. 1998, Department of Computer Science,
University of Massachusetts: Amherst: Amherst, MA.

15. Wise, A., et al. Using Little-JIL to Coordinate Agents in Software Engineering, in
Automated Software Engineering Conference. 2000. Grenoble, France.

16. Estublier, J. and S. Sanlaville. Business Processes and Workflow Coordination of Web
Services, in IEEE International Conference on e-Technology, e-Commerce and e-Service.
2005. Hong Kong.

17. Cass, A.G., S.M. Sutton, and L.J. Osterweil. Formalizing Rework in Software Processes,
in Ninth European Workshop on Software Process Technology. 2003. Helsinki, Finland:
Springer-Verlag.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 75 – 82, 2005.
© Springer-Verlag Berlin Heidelberg 2005

What Beyond CMMI Is Needed to Help Assure
Program and Project Success?

Arthur Pyster

Science Applications International Corporation,
1710 SAIC Drive,

McLean, VA 22102 USA
pystera@saic.com

Abstract. The U.S. Department of Defense and other parts of the U.S.
government use the Capability Maturity Model Integrated (CMMI) for process
improvement to reduce the risk of poor performance by its major contractors.
Acquisition officials have reported that many of its major programs suffer from
cost, schedule, and technical performance problems even though those
programs are being implemented by companies which rate high with respect to
the CMMI. This paper explores possible reasons why companies with high
CMMI ratings can still have significant performance problems and suggests
possible remedies.

1 Introduction

At last November’s CMMI Conference, which was sponsored by the U.S. National
Defense Industrial Association (NDIA), I participated in an industry panel that
discussed what beyond CMMI is needed to help assure program and project success.
The panel was motivated by reports from government acquisition executives that
companies with high CMMI maturity ratings were still having problems meeting their
commitments on major government programs. Throughout the conference and
subsequent to it, this issue was raised again and again. The paradox can be stated:

If high maturity ratings are a strong predictor of good performance, then
programs run by organizations with high maturity ratings should
consistently perform well. Yet many problems persist.

At the NDIA Capability Maturity Model Integrated (CMMI) conference, Mr. Mark
Schaeffer, the Director of Systems Engineering for the U.S. Department of Defense
(DoD), presented information showing that the actual correlation between high maturity
ratings and high performance is not as strong as the Department of Defense leadership
expects [1]. He said that “DoD expects that if you have achieved high maturity, the
next program will perform at that maturity.” This mismatch between expectations and
performance was raising anxiety within DoD about whether the CMMI is actually an
effective risk reduction tool. Throughout the rest of the conference and in the
intervening months, the dialog about the effectiveness of the CMMI for risk reduction in
large acquisitions has continued within the CMMI community, especially within the
NDIA and the Department of Defense. This paper elaborates on that issue and proposes
some steps that could be taken to address it.

76 A. Pyster

2 What Is the CMMI?

The CMMI is a relatively complete and widely used framework for improving the
processes of organizations that build complex engineering products. It has been
published in several variants, all of which are available on Carnegie Mellon
University’s Software Engineering Institute (SEI) website [2]. Developed over
several years under the auspices of DoD, the NDIA, and SEI, the current version of
the CMM, version 1.1, was released in 2001. Results from using the model in more
than 30 different countries are also reported on the SEI website.

The CMMI is largely a derivative of three earlier CMM-related standards – the
CMM for Software version 2 draft, the Electronic Industries Alliance interim standard
731 on the Systems Engineering Capability Model, and the integrated Product
Development Capability Maturity Model version 0.98. The CMMI is now being
updated to simplify aspects of the model, to incorporate improvements based on user
experience, and to better support organizations that do engineering services and
acquire systems rather than build them. Other enhancements will surely follow over
time.

The next several paragraphs present a brief description of the CMMI. In order to
keep the explanation simple, I have taken a number of liberties with how the
model really works. For example, I have blurred the distinction between the two
major model variations – staged and continuous. Nevertheless, this explanation
provides the essence of the model and how it is used.

In brief, the CMMI can be applied either at an individual program level or at a
higher level within a company or government agency. Companies and agencies that
are new to the CMMI often begin applying it to isolated programs and gradually
expand its use. The CMMI itself divides the primary processes used to develop
engineering products into 25 project management, technical, process management,
and supporting areas such as requirements management, integrated teaming, and
configuration management. Each process area has associated goals which the
adopting organization is expected to meet and best practices which it is expected to
implement. The adopting organization is rated from level 0 to 5 on how capable each
process area is, with five being the best score. The levels are established using fairly
well-defined criteria that require a rigorous appraisal consisting of interviews with
staff who perform the processes and an examination of artifacts that demonstrate
processes execution. The appraisal team is well-structured and is typically led by an
experienced person who has been authorized by the SEI. As of December 2004, the
SEI had authorized over 350 people to lead CMMI appraisals [3].

A capability level of 0 for a process area means that one or more of the goals is not
met, often by a failure to perform one or more of the prescribed best practices. For
example, one of the goals of the project management process area is to establish
estimates, specifically, that “estimates of project planning parameters are established
and maintained.” Several specific best practices are identified that are normally
performed to establish estimates. Process performance by a level 0 organization is
typically erratic, with wide fluctuations in cost, schedule, and technical performance.
Such performance should not be surprising for an organization that doesn’t
consistently do good estimation. On the other hand, a capability level of 5 means that
an organization has institutionalized its processes, uses a common implementation of

 What Beyond CMMI Is Needed 77

best practice across the entire organization, has well-defined ways to collect data
about process performance, and consistently uses that data to refine the process in
order to improve performance. Strong consistent performance is expected from
organizations that have achieved high levels (and therein lies the dilemma for the
DoD).

Finally, recognizing that it is natural to improve several related process areas
concurrently, the CMMI defines maturity levels around the simultaneous
achievement of capability levels in selected process areas. For example, realizing
capability level 2 in requirements management, project management, project
monitoring and control, supplier agreement management, measurement and analysis,
process and product quality assurance, and configuration management means that a
project or large organization also has a maturity level of 2. Hence, maturity levels
also go from 0 to 5.

Most major companies that build large complex systems for the U.S. government
each invest millions of dollars annually in CMMI-based process improvement (and
earlier in the CMM for Software) and have achieved maturity levels of 3, 4, or 5 for
significant parts of their companies. SAIC, for example, has a robust CMMI-based
process improvement program in which nearly all the company participates. Broad
segments of the company are at maturity levels 3, 4, and 5, and have achieved
substantial gains in such measures as the cost per line of developed code. At
conferences and in publications, speakers from across many industry segments widely
extol the benefits of using the CMMI. The SEI publishes results on its website
reporting major gains in productivity, cost, and schedule, customer satisfaction, and
quality for organizations with high maturity levels. The results are impressive with
many testimonials cited.

3 Limitations of CMMI Maturity Levels

Given that the major industrial suppliers for the U.S. government generally have
achieved high maturity levels, and there is a wealth of published data reporting
impressive performance by organizations with high maturity levels, one could
certainly expect government organizations to have few troubled programs. Yet, as
reported by DoD officials, by the U.S. Office of Management and Budget, which is
part of the Executive Office of the President and by the General Accounting Office,
which is part of the U.S. Congress, the U.S. government has many troubled programs.
How is this possible? The answer lies in four flaws in how the CMMI is understood
and used.

Flaw 1. A large organization can receive a high maturity level rating even if
portions of that organization do not systematically use high maturity
processes.

Flaw 2: After contract award, government program offices often do not
appraise the actual team working on the contract, which according to
Flaw 1, may not be using a mature process even if it is part of an
organization that has a high maturity level.

78 A. Pyster

Flaw 3: Many (most?) government source selection and program management
organizations themselves do not have mature acquisition processes.
This can lead to such problems as unstable requirements from the
government. Moreover, these same organizations may not fully
understand and appreciate the importance of mature processes. They
may be unwilling to fund the contractor’s execution of mature
processes, which can lead to shortchanging such activities as quality
assurance and systems test.

Flaw 4: Excellent process is not enough. Strong program performance is
based on a combination of excellent process, people, technology, and
program environment. Shortcomings in any one of these four areas
will drive down overall program performance and can even lead to
outright program failure.

3.1 Flaw 1 – Misunderstanding the Significance of the Maturity Level

A single appraisal will typically involve interviews with dozens of people and the
review of hundreds of documents. An appraisal for a higher maturity level will
normally examine only a handful of programs within an organization, even if that
organization has many times that number of programs. For large organizations, which
may have many individual programs, it is only practical to appraise a sample of
programs. Scaling up to large organizations can be addressed incrementally by
appraising each of the component organizations and aggregating the results
appropriately. Yet, even with this approach, only a small percentage of the total
program population will be examined.

Under this appraisal approach, the validity of the resulting rating depends heavily
on whether the chosen sample is representative of the larger population. If the sample
programs are weighted towards the best performers in the organization, the
organization will receive an artificially high maturity level. Similarly, if the sample
programs are weighted towards poor performers, an artificially low maturity level will
emerge. Selecting a good representative sample is absolutely necessary, but for
businesses with a very diverse business base, this can be difficult.

When a company is focused internally on improving its processes solely to better
its performance, then that company is strongly motivated to pick the most
representative sample that it can. Even then, if the company’s programs are quite
diverse in size, complexity, and other important characteristics, this will be hard to do.
When a company’s maturity level is a factor in winning business, choosing the most
representative sample becomes even harder.

In a government request for proposal, it is common for the government to ask the
offerer to explain its implementation of CMM for Software or CMMI. This request is
normally in the context of the government seeking to reduce risk by hiring a
contractor that has high performing processes. A company typically responds by
explaining its process improvement program in the proposal and by citing the
maturity level of the organization bidding for the work. The company may even
include in the proposal a copy of the certificate from the appraiser who rated the
bidding organization. Yet, as was discussed earlier, the program bidding the work
may, in fact, not use the high maturity process that was appraised.

 What Beyond CMMI Is Needed 79

This problem can be partially addressed in three ways:

 Government acquisition offices involved in source selection need to better
understand the limitations of a maturity level, so they do not draw
inappropriate conclusions from it. They should likewise require that if an
offerer references an organizational level in its proposal, the performing
team must use the high maturity process that is referenced.

 The Software Engineering Institute needs to improve guidance on how to
select representative samples, and on how to aggregate results from
subordinate organizations when appraising a large organization. This will
improve the accuracy of the ratings within the limitations of the overall
appraisal method.

 Government acquisition offices involved in source selection need to
recognize that this problem will lessen over time. The CMMI is relatively
new. It takes time to fully permeate companies, even those making serious
and thoughtful investments in process improvement. Over the next several
years, strong mature processes will become commonplace in nearly every
corner of major government contractors.

Some have suggested that this problem can be addressed by providing the
acquisition organization performing source selection with more detailed information
about an offerer’s processes and process improvement program; e.g., by delivering as
part of a proposal the underlying data on which an appraisal team drew its
conclusions or by delivering the individual capability levels of each of the 25 process
areas rather than the summary maturity level rating that an organization has achieved.
Unfortunately, this additional information will not solve the problem. As discussed
above, the difficulty is not that the acquisition organization has too little information
about an offerer’s processes. The difficulty is that the performing team may not use
those mature processes. Moreover, the detailed information prepared for internal
process improvement will likely be voluminous and written in a style and terminology
that is well-suited for internal use, but ill-suited for external audiences. Recasting that
information into language suitable for those involved in source selection would
require extensive effort on the part of the contractor with nominal gain for the
government. Moreover, without extensive additional training of acquisition officials,
they will have significant difficulty understanding the new information they receive.

3.2 Flaw 2 – Missing Appraisal

When a proposal for a government contract is submitted by an offerer, the full team
that will actually do the work probably doesn’t exist yet. Only parts of the team will
have been assembled before the contract is awarded. It is simply too expensive to
assemble full program teams in advance of contract award. Hence, even if an
organization that has a high maturity level wants to assemble a team that will use the
mature appraised process, it will need time to do so. A proposal can describe the
planned process, but a fully trained and operational team to execute that process
won’t yet exist. Of course, a high maturity organization should be able to stand up a
team and train them in the process more quickly and more successfully than a low
maturity organization.

80 A. Pyster

Even if a program team uses the high maturity process taken from its surrounding
organization, the team must tailor that process to the unique characteristics of the
specific program. This tailoring is normal and customary when using any
organizational process. The best way for the government to ensure that the program
has a suitably tailored high performing process is to perform an appraisal sometime
after contract award and periodically thereafter (for long running programs).

Because appraisals require interviews with dozens of people and the review of
hundreds of artifacts, an appraisal will last several weeks (including preparation) and
typically cost tens of thousands of dollars (or more) to conduct. Government program
offices (which become responsible for an acquisition after source selection)
sometimes are not willing to pay for such an appraisal. However, given the
importance of good process to program performance, such an appraisal is actually a
prudent investment. The contract between government acquirer and company should
require the correction of process deficiencies that are found during that appraisal. By
conducting an appraisal early in the lifecycle of a contract, problems can be quickly
found and corrected. By repeating an appraisal periodically (perhaps with a focus on
potential problem areas rather than on all process areas), continued improvements in
process should be achieved.

3.3 Flaw 3 – Immature Source Selection and Program Management
Organizations

Not only must the contractor have mature processes, so must the acquirer, to include
both the office that performs source selection and the program office that manages the
acquisition after contractor selection. The government cannot simply shift
responsibility for the performance of the acquisition onto the contractor. It must share
that responsibility. The government acquisition office must be strong at earned value
management, technical performance measurement, requirements management,
systems architecture, transition planning, source selection, project scheduling, and a
myriad of other processes when acquiring large complex systems. Unfortunately,
over the past decade, there has been a general erosion in government acquisition
capability. Many of the most talented acquisition managers and engineers have left
the government. Even though there are still many highly talented government
acquisition managers and engineers remaining, their numbers are down.

Despite this erosion in workforce skill, there has been a steady increase in the
quantity and complexity of government acquisitions. Moreover, few acquisition
organizations have embraced CMMI-based process improvement or similar
approaches, such as the Federal Aviation Administration’s (FAA) iCMM, which the
FAA uses to improve its own acquisition community [4]. Acquisition organizations
have often expected mature processes from their contractors, but have not always
demanded it from themselves. This mismatch between acquirer and supplier has
broad negative consequences. Four resulting problems are:

1. Unstable and imprecise requirements from the government that lead to
significant rework on the part of the contractor and a strained relationship
between acquirer and contractor.

 What Beyond CMMI Is Needed 81

2. Poorly planned adoption of the new system by the government; i.e., the
adoption of a complex system often requires significant preparation at the
sites into which the new system will be housed, extensive end-user training,
and detailed planning for migrating end-users from legacy systems onto the
new system. The government is often directly responsible for many of these
activities.

3. A misunderstanding by the government of how to effectively use advanced
acquisition techniques; e.g., insisting on “big bang” adoption of a complex
system rather than spiral or incremental deployment simply because the new
system is so important to the agency’s mission.

4. A failure by the government to appreciate just how important certain
processes such as quality assurance and systems test really are to success.
This can lead a contractor to back away from its robust process because the
government will not pay for these activities and believes they needlessly add
to the delivery schedule.

Solving the problem of immature acquisition organizations for both source
selection and program management will require a dramatic increase in commitment to
educating the acquisition workforce, providing them the necessary tools to become
more mature, and finding suitable rewards to retain the best talent. This is a systemic
problem within the government that will take years to address.

3.4 Flaw 4 – Expecting Too Much from Mature Processes

Four factors drive program performance: process, people, technology, and
environment. Relying too heavily on excellent process as the key performance driver
will lead to disappointment and failure. A balanced approach that recognizes the need
for strength in all four factors is required. Three examples illustrates this point well.

In the last decade, the U.S. Federal Aviation Administration (FAA) decided to
augment the Global Positioning System (GPS) so that it would be reliable and
accurate enough to use for aircraft navigation. Moreover, it decided that the
augmented GPS would eventually become the sole means of navigation, replacing
traditional ground-based approaches. The primary rationale for this decision was that
a satellite-based GPS system would be much cheaper to operate, maintain, and
expand than the elaborate ground-based system then in use. The proposed system
was unprecedented. A large-scale GPS-based system with the performance
characteristics needed to support safe flight had never been built. There were
tremendous technical challenges. A contractor was hired to deliver the augmented
GPS-based system. That system took years longer than originally planned, much of
that due to the requirement that augmented GPS become the sole means of navigation.
The technology required to meet that requirement simply did not exist. That
requirement was eventually dropped as impractical. No process can make up for the
fact that there is no generally accepted way to accurately predict cost, schedule, and
technical performance of unprecedented systems.

As a second example, the FAA hired a contractor to develop another system to
build a system for controller/pilot datalink communications (CPDLC). CPDLC
allows pilots and controllers to transmit digital data messages directly between

82 A. Pyster

computers on the ground and computers on board the aircraft rather than relying on
voice communications. Success of the program depended on two factors. First,
aircraft needed to upgrade their equipment to send and receive the digital messages,
and second the FAA needed to expand the operation to cover much of the U.S.
national airspace. Initially, CPDLC was piloted only in the Miami, Florida area. Even
though CPDLC worked largely as expected in trial use in Miami, last year the
program was postponed until the end of this decade because of inadequate funding.
The FAA has faced continuing budget reductions and most U.S. airlines have been
struggling financially since the terrorist attacks on September 11, 2001. No process
can make up for an environment in which the acquiring agency and the airlines lack
the funds to deploy the system.

Finally, it is impossible to overstate the importance of having people working on a
program who deeply understand their customer and their customer’s domain.
Government requests for proposals routinely ask the offerer to demonstrate its
understanding of the acquiring organization’s mission, problems, operational
constraints, and existing systems. A prime contractor assembles its team, in part, to
ensure a strong customer understanding by the team as a whole. Nevertheless, some
program teams fall short. Even if an organization as a whole has strong domain
understanding, the program team itself might not reflect that strong understanding. A
contractor may have difficulty staffing all of its programs with the requisite talent.
Government requests for proposals try to mitigate this problem by requiring an offerer
to state by name and qualification certain key personnel for a contract. However, on
large programs that last for years, deep domain knowledge by many people is needed.
Source selection organizations generally have no way of gauging the overall strength
of the proposed team and cannot account for personnel changes over time. No process
can make up for a contractor team that lacks an understanding of its customer.

4 Final Thoughts

The process improvement community owes a large measure of debt to the innovative,
thoughtful, and dedicated public servants who have embraced the CMMI and have
encouraged its use. That same process improvement community must now work
closely with government policy makers to correct misunderstandings in what the
CMMI does and to improve how the government and industry together apply the
CMMI. Failure to take such action could lead the U.S. government to reduce its
commitment to the CMMI and to process improvement with a consequent
deterioration in acquisition performance.

References

1. Schaeffer, Mark: DoD Systems Engineering and CMMI. CMMI Technology Conference
and User Group. (17 November 2004), http://www.dtic.mil/ndia/2004cmmi/CMMIGS/
SchaefferCMMI17Nov04v3.pdf.

2. Software Engineering Institute: http://www.sei.cmu.edu/cmmi.
3. National Defense Industrial Association: Systems Engineering Division Meeting (8

February 2004), http://www.ndia.org.
4. Federal Aviation Administration: http://www.faa.gov/aio.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 83 – 90, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrated Software Process and Product Lines

Dieter Rombach

Fraunhofer IESE & University of Kaiserslautern,
Kaiserslautern, Germany

dieter.rombach@iese.fraunhofer.de
Copyright Fraunhofer IESE, 2005

Abstract. Increasing demands imposed on software-intensive systems will re-
quire more rigorous engineering and management of software artifacts and
processes. Software product line engineering allows for the effective reuse of
software artifacts based on the pro-active organization of similar artifacts ac-
cording to similarities and variances. Software processes – although also vari-
able across projects – are still not managed in a similar systematic way. This
paper motivates the need for Software Process Lines similar to Product Lines.
As a result of such organization, processes within an organization could be or-
ganized according to similarities and differences, allowing for better tailoring to
specific project needs (corresponds to application engineering in product lines).
The vision of SPPL (integrated product and process line) engineering is pre-
sented, where suitable artifacts and processes can be chosen based on a set of
product & process requirements and project constraints. The paper concludes
with some resulting challenges for research, practice, and teaching.

Keywords: Reuse of artifacts & processes, commonalities and variabilities,
software product lines, software process lines (SPL), integrated software proc-
ess & product lines (SPPL), experience factory.

1 Introduction

Increasing demands imposed on software-intensive systems will require more rigor-
ous engineering and management of software artifacts and processes. For example,
software embedded in automobiles exceeds 10 million lines of code already today and
has to satisfy extreme safety requirements. Such developments can only be mastered
with highly modular architectures enabling the reuse of verified and validated compo-
nents and the checking of safety requirements at the system integration level. The
processes used will highly depend on the degree of safety or reliability to be achieved
and on other project characteristics. Choosing trustable components and performing
needed module adaptations and additionally required verification & validation, and
checking adherence to safety or reliability requirements at the system integration level
with the appropriate processes are the key engineering decisions.

Software product line engineering allows for the effective reuse of software artifacts
based on the pro-active organization of similar artifacts for a given domain according to
similarities and variances. Software processes – although also variable across projects –
are still not managed in a similar systematic way. It must not only be the objective to
establish software process lines in order to choose the appropriate and proven processes,

84 D. Rombach

but to establish integrated software process & product lines (SPPL) in order to system-
atically choose both artifacts and processes needed for a given project.

This paper motivates the need for Software Process Lines similar to Product Lines.
As a result of such organization, processes within an organization could be organized
according to similarities and differences allowing for better tailoring to specific pro-
ject needs (corresponds to application engineering in product lines). The vision of
SPPL (integrated product and process line) engineering is presented, where suitable
artifacts and processes can be chosen based on a set of product and process require-
ments and project constraints. The paper concludes with some resulting challenges for
research, practice, and teaching.

2 Motivation for Proactive Reuse

Engineering requires reuse of proven artifacts. In software engineering, the major
challenge to reuse stems from the fact that such artifacts typically have to be changed
and tailored to the needs of unique projects. One approach to support such adaptation
in a systematic way is to differentiate between commonalities and variations across all
systems to be developed within a given domain, and to pre-define limits for variations
that can be supported.

2.1 Mature Software Engineering

Mature software engineering requires, among other things, a focus on all engineering
and management processes, the application of techniques, methods and tools suitable
for practical engineering, and effective reuse.

2.2 Reuse Challenges

Assumptions for successful reuse include the following [1]:

- All experience can be reused: Traditionally, the emphasis has been on reusing
concrete objects of ‘source code’. This limitation reflects the traditional view
that software equals code. It ignores the importance of reusing all kinds of
software-related experiences including artifacts at all levels of abstraction
ranging from requirements to test cases, processes, and other knowledge, such
as reliability, cost or resource models.

- Reuse typically requires some modification: Under the assumption that soft-
ware developments are typically different in some way, modification of reuse
candidates from previous projects must be anticipated. The degree of modifi-
cation depends on how many, and to what degree, existing characteristics of a
reuse candidate differ from the ones needed in the target system.

- Reuse must be integrated into (tailored to) the target projects: Reuse is in-
tended to make software development more effective. In order to achieve this
objective, we need to tailor reuse practices to the respective development
processes.

The question is how we can minimize the tailoring actually needed and how we
can systematically guide the actual tailoring.

 Integrated Software Process and Product Lines 85

2.3 Commonality and Variation

Software systems within any domain can be characterized by their

- Commonalities: These are functionalities that are contained in all (or at least a
large number of) systems within that domain.

- Variabilities: These are functionalities that are unique to one (or some number
of) system(s) within some domain.

These commonalities and variabilities are then implemented via an architecture of
components with

- Fixed commonalities: Such components can be reused across all (or at least a
large number of) systems of a domain without change.

- Controlled variabilities: Such components can be reused with limited and con-
trolled change. Examples include parameterized components or components
with optional or modifiable functionalities (e.g., via conditional compilation at
the code level, via decision models at the UML modeling level). Modifiable
functionalities may be defined in a binary way (include or not include!) or in a
continuous way (e.g., ranges of parameters such as reliability [0.9 … 0.99]).

- Adhoc variabilities: Such components may be unique to one system and will
have to be developed from scratch. However, in order to prevent architecture
erosion, the interfaces for the inclusion of such components should be well de-
fined, and they should not address nonfunctional requirements (e.g., reliability,
performance or safety), as such requirements are known to carry the risk of ar-
chitecture discontinuities.

A good architecture should

- maximize the percentage of components with fixed commonalities and con-
trolled variation, and

- be stable across the entire family of systems within a domain.

3 Product and Process Lines

‘Software product line (SPL) engineering’ represents the most promising approach to
proactive reuse based on pre-designed commonalities and controlled variabilities
across a family of systems. This chapter briefly summarizes the state-of-the-art and –
practice in SPL engineering, motivates why processes would also benefit from similar
treatment as artifacts, and suggests the expansion of SPL engineering to ‘ Software
Process Line engineering’. Based on the hypothesis in chapter 2.2 – that effective
reuse must comprise all experiences (artifacts and processes) – the vision of ‘inte-
grated software process & product line engineering’ (SPPL) is created.

3.1 Software Product Lines

Software Product Line (SPL) engineering has been proposed by the Software Engi-
neering Institute (SEI) at Carnegie Mellon University. However, the underlying ideas
of differentiating between the development of experiences reusable across projects

86 D. Rombach

and the project-specific development of a software system by means of reusing avail-
able experiences have been formulated as early as the 1980s under the label ‘experi-
ence factory’ [2].

The main characteristics of SPL engineering include:

- Two (2) separate development processes: One distinguishes between the do-
main engineering process, by which artifacts for reuse are being created, and
the application engineering process, by which project-specific systems are be-
ing developed.

- An artifact repository: Reusable artifacts at all abstraction levels – from re-
quirements to test cases – are made available.

- A systematic reuse process: For each predefined choice of variabilities, the
choice of components is pre-defined (e.g., via ‘product maps’).

- A systematic artifact management process: For each exception (e.g., an unin-
tended change to a component of a supposedly controlled variability) it will be
decided whether this exception will be factored into the component or not.

The objectives of using SPL engineering are – as in the case of all reuse ap-
proaches - increased quality, reduced cost and time, and reduced risk. Especially a
reduction of cost can be achieved only if the requirements engineering process within
the domain engineering process is based on sound ‘scoping’. Scoping attempts to
maximize the common functionalities and controlled variabilities so that they can be
addressed with one stable architecture and domain engineering effort can be amor-
tized over the number of possible applications.

Several real-world implementations of SPL engineering exist and show remarkable
results. Especially time to market reductions by orders of magnitudes and reduced
quality risks are reported. One example includes the company Market Maker which
produces stock trading software for professionals and non-professionals, and which
recently reported about such experiences from five years of product line engineering
[ICSE 2005]. Fraunhofer IESE assists companies in establishing SPL engineering
based on PuLSE – an SPL approach supporting effective scoping, providing tools for
variability specification and management at all abstraction levels, and providing
means for incremental build-up of product lines. Example implementations exist at
Bosch (automotive supply company), Ricoh (printer business) and Market Maker
(stock trading).

The artifacts created with an SPL development organization can be organized ac-
cording to an ‘is_a’ relationship. Each component created from a domain artifact
(without or with controlled change) is in an ‘is_a’ relationship with the reused domain
artifact. This direct relationship (instead of the multiple derivation sequences in non-
SPL settings, where application N+1 is derived from application N) avoids all the
configuration management problems we know from release- or variant-based devel-
opments.

3.2 Problems with Software Processes

Today we can distinguish mainly two kinds of software processes – the prescriptive
company processes and the processes actually executed in projects. The former are
typically phase-based, serve to control projects company-wide wrt. cost and time, and

 Integrated Software Process and Product Lines 87

allow synchronization with other processes, such as system engineering processes
(combining development of mechanical, electronic and software components in em-
bedded system domains) or non-engineering processes, such as acquisition or distri-
bution. However, such processes provide little guidance for software developers. The
latter processes are the processes by which software systems have been developed.
Mostly they are implicit and have an unclear relationship with the company-wide
prescriptive processes.

Some of the problems resulting from this current situation include:

- Lack of guidance for software developers from a process that is too generic.
- Problems with measurement due to the lack of process adherence to the proc-

ess for which metrics have been defined.
- Problems with feedback due to the fact that the lessons learned during projects

cannot be related to the company-wide process.

What is missing is a clear relationship between a generic company process and the
actual instantiations (either for a specific business unit or for a concrete project). It is
unclear what the commonalities and controlled variabilities are across all process
instances. The commonalities should be captured in the company-wide process; the
controlled variabilities should be specified and guidelines for tailoring should exist.
The discriminators for the ‘is_a’ relationship between processes would be

- Product & process requirements: Examples could include degree of reliability
or certain sets of functionalities and effort distributions or time.

- Project characteristics: Examples could include the experience of developers.

3.3 Software Process Lines

Software process lines would be based on the same principles described in chapter
3.1. That means we would, by means of a domain engineering process, create a ge-
neric (set of) process(es) that capture the commonalities and controlled variabilities
across a domain. The variabilities – and thereby the discriminators for process in-
stances - in the case of processes are product and process goals as well as project
characteristics. The knowledge about these variabilities – as well as their instantiation
into concrete processes - comes from empirical studies on the impact of processes on
goals under given project characteristics (often referred to as context).

For example, we might have a generic inspection process associated with a certain
development milestone. Variabilities of the developments could be different degrees
of reliability (highly reliable, normally reliable) of the software under development,
and the experience of the inspectors (high, medium). In this case we might create –
and by means of empirical studies validate – the following hypotheses:

- Perspective-based reading is best suited for software with high reliability re-
quirements and medium experience.

- Ad-hoc reading is best suited for software with normal reliability requirements
and highly experienced inspectors.

- Checklist-based reading is most suitable for all other combinations.

88 D. Rombach

Here we would have three ‘is_a’ relationships between ad-hoc/checklist-
based/perspective-based inspections and a generic inspection process.

The main characteristics of software process line engineering would be similar to
the ones listed in chapter 3.1:

- Two (2) sepaoprate development processes: One distinguishes between the
domain engineering process, by which processes for reuse are being created,
and the application engineering process, by which project-specific processes
are being developed.

- A process repository: Reusable processes at all abstraction levels are made
available.

- A systematic reuse process: For each predefined choice of variabilities, the
choice of process components is pre-defined (e.g., via empirically justified
‘project maps’).

- A systematic process management process: For each exception (e.g. an unex-
pected behavior of the process occurs) it will be decided whether this excep-
tion will be factored into the generic process or not.

The objectives of using software process line engineering are – as in the case of all
reuse approaches - increased predictability, reduced cost and time, and reduced risk.
The way to build such process hierarchies is either bottom-up or top-down. Top-down
establishment reflects the typical standardization process. Bottom-up approaches look
at commonalities and variabilities across a number of projects, perform a commonal-
ity analysis [3], and model the process in terms of commonalities and controlled vari-
ances.

Several real-world implementations of software process lines have been started.
Examples include the process architecture (created bottom-up) at NASA Goddard
Space Flight Center’s SEL, and the newly proposed and top-down developed V-
Model XT for public development sub-contracts in Germany [http://www.v-model-
xt.de].

3.4 Integrated Software Process and Product Lines

There exists a strong correlation between process and products in the sense that the
product goals are achieved as a function of executing some process under certain
project characteristics. It would be desirable to establish a focus on reusing experience
like software artifacts and processes. Such an organization would be called a ‘Soft-
ware Process & Product Line (SPPL)”. Here artifacts and processes are captured and
organized according to discriminators combining product and process requirements,
and project characteristics.

It might be obvious that such an organization could also be viewed as a ‘compre-
hensive Experience Factory’ implementation. The interesting vision would be that one
wants to start a project by characterizing it and submitting a query (e.g., in the form of
a set of GQMs [4]) to the repository. Then a combined set of artifacts and processes
would be provided to plan and run a project with.

 Integrated Software Process and Product Lines 89

4 Future Work

Process lines and even integrated process and product lines can be built today. How-
ever, efforts in research, practice, and education & training are needed in order to
support the establishment of SPPLs.

4.1 Research

The most important research tasks needed include:

- The design of process modeling languages with features for variability specifi-
cation: Example languages with features for variability specification MVP-L.

- More effective methods for creating empirically grounded ‘process prod-
uct’ models. Here the research thread on ‘evidence-based software engineer-
ing’ or ‘value based software engineering’ as well as portals for evidence on
process effectiveness and efficiency such as ‘CeBASE’ or ‘VSEK’, or even
books like [5].

- Theoretical & engineering foundations for process lines (especially organiz-
ing) and integrated SPPLs. Discrepancies will be handled separately.

4.2 Practice

The most important practice changes include:

- Acceptance of the importance of processes and the need to manage them.
- Empirical model building based on studies imposed upon projects.
- Wide-spread adoption of SPL.
- Expansion of the SPL idea to the SPPL vision.

4.2 Education and Training

In the case of embedded systems:

- Higher focus on process, more specifically on the appropriate use of process
- Training of new methods in laboratory settings
- Role-based education & training. Especially in the product line context, we

have to separate developers (top-down problem solvers) from domain engi-
neers (bottom-up abstractors).

5 Conclusions

Delivery of increasingly complex software systems in more and more customer varia-
tions requires effective (pro-active) reuse in the form of product lines. In these prod-
uct lines, all kinds of experience (mostly artifacts and processes) need to be stored and
managed. We call such product lines ‘software process and product lines’. This paper
suggests an expansion of the well-defined and proven principles of software product
line engineering to processes, and an integration of both based on the ideas of the
‘Experience Factory’.

90 D. Rombach

References

1. Basili, V.R., and H. D. Rombach. Support for Comprehensive Reuse. IEE British Computer
Society, Software Engineering Journal (May, 1991.

2. Basili, V.R., G. Caldiera and H. D. Rombach. The Experience Factory. Encyclopedia of
Software Engineering I, Wiley (1994) 469-476.

3. Ocampo, A., F. Bella and J. Münch. Software Process Commonality Analysis. Accepted for
publication in Software Process Improvement and Practice (October, 2005).

4. Basili, V.R., G. Caldiera and H.D. Rombach. Goal Question Metric Paradigm. Encyclopedia
of Software Engineering I, Wiley (1994) 528-532.

5. Endres, A. and H.D. Rombach. A Handbook of Software and Systems Engineering - Em-
pirical Observations, Laws and Theories. Pearson Education Ltd, Addison Wesley (2003).

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 91 – 99, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Rigorous Software Process for the Development of
Embedded Systems

Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

wilhelm@uni-paderborn.de

Abstract. The paper reports about a rigorous software process for embedded
system development. The process is based on specifying the software by a well-
chosen and well-defined subset of UML diagrams. The process together with a
formally defined semantic of the various diagram types supports requirements
tracking, consistency checking and formal verification across the various parts
of a UML-based specification. An existing software development environment
illustrates the concepts of the paper.

1 Introduction

Software has become an intrinsic part of so-called embedded systems. Software is
usually employed to implement the control of these systems and to extend and im-
prove their functionality. In many cases these systems are used in a safety-critical
environment and implement themselves safety-critical applications. Consequently, the
development of their software has to undergo a rigorous process which guarantees a
high-quality software product when it is shipped the first time.

A first example for such an embedded safety-critical system is the Paderborn-based
Railcab project (http://www-nbp.upb.de/en),

which aims at combining a passive track
system with intelligent shuttles that operate individually and make independent and
decentralized operational decisions. The project is funded by a number of German
research organizations. A test track has been built in the scale of 1:2.5 such that the
ideas of the project are not only tested “on paper” but in real operation.

The vision of the railcab project is to provide the comfort of individual traffic con-
cerning scheduling and on-demand availability of transportation as well as individu-
ally equipped cars on the one hand and the cost and resource effectiveness of public
transport on the other hand. The modular railway system combines sophisticated
undercarriages with the advantages of new actuation techniques as employed in the
Transrapid (http://www.transrapid.de/en) to increase passenger comfort while still
enabling high speed transportation and (re) using the existing railway tracks.

As a second example consider a state-of-the-art production system in a factory. Such
a system is composed of more or less autonomous production agents like manufacturing
cells, shuttles carrying goods, or gates in a track-based transportation system. Although
the system is not really safety-critical, a bad design and implementation may result in
weeks of downtime for reconfiguration or repair. This time frame is, of course, unac-
ceptable, if a company wants to stay in business and thus the careful design of such a
system.

92 W. Schäfer

The next section describes the proposed rigorous process in more detail whereas
section 3 gives an example of the application of this process using the above men-
tioned production system. The whole approach is based on using UML 2.0 as an in-
ternational standard for system specification. Section 4 finishes with some concluding
remarks.

2 The Software Process

Requirements Elicitation Phase: The whole process starts with the gathering of re-
quirements supported by the notion of UML-component and sequence diagrams as
well as statecharts. Component diagrams are used to describe the coarse-grained sys-
tem architecture based on the constituent hardware components of the system to be
constructed. The physical behavior of these components is described by statecharts.
The communication with other system components is then modeled using sequence
diagrams. Sequence diagrams describe typical scenarios of system execution as well
as examples for non-intended behavior. The definition of the consistency between the
various scenarios and the component behavior is a topic of current research in our
group [1].

Design Phase: In the next step, one derives the initial (UML) class diagram of the
software system. Here, each component (type) as identified in the component diagram
generates a class in the class diagram which can, of course be later on refined into
more than one. Communication between components as expressed by the scenario
definitions is reflected by an association between the corresponding classes. Ports are
refined into operation signature definitions of classes which are identified either as
signals or methods. Signals correspond to events which connect the software control
with hardware-related events whereas methods are mainly used to specify the com-
munication between the various software objects. The detailed partly automatic

class
diagrams
(structural

design)

Compo-
nent and
sequence
diagrams
(re)

state charts

(event handling,
Reactive behaviour design)

collaboration diagrams
(graph grammar semantics)

(action design, object structure
changes)

activity

diagrams
(action design,
control flow)

 Fig. 1. Main process phases and diagram types

 A Rigorous Software Process for the Development of Embedded Systems 93

synthesis of a class diagram and further behavioral specifications, as explained later
on, from the output of the requirements phase is currently the topic of a new research
project. As a first step in this direction see [2].

Reactive Behavior Modeling Phase: In this phase the reaction of each class to the invo-
cation of its signals is specified by (hybrid) real-time statecharts [3, 4]. Each signal as
defined in the class interface must appear in the statechart definition. Each class
which corresponds to an active system component, i.e. a component which requires
some control functionality, has exactly one statechart associated. Hybrid statecharts
support the definition of underlying continous controller functionality, i.e. a state in a
statechart may express that a predefined continous controller becomes active on enter-
ing this state. Real-time annotations to transitions and states support the definition of
time constraints on the execution of state transitions and associated actions as well as
on the execution of entry- do-and exit actions.

Action Modeling Phase: Statecharts specify in which states a certain object as the in-
stance of the corresponding class reacts to a particular signal. In response to a signal
an object might change its state and execute some additional activities. For a flexible
production agent, for instance, these activities might again include complex computa-
tions. These complex computations might employ or modify complex object-oriented
data structures in order to reflect the surrounding world as e.g. the execution of manu-
facturing plans for certain products. For the specification of such complex computa-
tions we use UML-like collaboration diagrams. Consequently, we use collaboration
diagrams to specify complex control flows of methods employed as actions within
statecharts.

Frequently, one will need more than a single collaboration diagram to model a
number of object structure modifications. Therefore, we combine statecharts (and
activity diagrams) with collaboration diagrams to a powerful visual specification
language. Basically, we employ collaboration diagrams as the specification of activi-
ties instead of just pseudo-code statements as offered in many other statechart-based
approaches and tools, e.g. [5,6].

Code Generation Phase: Once all aspects of the system are specified, a complete, ex-
ecutable (Java-) implementation is generated from the class and behavior diagrams.
This implementation is further used for the following simulation phase. Our approach
also supports the generation of other more domain specific languages like PLC or
subsets of C.

Simulation Phase: The implementation is not only the full program of the desired con-
trol software but is also used for simulation purposes, i.e. the software which is sup-
posed to run later on in the real system is simulated upfront using (in the long run)
sophisticated graphic facilities. This is in contrast to many approaches where simula-
tion is based on the interpretation of a model of the software which runs of course the
risk that the finally implemented software is inconsistent with the model (and the
simulation results).

Although, the above sketched process is by no means surprising, it has important
differences compared with e.g. the Rational Unified Process (RUP) and other “classi-
cal” software processes. In our approach, the different diagrams are logically and
mutually dependent on each other and carry a formal static and dynamic semantics.
The main dependencies are that component diagrams specify the minimal number of

94 W. Schäfer

classes of the control software and their corresponding associations. In addition, each
(active) class is associated with one main statechart. This statechart has to define the
response to all signals of the corresponding class. In addition to state changes, this
response might include actions. Each of these actions is specified using one behavior
diagram (which in turn may apply additional diagrams for sub-activities). Thus,
within the resulting overall specification each aspect of the system is specified by
exactly one diagram and it is absolutely clear how these different diagrams are related
to each other and how they form the whole specification. In addition, a specification
is complete only if all aspects identified in the component and sequence diagrams are
covered by class diagrams and statecharts and if in turn all auxiliary aspects intro-
duced in these diagrams are covered by additional behavior diagrams (until transitive
closure is reached).

In addition, model-based verification is possible and done for the output of the re-
active behavior modeling and action modeling phase resp.. Verification is based on
the definition of a formal semantics for our statechart and collaboration diagram mod-
els. Real-time hybrid statecharts are mapped to timed automata and the semantics of a
collaboration diagram is given by a graph transformation system. These mappings
enable the formal check of system properties, especially safety properties by using
available tools such as UPAAL and GROOVE [7, 8]

Note that the mentioned completeness of specification diagrams is enforced for the
final system specification only. One might use additional UML behavior diagrams in
order to analyze certain scenarios during early informal requirements gathering. Such
diagrams need not to be complete and there may be multiple diagrams that overlap in
several aspects. One may study such scenarios at any time during the specification
process and one should keep such diagrams for documentation purposes.

3 The FUJABA Environment

The application of the above described process and its support by a software devel-
opment environment is demonstrated using a simplified example of a production line.
This example stems from the case-study of the ISILEIT project which is funded by
the German National Science Foundation (DFG) [9].On this production line bottle

Fig. 2. Schematic overview of the Sample Factory

 A Rigorous Software Process for the Development of Embedded Systems 95

openers are produced which consist of several (hardware) components. The system
works in such a way that an external job allocation system, which is beyond the scope
of this paper, assigns a task to a shuttle, which means that the shuttle becomes respon-
sible for initiating the production of certain components by traveling to the right sta-
tions in a certain order (see Fig. 2). A simplified production process (not the software
process) could look like the following. In a first step a shuttle moves to station 1
where somebody (a machine or a human) equips the shuttle with the appropriate raw
material. After finishing the loading process, the shuttle moves to station 2 where the
portal robot takes the material from the shuttle and hands it over to the rotator which
performs the required manufacturing step. After that, the portal robot takes the fin-
ished product from the rotator and puts it on the waiting shuttle. The shuttle now takes
the good to station 4 where the good is stored. Shuttles rotate on the main loop as long
as no job is assigned to them. Shuttles run on a track-based system which is easily
extensible to provide further stations and consequently a more complex production
process.

Fig. 3a. Fujaba showing the example class
diagram

Fig. 3b. Details of the statechart of class
Gate

The software development environment which is being used to illustrate our ap-
proach, is called FUJABA (From UML to Java and Back Again) [10]. It has been
developed over the last seven years in our group and is available as public domain
software at www.fujaba.de. It especially supports to check many consistency con-
straints between the various UML diagrams as mentioned above. Figure 3a shows an
excerpt of the example class diagram as developed with FUJABA and the definition
of classes shuttle, track and gate with their interfaces and associations which have
been synthesized from the component and scenario diagrams of the requirements
phase.

96 W. Schäfer

Figure 3b shows some details of the statechart of class Gate. A gate is either in state
straight or in state fork. When a shuttle arrives at a gate, it signals its desired direction
via a wantsToStraight or wantsToFork event, respectively. Depending on its current
state, the gate may have to swap its current direction first, cf. activity swapToFork.
Finally, the gate sends a goOn event to the shuttle, signaling that it may proceed.

The body of the activity swapToFork shows a collaboration diagram modeling the
swap operation. This collaboration diagram shows a cut-out of the object structure
surrounding the current gate (the this object). The crossed-out shuttle object s1 de-
fines that the gate must not operate during a shuttle crossing. If this condition holds,
the next link from this to track t2 is destroyed and a new next link from this to t1 is
created, as indicated by the the {destroyed} and {new} constraints, respectively.

Note that this notation is syntactically different from the definition of UML-
collaboration diagrams but it has been shown that this notation is just a condensed
notation and can be easily mapped to the UML syntax [11].

Figure 4 shows the Java code generated from activity the swapToFork. Note, that
JavaSDM.ensure is a small library method, throwing an exception if its argument is
false. It is used to replace chains of nested if-statements with a single try-catch block.
Note the use of association encapsulating methods for neighbor look-up and testing,
e.g. in lines 8 and 9, and for modifications, cf. 23 and 24.

Fig. 4. Java code of the swapToFork activity

 A Rigorous Software Process for the Development of Embedded Systems 97

Fig. 5. Simulation of a simple production system

Fujaba focusses on modeling graph-like object structures. It does not yet include a
graphical user-interface builder. (Integration with GUI builders is under develop-
ment.) However, Fujaba provides a generic standard user interface, called Mr. Dobs,
that shows a graphical view of graph-like objects structures and allows to call meth-
ods on objects, interactively. Fig. 5 displays a small track system with three shuttles

98 W. Schäfer

running. Note, shuttle s26 is currently blocked, since it wants to pass gate g20 straight
but gate g20 had to wait until shuttle s24 had left it and is now about to swap its
direction.

The standard graphical user-interface Mr. Dobs works fine as an initial aid for test-
ing a specification. It also allows to adapt the appearance of objects and to define
more specifically which objects should be visible and which should be hidden. In
some cases, one may use this standard user interface as starting point for the devel-
opment of the final user interface.

4 Conclusions

This paper illustrated that using (a subset of) UML as a specification language for
embedded systems is a feasible approach. It also shows, however, that “just” provid-
ing a profile for schedulability, performance and time specifications as the OMG
does, is not sufficient to fulfill the need of a verifiable consistent software design. It
also needs a rigorously defined software development process and a corresponding
formally defined set of specification documents which describe the various system
properties and functions in detail and are consistent with each other.

The software development environment FUJABA illustrating and supporting our
approach is currently extended in various directions by a developer community
around the world. It is already being used in a number of university projects at differ-
ent places, especially in teaching object-oriented concepts but also in some real-world
applications. Check the web pages for more details under the address as given above.

Acknowledgements. The work described here is joint work with a number of
colleagues and current and former students. Concerning the process definition, in
particular Albert Zündorf, Ulrich Nickel and Robert Wagner were instrumental in
developing the approach. I am also indebted to Robert Wagner for discussing former
versions of this paper with me.

References

1. Giese, H., Kindler, E., Klein, F. and Wagner, R.: Reconciling Scenario-Centered Control-
ler Design with State-Based System Models, Proceedings of the 4th Workshop on Sce-
narios and State Machines: Models, Algorithms, and Tools (in Conjunction with the Inter-
national Conference on Software Engineering), St. Louis, MO, USA/ (Yves Bontemps et
al., ed.). IEEE, (2005) 1-5, accepted.

2. Giese, H., Burmester, S.: Analysis and Synthesis for Parameterized Timed Sequence Dia-
grams. Proceedings of the 3rd International Workshop on Scenarios and State Machines:
Models, Algorithms and Tools (SCESM, ICSE 2003 Workshop W5S). Edinburgh, Scot-
land (2004)

3. Giese, H., Tichy, M., Burmester, S., Schäfer, W., Flake, S.: Towards the Compositional
Verification of Real-Time UML Designs, Proceedings of the European Software Engineer-
ing Conference (ESEC) Helsinki, Finland, ACM Press, (2003) 38-47

4. Giese, H., Burmester, S., Schäfer, W., Oberschelp, O.; Modular Design and Verification of
Component-Based Mechatronic Systems with Online-Reconfiguration, Proceedings of 12th
ACM SIGSOFT Foundations of Software Engineering 2004 (FSE 2004), Newport Beach,
USA, ACM Press, (2004)

 A Rigorous Software Process for the Development of Embedded Systems 99

5. Henzinger, T.A.: Masaccio: A Formal Model for Embedded Components, Proceedings of
the First IFIP International Conference on Theoretical Computer Science (TCS), Springer
Verlag, Lecture Notes in Computer Science, Vol. 1872, Berlin (2000) 549-563

6. Harel, D. and Gery, E.: Executable Object Modeling with Statecharts, Proceedings of the
18th International Conference on Software Engineering, Berlin, Germany (1996) 245-257

7. Jensen, H. E., Larsen, K.G., Skou, A.: Scaling up Uppaal Automatic Verification of Real-
Time Systems using Compositionality and Abstraction, Proceedings of the 6th Interna-
tional Symposium on Formal Techniques in Real-Time and Fault-Tolerant Systems
(FTRTF 2000), Pune, India, Springer Verlag, Lecture Notes in Computer Science, Vol.
1926, Berlin (2000)

8. Rensink, A.: Towards Model Checking Graph Grammars, in Leuschel, M. and Gruner, S.,
and Presti, S. L.: Technical Report DSSE—TR—2003—2. University of Southampton,
(2003) 150-160

9. Schäfer, W., Wagner, R., Gausemeier, J., Eckes, R.: An Engineer’s Workstation to support
Integrated Development of Flexible Production Control Systems. In: Ehrig, H., Damm,
W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E.: Integration of
Software Specification Techniques for Applications in Engineering, Lecture Notes in
Computer Science, Vol. 3147, Springer Verlag, Berlin, (2004), 48-68

10. Köhler, H. J., Nickel, U., Niere, J., Zündorf A.: Integrating UML Diagrams for Production
Control Systems, Proceedings of the 22nd International Conference on Software Engineer-
ing (ICSE), Limerick, Ireland, ACM Press, (2000) 241-251

11. Nickel, U., Schäfer, W., Zündorf, A.: Integrative Specification of Distrubuted Production
Control Systems for Flexible Automated Manufacturing, in DFG-Workshop: Modelle,
Werkzeuge und Infrastrukturen zur Unterstützung von Entwicklungsprozessen (M. Nagl
and B. Westfechtel, eds.), , Wiley-VCH Verlag GmbH and Co. KGaA, (2000) 179-195.

Active Models: A Possible Approach to the Integration
of Objective and Subjective Process Models

Brian Warboys

School of Computer Science, University of Manchester,
Oxford Road, Manchester, United Kingdom, M13 9PL

brian@cs.man.ac.uk

Abstract. This paper suggests that the workshop problem of managing the in-
tegration of processes based on both explicit and tacit knowledge needs to be
addressed by questioning the classical software engineering paradigm. It illus-
trates a possible approach through a short description of the recently prototyped
ArchWare system.

1 Introduction

In the announcement for the workshop, the challenges that were outlined for process
technology identified the important conflict facing us.

”The increasing pace of software system change requires more lightweight and
adaptive processes, while the increasing mission-criticality of software systems
requires more process predictability and control, as well as more explicit atten-
tion to business or mission values.”

Further it identified the problem with the modern trend towards component-driven en-
gineering as

”COTS products provide powerful capabilities, but their vendor-determined
evolution places significant constraints on software definition, development,
and evolution processes.”

The call went on to identify the integration of objective and subjective based process
technology , somehow addressing the problem of dealing with the inevitable real world
mixture of explicit and tacit knowledge, as perhaps holding the key to the solution to
this issue.

This paper not only supports this conjecture but argues that such an exploration also
offers the opportunity to exploit the endemic nature of ‘emergent’ behaviour in hu-
man endeavour as an asset to be nurtured rather than a trait to be suppressed. It argues
that software engineering has suffered, from its inception, from the curse of twentieth
century reductionism. This logico-mechanistic approach to software engineering flows
from the recognition of a problem through phases of problem analysis, system spec-
ification, implementation, installation and maintenance. The conventional ‘Waterfall’
process [1] still continues to dominate software development practices.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 100–107, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Active Models: A Possible Approach to the Integration 101

2 On Classical Software Engineering

Software Engineering emerged during the sixties as a necessity to manage the very
large software engineering projects that had arisen, in some sense, without planning.
The environment for this initiative was one on which very little or no prior research
had been conducted into the nature of the software development process. The proceed-
ings of the two landmark conferences of the late sixties [2, 3] make clear that both the
conference discussions and recommendations were derived from informal observations
of the nature of the problem. Basically large software developments were happening
everywhere, they were never really completed, were full of errors and did not meet
their requirements. Not a lot has really changed in the last forty years!

The context had really been set from the beginning of modern computing in the
proceeding twenty years and had essentially followed the classical model of numerical
computation that had characterized the early computing machines.

This is still the case, and modern development processes still in general follow a
requirements, specification, implementation series of steps. This is usually considered
adequate for systems that restrict themselves to operating in a priori environments. The
situation is made worse by the fact that much of our research focus has historically been
on methodologies which semi-automate these different classical software engineering
phases. It is surprising, given the failure of the software industry to really solve the
problems with large software systems, that no real alternative approach has emerged or
even been thoroughly researched.

3 The Need for a More Flexible Approach

Modern business systems, and in fact social systems as well, are characterized by the
need to change their processes ever more frequently. This rapid change environment
is further enforced by the fact that humans are a highly adaptive species. Although all
social systems increasingly prescribe the processes to which they wish their members
to subscribe, in practice humans are extremely well equipped to make such processes
‘work’ by small adaptation. The world functions by people ‘nearly’ following the many
processes prescribed, informed by explicit knowledge, to make organizations (and so-
cial systems) operate efficiently, by taking into account their tacit knowledge.

Further, the desire of these social systems, in general, is to get the citizen (or em-
ployee) more deeply involved in all the aspects of the running of these systems. This is
an immensely complex task and there is no doubt that a large part of the solution will
come from the application of computer systems. However, for the computer to fulfill
this role, it needs to operate in closer harmony with natural social behaviour. This im-
plies that the software can be adapted at a rate consistent with the social rate of change.
We term such a system as one supporting the notion of co-evolution.

Taking a holistic view of the system we see the social and computer system acting in
harmony with one another. The interface between the parts being the shared behaviour
of the two. Thus the social system interacts with the computer system, and vice versa,
through the interfaces provided by this shared behaviour. Clearly the processes that
provide this shared behaviour need to be determined by both systems and are crucial to

102 B. Warboys

real co-evolution. This is a characteristic which is typical of all such autopoietic systems
in that they can only understand the sensations and messages, in whatever form they are
received, that they have evolved to understand.

If we now examine, in more depth, the technical implications for such co-
evolutionary systems then we discover that the traditional ‘Waterfall’ type approach to
software development is clearly unsuitable. Traditional practice, exaggerated by quality
control pressures, encourages the view that the functionality of the system should be
defined through a top-down requirements, specification and implementation approach.
In practice we need the specification and implementation to evolve at a rate that reflects
the needs of the real world; that is somewhere where the requirements change as a result
of tacit knowledge, which include the reactions to the software system . Further such
evolution needs, potentially, to be determined by all of the members of a social system.

The process models, that are a key part of this co-evolutionary system, need to be
constructed so that change is possible at any level, and at any granularity, of the system.
This includes the management system that controls such change. Once we accept that
we cannot predict the overall behaviour of such complex systems then we need also to
accept that we cannot predict the appropriate complex management system either.

4 A Proposed Structure for Co-evolving Systems

Typically we can break the process components of our co-evolutionary system into two
sets. Those that are concerned with the production or operational aspects of running the
social system and those that are concerned with the management of these operational
processes. We shall term this latter set, the set of meta-processes which manage the
operational processes. One key aspect of this management is, of course, the change
process that allows for continuous system evolution. We can denote these two sets of
processes as a produce set (P) and an evolve set (E). Essentially P is responsible for
the operational system and E, the meta-process set, is responsible for the fitness for
purpose of this set P. Each member of these sets P and E, Pi and Ei, are then individually
responsible, respectively, for both some fragment of the operation of a social system
and also the fitness for purpose of that operation. If we wish to change an operational
process Pi then we can appeal to the responsible Ei, to manage this change.

So what properties are required to ensure that the sets of Pi and Ei pairs can meet
these obligations? Well we begin, as process modelling engineers, by describing our
computer systems as enacting models of behaviours in complex systems (rather like
simulations). However the nature of our co-evolutionary system is such that humans are
a very important component of this system. The inclusive nature of both development
(evolution) and the context for development extends this to a view that such models are
part of the complex system itself. Basically the models are the system. In particular we
note the importance of the meta-processes as a part of the system as a whole. This view-
point means that one general rule about a co-evolutionary system is that it is adaptive.
The engineer is part of this adaptive behaviour rather than, as in traditional approaches,
external to it; indeed the end-user is a valid engineer of such a system.

We term such systems, “active models” [12], since the model of the system remains
consistent with the real world system that it supports, and we shall refer to the processes

Active Models: A Possible Approach to the Integration 103

comprising such a system as behaviour. In order to produce such an active system, we
have previously noted [13] that it should possess at least the following properties:

• Dynamic:
– The topology of the components and their interactions are determined dynam-

ically
– New components and interactions may be created during execution

• Updatable:
– The components may be replaced dynamically
– Whereas dynamic evolution is additive, update evolution may be regarded as

subtractive and then additive (atomically)
• Decomposable:

– The running system may be (partially) stopped and split into its constituent
components and interactions

• Reflective:
– the specification of the components and interactions may be evolved during

their execution

These capabilities allow the system to be developed in an extremely flexible way. How-
ever, a highly undesirable characteristic of such a system is that it also allows the simple
development of nonsense systems. In order to bring order to this chaotic environment
we need to introduce the notion of meta-behaviours, that is behaviours that manage and
constrain the possible behaviours that might be evolved. An important property of these
meta-behaviours is that they must, of course, still exist within this active co-evolving
process system. This means that the vital meta-behaviours are also behaviours and, as
such, subject to the same requirements for co-evolution.

In active architectures, in order to ensure continuing compliance to the needs of the
supported social system, the specification of the architectural model needs to change
in lock-step with the model execution. Thus changes during execution will change the
specification and changes to the specification will affect the execution. At any time in
the execution of the model the specification is kept dynamically up-to-date.

So, fundamentally the specification is in the computational model. However, with-
out some special efforts, all changes are still of an a priori nature and thus must be
pre-programmed into the process definitions. For co-evolution we require a single com-
putational model that can also accept change stimulus from outside and hence deal with
emergent change.

Consideration of the properties that such a system requires, leads naturally to the
definition of a style of specification development that is naturally supportive of an evo-
lutionary software paradigm. Clearly evolution can be thought of as a form of refine-
ment, however the need to deal with emergent behaviour means that this refinement is
not smooth and is thus akin to the notion of retrenchment [14]. In retrenchment we are
seeking to deal with such ragged refinement.

To summarize the nature of the development process is one of starting with an ab-
stract definition of some system and then gradually adding and changing detail to sup-
port the emergent properties of the active system. In this process we start by outlining
the architectural properties that fix the immutable features of our active system. This is
classically the role of an architecture definition language and indeed it is appropriate to

104 B. Warboys

term our active system process modelling notation, an architecture definition language.
The required properties of architecture definition and those of process model specifi-
cation appear, to me at least, to be the same. We are in both cases defining a set of
behaviours and their possible interconnections.

5 An Example Implementation

Our latest approach to implementing a process modelling notation is termed the Arch-
Ware Architecture Definition Language (ADL). Our goal was to provide a unified,
software architecture-based framework for the development and maintenance of active
process systems. Support for this framework requires the following:

• an architecture description language (ADL) supporting architecture specifications
which capture both the structure and the behaviour of components and interactions
so that observations and changes may be made within a single framework.

• specification of constraints mechanisms for feedback and change, thus supporting
the notion of emergent bahaviour.

• support for integrating commercial off-the-shelf (COTS) components into active
systems to address the problem of relaxing the constraints imposed by vender-
determined rather than user-determined evolution.

• a structuring methodology designed for change which maintains the integrity of
this potentially chaotic environment.

ArchWare ADL [4] is the architecture description language used by the framework
and exploited here as a process modelling language. It is a strongly-typed executable
architecture description language based on higher-order polyadic π-calculus [5] and
was developed as part of the ArchWare project [6]. The language and its support for
constraints [7], feedback [8], change [9] and integration of COTS components [10] have
been described elsewhere. [13] also enumerated that the following kinds of change are
supported by the ADL:

• replacement
• static and dynamic generation of new components
• dynamic evolution (decomposition, reification, reflection, recomposition)

Components are modelled by behaviours (analogous to processes in π-calculus) in the
ArchWare ADL. They communicate via connections (channels in π-calculus) using
send and receive actions. Behaviours can be composed together to form a system and the
compose operator creates a single handle to these executing behaviours. Abstractions
abstract over behaviours in the same way as functions abstract over expressions. Muta-
bility is explicitly modelled by locations and replacement of statically defined compo-
nents is supported by simply assigning a new component to a location containing the
old one. In this paper we are concerned with a more general form of adaptation, where
part of a system has to be (partially) disassembled, changed and put back together to
create an evolved system while the unaffected part still executes. This is in the nature
of co-evolving systems. This change requires support for

Active Models: A Possible Approach to the Integration 105

• decomposition,
• reification,
• reflection
• recomposition.

Decomposition [11] takes (part of) an executing system, breaks it up into its con-
stituent components and returns them in a partially suspended state. The ADL supports
a decompose operator which takes a composite component and returns a sequence of
its constituent components (behaviours).

Reification allows introspection of a component so that its specification can be used
as the basis for any change. The specification of a component is always available in-
cluding during execution and after decomposition via the ArchWare ADL hyper-code
system [19]. The specification of a component can be edited using the hyper-code sys-
tem to produce an evolved specification. Using hyperlinks to denote existing values
allows for the preservation of shared data through this evolution.

Reflection allows new or evolved components to be bound back into an executing
system. The evolved specification is brought into the execution domain by dynamic
compilation. A callable compiler is provided as a built-in function in the ADL to im-
plement reflection.

Recomposition, using the compose operator of ADL, takes the evolved set of com-
ponents and composes them together to form a new system.

If we now look at the most abstract specification of such a system then it consists
of a null produce process PNULL and some evolve process E0. Recall that any produce
process is some purposeful operational process, and any evolve process is responsible
for ensuring that this operational process is fit for purpose. The evolve process E0 must
be capable of handing emergent behaviour. In its most abstract state this emergent be-
haviour takes the form of direct user input of ADL text through an editor supporting
the ADL hyper-code system. This system can then just evolve into the active system we
require. Significantly, this entire process of evolution, that has been created, can remain
as part of the final system and thus we may evolve the system at any level. The hyper-
code environment gives us the capability of doing this at any level of code granularity,
in the sense that any primitive ADL construct may be manipulated.

6 Conclusions

So how does this active approach help to address the issue of explicit and tacit knowl-
edge derived process integration identified in the call for this workshop? The main
contribution lies in outlining an approach aimed at simply removing the distinction; to
argue that a process model should be seen as an abstract definition of a co-evolvable
system. This process model sets the boundaries on the style of the various behaviours,
based on either explicit or tacit knowledge, that populate this system. These behaviours
should then be seen as the set of the refinements of this abstract definition, produced by
a process of continuous evolution of the initial specification. Explicit knowledge behav-
iours usually being added by the process engineer and tacit knowledge usually driving
the end-user evolutions of these, but not necessarily.

106 B. Warboys

What this paper suggests is that we need to not only address the contexts for so called
macroprocess and microprocess definitions in order to integrate them, but also address
the underlying software engineering paradigm that currently constrains system design-
ers to seek to suppress emergent behaviour. It argues that emergent behaviour is an
inevitable property of future, and indeed current, systems and that therefore emergent
behaviour is a characteristic to be exploited rather than suppressed. The short exam-
ple demonstrates a possible and, to date, promising approach to such a system. [10]
also suggests that this active system approach can also be used to reduce many of the
constraints placed on process systems by COTS products. It argues that by embedding
COTS products into an active system, the end-user can achieve greater control over
remaining compliant to the changing requirements of the target social system.

Acknowledgements

Some of the work presented in this paper has been supported by the EC grant IST-
2001-32360 (the ArchWare project). My thanks to fellow partners of the project for
useful discussions relevant to the work described. Special thanks go to Ron Morrison
and his research team at the University of St Andrews and to my team at the IPG in
Manchester for the many years of highly productive collaboration in this field.

References

[1] Royce, W.W. ”Managing the development of large software systems:concepts and tech-
niques.” Procs IEEE WESTCON, Los Angeles, CA (1970)

[2] Naur, P. and Randell, B.”Software Engineering” Report of NATO conference, Garmisch,
Germany (1968)

[3] Buxton, J.N. and Randell, B. ”Software Engineering Techniques” Report of NATO confer-
ence, Rome, Italy (1969)

[4] Balasubramaniam, D, Morrison, R, Kirby, GNC, Mickan, K, Norcross, S. ArchWare ADL
- A User Reference Manual. 2004. ArchWare Project Report.

[5] Milner, R. Communicating and Mobile Systems: The Pi- Calculus. 1999: Cambridge Uni-
versity Press.

[6] Oquendo, F, Warboys, BC, Morrison, R, Dindeleux, R, Gallo, F, Occhipinti, C. ArchWare:
Architecting Evolvable Software. In: Proc. First European Workshop on Software Archi-
tecture (EWSA’04). 2004. St Andrews, UK. Springer-Verlag. pp 257-271.

[7] Cimpan, S, Oquendo, F, Balasubramaniam, D, Kirby, GNC, Morrison, R. ArchWare
ADL:Definition of Textual Concrete Syntax. 2002. ArchWare Project Report.

[8] Balasubramaniam, D, Morrison, R, Mickan, K, Kirby, GNC, Warboys, BC, Robertson, I,
Snowdon, R, Greenwood, RM, Seet, W. Support for Feedback and Change in Self adaptive
Systems. In: Proc. ACM SIGSOFT Workshop on Self-managed Systems (WOSS04). 2004.
Newport Beach, CA, USA. ACM.

[9] Morrison, R, Kirby, GNC, Balasubramaniam, D, Mickan, K, Oquendo, F, Cimpan, S, War-
boys, BC, Greenwood, RM. Support for Evolving Active Architectures in the ArchWare
ADL. In: Proc.4th Working IEEE/IFIP Conference on Software Architecture (WICSA
2004).

Active Models: A Possible Approach to the Integration 107

[10] Warboys, BW, Snowdon, R, Greenwood, RM, Seet, W, Robertson, I, Morrison, R, Bal-
asubramaniam, D, Kirby, GNC, Mickan, K. An Active Architecture Approach to COTS
Integration. To be published in: IEEE Software Special Issue on Incorporating COTS into
the Development Process 2005

[11] Warboys, BC, Balasubramaniam, D, Greenwood, RM, Kirby, GNC, Mayes, K, Morrison,
R, Munro, DS. Collaboration and Composition: Issues for a Second Generation Process
Language. In: Proc. 7th European Software Engineering Conference (ESEC’99). 1999.
Toulouse, France. Springer-Verlag. pp 75-91.

[12] Greenwood, R.M., Robertson, I., Snowdon, R.A., and Warboys, B.C. Active Models in
Business. In: Procs 5th Annual Conference on Business Information Technology (BIT’95).
Manchester. 1995.

[13] Balasubramaniam, D, Morrison, R, Mickan, K, Kirby, GNC, Warboys, BC, Robertson,
I, Snowdon, R, Greenwood, RM, Seet, W. A Software Architecture for Structuring Auto-
nomic Systems. To be published in: Procs ICSE 2005 Workshop on the design and evolution
of Autonomic Application Software (DEAS 2005)

[14] Banach R., Poppleton M. (1998); Retrenchment: An Engineering Variation on Refinement.
in: Proc. B-98, Bert (ed.), LNCS 1393, 129-147, Springer Verlag

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 108 – 121, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Value-Based Process for Achieving
Software Dependability

Liguo Huang

Computer Science Department, University of Southern California,
Los Angeles, CA 90089-0781, USA

liguohua@usc.edu

Abstract. Since different systems have different success-critical stakeholders,
and these stakeholders depend on the system in different ways, using traditional
one-size-fits-all dependability metrics to drive the system and software devel-
opment process is likely to lead to delivered systems that are unsatisfactory to
some stakeholders. This paper proposes a Value-Based Software Dependability
Achievement (VBSDA) process generated from the WinWin Spiral Model’s
risk-driven approach coupled with a set of value-based dependability analysis
frameworks, methods, and models for reasoning about software and system de-
pendability. It helps project success-critical stakeholders define, negotiate and
develop mission-specific combinations of dependability attributes. The
NASA/USC Inspector SCRover (ISCR) project is used as a case study to elabo-
rate the process.

1 Introduction

The key objectives of the NASA High Dependability Computing Program (HDCP)
are to develop NASA mission-relevant definitions of system and software dependabil-
ity metrics, to use the metrics to drive development processes, and to evaluate the
contributions of existing and new computing technologies to the improvement of an
information-intensive system’s dependability. Such evaluations require one or more
evaluation criteria or metrics that enable quantitative comparisons of candidate tech-
nology solutions to be performed. Ideally, one would like to have a single dependabil-
ity metric by which the development process could be driven, and by which the con-
tributions of each technology could be ranked. However, in practice, such a one-size-
fits-all metric is unachievable. Different systems have different success-critical stake-
holders, and these stakeholders depend on the system in different ways [1].

This paper proposes a Value-Based Software Dependability Achievement
(VBSDA) process generated from the WinWin Spiral Model’s risk-driven approach
coupled with a set of value-based dependability analysis frameworks, methods, and
models for reasoning about software and system dependability. It helps project suc-
cess-critical stakeholders define, negotiate and develop mission-specific combinations
of dependability attributes. The NASA/USC Inspector SCRover (ISCR) project [2] is
used as a case study to elaborate the process.

 A Value-Based Process for Achieving Software Dependability 109

1.1 Case Study: NASA/USC Inspector SCRover (ISCR) Project

The ISCR system was developed to serve as a distributable HDCP testbed for evaluat-
ing current and emerging dependability-enhancing technologies. It involved obtaining
requirements from the USC Department of Public Safety (DPS) for an autonomous
robot that could investigate the possible presence of hazardous materials in an envi-
ronment unfit or dangerous for human intervention. Such an environment could be
caused due to an earthquake or a failed chemical/biological experiment in a chemis-
try/biological laboratory. It would have several risks, such as loss of human health or
life due to failure to identify a dangerous target with chemical leak or radiation, and
the damage of robot itself.

Here are the top-level requirements that were determined for the ISCR system. The
robot shall be able to autonomously maneuver around in the area designated by the
robot operator and identify the potentially hazardous targets. The robot shall simulta-
neously return pictures taken by the camera mounted on the robot and the available
sensor information to the designated host computer. Additionally, the robot shall
maintain enough power so that it can return back to the initial designated location.

The development of the SCRover was planned in 3 increments. The case study is
based on the increment 3 of the project which covers most of the important mission
scenarios.

2 Related Work

The International Federation for Information Processing Working Group WG 10.4 on
Dependability Computing and Fault Tolerance (IFIP/WG 10.4) defines dependability as
“the trustworthiness of a computing system which allows reliance to be justifiably
placed on the service it delivers” [13]. IFIP/WG 10.4 also mentions that, in different
circumstances, the focus will be on different properties of services such as continuity,
performance, real-time response, etc. Therefore, dependability is not a single aspect of a
computing system but a combination of various aspects of stakeholders’ interests such
as availability, reliability, safety, confidentiality, integrity, maintainability and so on.

Because different stakeholders depend on different system capabilities in different
situations, dependability is necessarily a multi-attribute construct with situation-
dependent attribute values. At the Economics-Driven Software Engineering Research
(EDSER) workshops (www.edser.org) and elsewhere [14, 15], researchers have de-
veloped general frameworks for making software engineering decisions that enhance
the value of delivered software systems. Some contributions that explicitly address
dependability aspects include

• Carnegie Mellon University’s work on value-based security investment analy-
sis [16], warranty models for software [17], and value-based software fault de-
tection [18]

• The University of Virginia’s application of real-options theory to the value of
modularity [19] and application of utility-theory and stochastic control ap-
proaches to reliable delivery of computational services [20]

110 L. Huang

• University of Maryland’s work on modeling dependability for a diverse set of
stakeholders [21]

3 Value-Based Software Dependability Achievement Process

Scenario-based stakeholder/value dependency analysis and risk-driven concurrent
engineering are two critical factors emphasized in our VBSDA process. In order to
avoid using one-size-fits-all metrics to measure the achievement of software depend-
ability, we use a scenario-based approach to identify stakeholders’ value propositions
with respect to dependability (D-) attributes and to help stakeholders define the de-
tailed D-attribute requirements in different scenarios. This approach also helps to
identify and resolve their value conflicts on D-attributes and to perform tradeoff
analyses in order to engineer the stakeholder WinWin-balanced D-attribute require-
ments. Further the scenario-based approach enables us to use real earned value to
monitor and control the progress toward achieving the D-attribute requirements. Fi-
nally, the VBSDA process generated from the WinWin Spiral Model provides a
workable framework for dealing with risk-driven concurrency.

This section discusses the major steps in the VBSDA process and identifies other
sources of methods and tools for elaborating each step. The most complete source is
the “Guidelines for Model-Based (System) Architecting and Software Engineering
(MBASE)” [3] at http://cse.usc.edu/research/MBASE. Shorter summaries are [4] and
[12]. The top-level process steps are listed as following:

1. Identify top-level mission objectives and stages
 – including dependability objectives
2. Develop results chain and identify success-critical stakeholders and their top-

level value propositions
3. Stakeholders negotiate mutually satisfactory (Win-Win) dependability (and

other) goals and relevant mission scenarios
4. Concurrently engineer top-level D-attribute and other requirements and solu-

tion tradeoff spaces
5. Identify top-level risks, execute risk-mitigation spirals
6. Develop initial Feasibility Rationale; hold Life Cycle Objective Review

– Pass: go to 7. Fail: go to 5.
7. Concurrently engineer detailed D-attribute and other requirements and solu-

tions; resolve risks
8. Develop detailed Feasibility Rationale; hold Life Cycle Architecture Review

– Pass: go to 9. Fail: go to 7.
9. Construct, test, and deploy system

– Use the mission scenarios and D-attribute requirement levels as progress
 metrics and test cases

– Monitor progress and change requests; perform corrective actions

3.1 Identify Top-Level Mission Objectives and Stages

The top-level objectives and stages for the Inspector SCRover were summarized in
Section 1.1.

 A Value-Based Process for Achieving Software Dependability 111

3.2 Develop Results Chain and Identify Success-Critical Stakeholders

The Results Chain technique, developed by the DMR Consulting Group [5] is a way
to identify missing initiatives and success-critical stakeholders in a system develop-
ment project. It involves initially defining the project’s Initiatives (rectangles), Con-
tributions (arrows), Outcomes (circles, ovals), and Assumptions (hexagons) for its
nominal-case operation. It then involves identifying risks and vulnerabilities that may
go wrong with the initial Results Chain, and establishing additional Initiatives, Con-
tributions, and Outcomes to avoid or resolve them.

Fig. 1 shows the dependability-elaborated Results Chain for developing the Initial
Operational Capabilities (IOC) of the ISCR increment 3 operational scenarios. We
have omitted the Assumptions for simplicity, but added the identification of success-
critical stakeholders in parallelograms. Note that the text in italic shows the original
simple initial Results Chain for the project developing the Initial Operational Capa-
bility (IOC) of the ISCR increment 3 information processing (IP) and operational
capabilities without the dependability considerations. The full Results Chain identi-
fies additional success-critical Initiatives, such as prevention and avoidance of ISCR
risks and vulnerabilities (R&Vs), training operator and maintainers. Besides the
Acquirers and Developers identified in the simple initial Results Chain, the addi-
tional dependability initiatives identify success-critical stakeholder class (Depend-
ability Experts), and also the employment of additional dependability-enhancing
tools and techniques such as verification and validation (V&V). Other success-
critical stakeholders are also identified whose inputs are needed for the risk and
vulnerability analysis: ISCR System Dependents (i.e. USC Lab Faculty, Students
and Staff), Operators and Maintainers.

3.3 Stakeholders Negotiate Dependability Goals and Relevant Mission
Scenarios

Table 1 identifies a matrix of the primary ISCR success-critical stakeholders as rows
and their prioritized goals with respect to the ISCR system development, operation,
and evolution as columns. The specific columns represent the primary categories of
system requirements to be negotiated by the stakeholders.

Project goals and requirements include desired constraints on the system and pro-
ject such as choices of programming language, infrastructure packages, and comput-
ing platforms; development and operational standards; and constraints on budgets,
schedules, and other scarce resources as listed in Table 2. Capability goals include the
functions the SCRover should perform. Interface goals include message formatting
and content, and interaction protocols with other interoperating systems. Level of
Service goals include the dependability attributes, except for cost and schedule (cov-
ered under Project goals) and interoperability (covered under Interface goals). Evolu-
tion goals include downstream goals that the initial system architecture should sup-
port, such as deferred capabilities or scalability to accommodate workload growth.

Instead of using one number to define the ISCR system availability goal, we distin-
guished three classes of mission scenarios. As shown in Table 3, the ISCR system

112 L. Huang

Acquirers,
Developers

Develop ,
V&V, Test

Initial ISCR IP

Dependable,
Evolvable

ISCR IP Initial
Operational
Capabilities

Dependable
ISCR IP

Deliverables

Operate,
Maintain
ISCR IP

IOC

Minimize Risks
to human life

Identify
ISCR IP Risks,
Vulnerabilities

R&V's

System
Dependents

(Faculty, Students,
Staff), ISCR
Operators,
Maintainers

Dependability
Experts

Train
Operators,
Maintainers

Trained O&M'ers

Operators,
Maintainers

R&V
Avoidance

Best Practices

Assess Best
Practices for

R&V Avoidance

Fig. 1. Dependability-Elaborated Results Chain for ISCR Increment 3

Table 1. Inspector SCRover (ISCR) Stakeholder/Goal Matrix (Priorities: High, Medium, Low)

 Goals
Stakeholders Project Capability Interface Level of Service Evolu-

tion
ISCR System Dependents (USC
lab faculty, students, staff, etc.)

ISCR Operators
ISCR Acquirers (USC DPS)
ISCR Developers, Maintainers
(USC CSE)

Table 2. Inspector SCRover (ISCR) Stakeholder/Goal Matrix (Priorities: High, Medium, Low)

Goals

Stakeholders
 Project Goals Priority

Develop an autonomous mobile robot that shall help the USC DPS perform its
goals of investigating hazardous agents in the USC labs. H

ISCR System Depend-
ents (USC lab faculty,
students, staff, etc.),
Operators

Post-Mission data analysis M

ISCR Acquirers (USC
DPS)

Acquire the Core Initial Operational Capabilities (IOC) within budget and
schedule

H

Develop IOC within $200K and 9 months H ISCR Developers,
Maintainers (USC CSE) Use MDS (Mission Data System) Framework H

Table 3. Inspector SCRover (ISCR) Stakeholder/Goal Matrix II: ISCR System Depend-
ents/Operators Goals and Priorities (High, Medium, Low)

 Stakeholders
Goals ISCR System Dependents/Operators

Project …
Capability …
Interface …
Level of Service H: Availability >= 0.9998 for ISCR mission critical scenarios

H: Availability >= 0.993 for ISCR on-line operational scenarios
M: Availability >= 0.807 for ISCR post-mission data analysis scenarios
H: Accuracy of Target Sensing >= 99%
…

Evolution …

Table 3

Table 2

 A Value-Based Process for Achieving Software Dependability 113

dependents’ and operators’ goals for system availability are 0.9998 for mission-
critical scenarios, 0.993 for on-line operational scenarios, and 0.807 for post-mission
data analysis scenarios. Such numbers are traditionally difficult to determine. We will
show how the Information Dependability Attribute Value Estimator (iDAVE) [6]
helps determine them.

iDAVE Analysis of ISCR Availability Goals. Multiple stakeholder negotiation of
ISCR system goals involves a mix of collaborative win-win option exploration with
prototyping and analysis of candidate options. Here, the iDAVE model can be used
to help the stakeholders determine how much availability is enough for the three
primary classes of ISCR scenarios. Table 4 shows the key availability-related pa-
rameters for the software related to the three classes of ISCR scenarios; the size in
thousands of source lines of code (KSLOC), the cost per line of code and total cost
independent of investments in software reliability, and the dollar mission value of
risk if the class of the scenarios fails. For example, there is 15 KSLOC of software
for mission-critical scenarios: Target Sensing and Target Rendezvous. Its cost per
instruction of a Nominal COCOMO II Required Reliability level is $6.24/LOC (at
graduate-student labor rates), leading to a nominal cost of $93.6K. A failure in the
mission-critical software is likely to cause complete contamination and replacement
of the robot and the lab, with an impact equal to the $2.5M of an entire lab. A failure
and loss of availability of the on-line operational ISCR scenario (i.e., display con-
tinuous video images and sensor data to operator) would require repair and rerun of
the mission, possibly losing $200K of lab equipments. A failure of post-mission data
analysis would require debugging, fixing, and regression testing the software, typi-
cally costing about $14K.

Table 5 summarizes an iDAVE analysis of the return on investment involved in in-
creasing the reliability level from Nominal to High; High to Very High; and Very
High to Extra High. As determined from the calibrated parameters in the COCOMO
II [22], and COQUALMO [23] models on which iDAVE is based [6], increasing the
reliability level of the ISCR On-Line Operational software from Nominal to High
involves an additional $45K(0.10) = $4.5K investment. It results in an increase in
MTBF from 300 to 10,000 hours, which at an experienced-based Mean Time To Re-
pair (MTTR) of 72 hours results in an increase in availability from .807 to .993. Using
a linear relation between fraction of downtime and fraction of lost value as in [24],
this 0.186 increase applied to the $200K risk impact of the On-Line Operational sce-
nario results in an added benefit of $200K (0.186) = $37.2K, and a resulting ROI =
(37.2-4)/4 = 7.29. However, an additional $45K (0.16) = $7.19K investment to take
the software from High to Very High only gains in a ($200K)(.9998-.993)=$1.38K
benefit, for a negative ROI of -0.81.

Table 4. Size, Cost, and Risk Impact of Three Classes of SCRover Scenarios

Nominal Classes of Scenarios
Size

(KSLOC)
$/LOC $K

Risk Impact
($K)

Mission-Critical 15 6.24 93.6 2500
Online-Operational 8 5.62 45 200
Post-Mission Data Analysis 6 4.48 26.9 14

114 L. Huang

Table 5. iDAVE Analysis of ISCR Availability Goals for Three Classes of Scenarios

COCOMO RELY Level Nom High Very High Extra High

MTBF(hrs) 300 10,000 300,000 1,000,000
Availability (MTTR=72hrs) .807 .993 .9998 .99993
Incremental Availability .186 .0069 .00001
Incremental Cost 0.10 0.15 0.24
Mission-Critical

Incr. Cost @ $93.6K $9.36K $14.55K $16.84K
Incr. Benefit @ $2.5M $466K $17.27K $.42K
ROI = (B-C)/C +48.8 +0.15 -0.98

Online-Operational
Incr. Cost @ $45K $4.5K $7.19K
Incr. Benefit @ $200K $37.28K $1.38M
ROI = (B-C)/C +7.29 -0.81

Post-Mission Data Analysis
Incr. Cost @ $26.9K $2.69K $4.3K
Incr. Benefit @ $14K $2.61K $100
ROI = (B-C)/C -0.03 -.0.98

This and the ROI results for the other two classes of ISCR scenarios calculated in
Table 5 are summarized in Fig. 2. The incremental cost of achieving the higher avail-
ability levels still keeps the total cost below $200K. From a pure calculated ROI
standpoint, one could achieve some potential savings by interpolating to find the
availability-requirement levels at which the ROI goes from positive to negative, but it
is best to be conservative in a safety-related situation. Or one can identify desired and
acceptable availability levels to create a tradeoff space for balancing availability with
other dependability attributes.

3.4 Concurrently Engineer Top-Level D-Attribute and Other Requirements
and Solution Tradeoff Spaces; Identify Top-Level Risks and Execute Risk-
Mitigation Spirals

Step 4 and 5 are often coupled with each other during the software development proc-
ess. In this section, we propose a scenario-based approach to identify stakeholders’
value propositions on dependability attributes and help stakeholders define the de-
tailed D-attribute requirements in different scenarios. The approach also helps identify
and resolve value conflicts on dependability attributes and to perform tradeoff analy-
sis on dependability attributes in order to engineer stakeholder WinWin-balanced
dependability attribute requirements. Fig. 3 shows the process elements for stake-
holders to engineer top-level dependability attribute requirements, identify depend-
ability risks and select the most cost-effective dependability technology combination
to mitigate risks for different scenarios. The entry criteria of the D-attribute require-
ment engineering and risk mitigation process are shown in the box in the top-left
corner of Fig. 3.

E1. Identify dependability (D) attributes
This is the entry of the process where the top-level dependability attributes for the
whole project are established. The results obtained from Step 1 and 3 in the VBSDA
process are usually used as the inputs of this step.

 A Value-Based Process for Achieving Software Dependability 115

 48.8 7.29

-1

0

1

ROI

-.81

.15

-.98

Post-Mission
Data Analysis

Mission
Critical

RELY Increase
Cost Increase
Availability

ROI

.98

RELY Increase Nom → H
0.10

 0.993

H → VH
0.15

 0.9998

VH → XH
0.24

 0.99993

-.03

On-Line
Operational

Fig. 2. Summary of iDAVE Analysis of ISCR Availability Goals

Fig. 3. A Scenario-Based Approach to Engineer Dependability Requirements and Risk Mitiga-
tion Plans

The top-level dependability attributes for the ISCR project are availability, accu-
racy, performance, usability, cost and schedule.

E2. Establish system operational profile scenarios and prioritize scenarios
The scenarios can be defined as mission sequences, environmental inputs or D-
objective threats and their frequencies. A scenario is used to describe a proposed use

E1. Identify
dependability (D)
attributes

E3. Map D-attributes into
scenarios and determine
metrics, stakeholder/value
dependecies and value
estimating relationships
(VER's) for D-attributes of
each scenario

E2. Establish system
operational profile
scenarios and
prioritize scenarios

E4. For each scenario,
stakeholders define
their acceptable and
desired values for
concerned D-attributes

E5. For each scenario,
identify the risks of not
achieving the acceptable
values of D-attributes

E6. For each scenario,
identify D-technologies to
mitigate the D-risks

E9. Stakeholders negotiate WinWin balanced D-
attribute requirements and redefine the
acceptable and desired values for conflicting D-
attributes

E7. D-technology
evaluation

E8. Identify conflicting D-
attributes and perform
tradeoff analysis

Entry Criteria:
1) Project top-level mission objectives and stages are
identified.
2) Project Results Chain is developed and success-critical
stakeholders are identified.
3) Stakeholders' top-level value propositions are established.
4) Project top-level dependability goals are identified by
stakeholders.

116 L. Huang

case of the system and/or an interaction of one of the stakeholders with the system
[7]. Scenarios provide a vehicle for converting vague dependability attrib-
utes/requirements into concrete use cases of a system and make dependability attrib-
ute/requirements measurable and testable. The top-level scenarios of a software sys-
tem can be established from its use case description (e.g., MBASE Operational Con-
cept [3] use case description). A complex scenario can be decomposed into several
component scenarios if it’s necessary for testing purposes. On the other hand, several
component scenarios can be composed into a high-level scenario for analysis or test-
ing purposes. We provide a framework with three factors to be associated with each
scenario Si, which will be directly leveraged in our scenario-based approach:

• Value (v). The value loss (can be measured either in dollars or in utility) if a
scenario execution fails. It indicates the impact of a scenario on the total mission
value.

• Probability of occurrence (p). The probability that a scenario occurs in a spe-
cific mission mode. When several scenarios have the comparable value impact on
the entire mission, a scenario that is more frequently executed affects the system
dependability more extensively, than if it were less. In a given mission mode,

= 1ip . The operational profile of a mission mode can then be established

based on the scenario probability distribution.
• Dependability attribute metrics (m). All scenarios are mapped into dependabil-

ity attributes based on their relevance, as we have shown for availability in sec-
tion 3.3.

Scenarios can then be prioritized based on their value (v) and probability of occur-
rence (p).

The operational scenarios of the ISCR initial operational capability (IOC) identi-
fied by the stakeholders are shown in the Table 6. The lower-priority scenarios can be
added in post-IOC increments.

E3. Map D-attributes into scenarios and determine metrics, stakeholder/value de-
pendencies and value estimating relationships (VER’s) for D-attributes of each sce-
nario
The D-attributes are mapped into each scenario based on their relevance. The metric
for a D-attribute may be different in different scenarios. For instance, Performance
can be measured in response time (s) or in storage space (MB) in different scenarios.

To understand the nature of the software system dependability, we have to identify
the major classes of success-critical project stakeholders, and to characterize the rela-
tive strengths of their dependencies on various attributes of each scenario of the soft-
ware system [1]. Table 7 shows the top-level direct stakeholder/value dependencies
on the D-attributes in the Target Sensing scenario. Acquirers, developers, and main-
tainers are not directly concerned with availability and accuracy, but become con-
cerned with them when their operational stakeholders are.

If needed, the value estimating relationships (VER’s) of each D-attribute can be
also established based on the impact of the D-attribute on a particular scenario. Note
that the VER’s for a D-attribute may also be different in different scenarios since the
same D-attribute’s impact on different scenarios may be different.

 A Value-Based Process for Achieving Software Dependability 117

Table 6. ISCR Increment 3 Operational Profile Scenarios

Scenarios Component Scenarios Priority
Target sensing H

Trajectory planning
Localization Target rendezvous
Obstacle avoidance

H

Return target state info state variable to operator Display environment state information to
operator Return terrain state variable to operator

H

Return camera state variable to operator
Return range finder health state variable to operator
Return wheel motor health state variable to operator

Display sensor and actuator health state infor-
mation to operator

Return battery state of charge to operator

H

Display continuous camera video images to
operator

 M

Post-mission data analysis L
Goal conflict identification and resolution L

Table 7. Target Sensing Scenario: Top-level Stakeholder/Value Dependencies on D-attributes
(** Critical, * Significant, () Insignificant or indirect)

 Stakeholders
D-attributes

System
Dependents Operators Acquirers Developers Maintainers

Availability * ** *
Accuracy **
Cost ** *
Schedule ** **
Evovability **

E4. For each scenario, stakeholders define their acceptable and desired values for
concerned D-attributes
The results of the iDAVE ROI analysis for three ISCR scenario classes discussed in
section 3.3 can be used as guidance for stakeholders to define their expected and de-
sired levels for D-attributes based on the priority of a particular scenario and their
value dependencies on the scenario-related D-attributes.

E5. For each scenario, identify the risks of not achieving the acceptable values of D-
attributes
E6. For each scenario, identify the D-technologies to mitigate the risks
E7. D-technologies evaluation
Scenario-based Fault Tree Analysis (FTA) [8], Failure Modes and Effects Analysis
[8] and Dependability Cases [9] are three useful techniques to trace scenario failures
to the potential risks causing them.

Risks are quantitatively linked to the D-attributes of each scenario. For each pair of
risk and D-attribute in each scenario, stakeholders provide an estimate (expert judge-
ment) of the potential impact of the risk in the scenario. We define the “impact” as the
proportion of the scenario value that would be lost were that risk occur. The probability
of occurrence of each risk is also estimated. D-technologies are quantitatively linked to
risks. For each pair of risk and D-technology in each scenario, we provide an estimate
(expert judgement) of the mitigation of the risk in the scenario. We define the “mitiga-
tion” as the proportion by which the risk would be reduced were that D-technology to be
applied. At the same time, the cost/effort of applying a particular D-technology should
also be recorded. Tools such as the JPL Defect Detection and Prevention (DDP) model
[25] can be used for such analysis.

118 L. Huang

In addition, the parameters used in the iDAVE analyses may be based on incom-
pletely-validated assumptions such as the scalability of a model-checking tool. This is
also identified as a risk, and a risk-mitigation plan to validate the scalability of the
model-checking tool is developed and executed. The next step is to look for conflict-
ing combinations of D-attributes.

E8. Identify conflicting D-attributes and perform tradeoff analysis
E9. Stakeholders negotiate WinWin balanced D-attribute requirements and redefine
the acceptable and desired values for conflicting D-attributes
If the existing technologies can’t satisfy the acceptable values of all the D-attributes,
or if the estimated cost/schedule to satisfy all the D-attribute requirements is too high,
then the tradeoff function between the conflicting D-attributes will need to be con-
structed and the tradeoff analysis will be performed in conjunction with additional
stakeholder negotiation. Multi-attribute preference analyses [10] and stakeholder win-
win negotiation support tools [26] are useful techniques to help stakeholders perform
such negotiations based on the stakeholders’ value propositions. Note that the con-
flicting D-attribute tradeoff analysis can be performed concurrently with the D-
technology evaluation.

3.5 Develop Initial Feasibility Rationale; Hold Life Cycle Objective Review

The initial Feasibility Rationale Description (FRD) [3] furnishes the rationale for the
product being able to satisfy the stakeholders’ system requirements and specifications.
The initial FRD in LCO stage includes an initial business case analysis (i.e., cost,
benefits and ROI analysis) based on the Results Chain.

Then a Life Cycle Objective (LCO) Review is to be held with the participation of
all the project key stakeholders, and independent experts (these were NASA Jet Pro-
pulsion Laboratory (JPL) planetary mission software experts for ISCR). This indicates
a milestone of the LCO phase in the WinWin Spiral Model. The exit criteria of LCO
Review are to provide at least one feasible architecture to satisfy the requirements,
and to provide proofs of requirement satisfaction including the dependability re-
quirements.

The initial risk analysis should identify all the major risks and propose an initial
risk mitigation plan. Risks without mitigation in LCO stage have to be resolved in
Life Cycle Architecture (LCA) stage.

The result of LCO ARB was to Pass and go to Step 7. However, a risk was identi-
fied that the tool evaluation needs for the HDCP tool researchers had been incom-
pletely defined for ISCR.

3.6 Concurrently Engineer Detailed D-Attribute and Other Requirements and
Solutions; Resolve Risks

Thus, the major new activity in Step 7 involved surveying HDCP interventionists for
additional evaluation needs. The primary emerging need identified was for a three-
dimensional graphic uses interface (3D GUI).

Originally, developers planned to use Player/Stage as the robot simulator platform.
Because of the 3D GUI requirement, we had to reevaluate the existing technologies or
identify new technologies to cover this D-risk. In this case, since Stage doesn’t

 A Value-Based Process for Achieving Software Dependability 119

support a 3D GUI, the developers had to find a replacement. After the evaluation, stake-
holders finally chose Gazebo because it supports the new stereo camera model and a 3D
GUI which also enabled most devices to be directly controlled/inspected through the
simulator GUI. Since Stage and Gazebo are both Player-compatible, client programs
written using one simulator can usually be run on the other with little or no modifica-
tion. The key difference between these two simulators is that whereas Stage is designed
to simulate a very large robot population with low fidelity, Gazebo is designed to simu-
lated a small population with high fidelity [27]. Thus Gazebo fits with most of DPS
missions which can be accomplished by a few robots. Furthermore, Gazebo is more
valuable to stakeholders since it improved the usability and evolvability of the system.

3.7 Develop Detailed Feasibility Rationale; Hold Life Cycle Architecture
Review

The Life Cycle Architecture (LCA) Review was held with the participation of all the
project key stakeholders and the JPL experts. The exit criteria of LCA Review is to
commit one architecture to satisfy all the requirements of the system. Thus the LCA
FRD has to provide detailed proofs of all requirement satisfaction including the de-
pendability requirements.

The LCA FRD risk analysis should propose a detailed risk mitigation plan to re-
solve all known risks.

The result of the LCA ARB was again to Pass, and proceed to Step 9.

3.8 Construct, Test, and Deploy System

ISCR Increment 3 is currently under development. It is using the dependability sce-
narios to simulate the ISCR performance and evaluate whether the dependability
attribute levels will be achieved. The framework of the value-realization feedback
process [11] is shown in Fig. 4.

Develop/update business case;
assumptions; time-phased cost,
benefit flows of D-attributes; risk
mitigation plans

Peform risk
mitigation plan

No

Yes

Determine corrective actions

No

Value being
realized by

reducing the risk
impact?

Assumption still
valid?

Fig. 4. A Value-Realization Feedback Process to Monitor and Control the Achievement of
D-attribute Requirements

A matrix with the capability to track the value-based expected versus actual out-
comes (i.e., dependability cost, reduced value loss, ROI) is a useful technique to
support the monitoring and control of the actual progress of the dependability
achievement. A case study on how to perform the value-based monitoring and control
using such a matrix is discussed in [11].

120 L. Huang

4 Conclusions and Lessons Learned

In practice, value-dependencies on D-attributes vary significantly by stakeholders and
scenarios. The universal one-size-fits-all metrics for software dependability (SWD)
achievement are unachievable in most project situations. We need to balance stake-
holders’ value propositions on D-attributes. Thus, a critical first step in understanding
the nature of information system dependability is to identify the major classes of suc-
cess-critical information system stakeholders, and to characterize the relative
strengths of their dependencies on various attributes of a given software system. Fur-
thermore, stakeholder value dependencies are often in conflict and require negotiated
situations. There is an increasing need for value-based approaches to SWD analysis
and its achievement monitoring and control.

The iDAVE model provides a technique for reasoning about the ROI of software
dependability. It helps project decision-makers determine how much dependability
investment is enough based on their project’s business case. It also provides a way to
define different dependability levels for different software classes or scenarios based
on stakeholders’ value propositions, which can avoid the one-size-fits-all dependabil-
ity metrics for a project. Based on the stakeholder/value dependency analysis frame-
works, and value-based methods and models for reasoning about software and system
dependability, we have developed and are experimentally applying a value-based
process for using these artifacts integrated with the scenario-based approach to cost-
effectively achieve desired dependability attribute levels for a given project, and for
improving the cost-effectiveness of an organization’s capability to develop depend-
able software and systems. It helps project success-critical stakeholders define, nego-
tiate and develop mission-specific combinations of dependability attributes. To date,
the value-based process and scenario-based approach have enabled us to successfully
perform value-based feedback control of the actual progress of the ISCR project’s
dependability achievement.

Acknowledgements

This work was supported by NASA-HDCP contract to University of Southern Cali-
fornia. This material is also based upon work supported by the National Science
Foundation. The author specially thanks the valuable inputs and comments from Dr.
Barry Boehm. And she also appreciates the help of Zhihao Chen in USC CSE in pre-
paring this paper.

References

1. Boehm B., Huang L., Jain A., and Madachy R.: The Nature of Information System De-
pendability: A Stakeholder/Value Approach (Draft 6). USC-CSE (2004)

2. USC-CSE Inspector SCRover Project Team: Inspector SCRover Project,
http://cse.usc.edu/iscr/pages/ProjectDescription/home.htm (2004)

3. Guidelines for Model-Based (System) Architecting and Software Engineering (MBASE),
http://cse.usc.edu/research/MBASE. USC-CSE (2003)

4. Boehm B. and Hansen W.: Understanding the Spiral Model as a Tool for Evolutionary
Acquisition. CrossTalk May (2001) 4-11

 A Value-Based Process for Achieving Software Dependability 121

5. Thorp J. and DMR: The Information Paradox. McGraw Hill (1998)
6. Boehm B., Huang L., Jain A. and Madachy R.: The ROI of Software Dependability: The

iDAVE Model. IEEE Software, Vol. 21, No. 3, May/June (2004) 54-61
7. Clements P., Kazman R., and Klein M.: Evaluating Software Architecture: Methods and

Case Studies. Addison Wesley (2002)
8. Leveson N. G.: Safeware, System Safety and Computers. Addison Wesley (1995)
9. Weinstock C. B., Goodenough J. B.: Dependability Cases. Technical Note, CMU/SEI-

2004-TN-016 May (2004)
10. Keeney R. L., Raiffa H.: Decisions With Multiple Objectives. Cambridge University Press

(1993)
11. Boehm B. and Huang L.: Value-Based Software Engineering: A Case Study. IEEE Com-

puter, Vol. 36, No. 3, March (2003) 33-41
12. Boehm B. and Port D.: Balancing Discipline and Flexibility With the Spiral Model and

MBASE. CrossTalk, Vol. 14, No. 12, December (2001) 23-28
13. Laprie J.C. (ed.): Dependability: Basic Concepts and Terminology. Springer-Verlag, Vi-

enna (1992)
14. Reifer D.: Making the Software Business Case. Addison-Wesley (2002)
15. Nejmeh B. and Thomas I.: Business-Driven Product Planning Using Feature Vectors and

Increments. IEEE Software, Nov./Dec (2002) 34–42
16. Butler S.: Security Attribute Evaluation Method: A Cost-Benefit Approach. Proc. of 24th

Int’l Conf. Software Eng. (ICSE 02), IEEE CS Press (2002) 232–240
17. Li P., Shaw M., Stolarick K., and Wallnau K.: The Potential for Synergy between Certifi-

cation and Insurance. Special edition of ACM SIGSOFT from the 1st International Work-
shop on Software Reuse Economics (in conjunction with the 7th International Conference
on Software Reuse) (2002) http://www.sei.cmu.edu/staff/kcw/icsr02.pdf

18. Raz O. and Shaw M.: Software Risk Management and Insurance. Proceedings of 3rd Inter-
national Workshop on Economics-Driven Software Engineering Research. IEEE CS Press
(2001) http://www.cs.virginia.edu/~sullivan/edser3/raz.pdf.

19. Sullivan K. et al.: Software Design as an Investment Activity: A Real Options Perspective.
Real Options and Business Strategy: Applications to Decision Making. Trigeorgis L. (ed.),
Risk Books (1999)

20. Cai Y. and Sullivan K.: Stochastic Optimal Switching. Proceedings of 4th Workshop on
Economics-Driven Software Eng. Research, IEEE CS Press (2002) 71-72

21. D. Huynh, M. Zelkowitz, V. Basili, and I. Rus: Modeling Dependability for a Diverse Set
of Stakeholders. The International Conference on Dependable Systems and Networks
(2003) (DSN-2003) http://hdcp.org/Publications/dsn-fast-abstract-031603.pdf

22. Boehm B. et al.: Software Cost Estimation with COCOMO II. Prentice Hall (2000)
23. Steece B., Chulani S., and Boehm B.: Determining Software Quality Using COQUALMO.

Case Studies in Reliability and Maintenance. Blischke W. and Murthy D. (eds.), John
Wiley & Sons (2002)

24. DeMillo R.: Why Software Falls Down. Mutation Testing for the New Century. Wong
W.E. (ed.), Kluwer Academic (2001)

25. Feather M. S., Cornford S. L., Dunphy J.: A Risk-Centric Model for Value Maximization.
Proceedings of 4th Workshop on Economics-Driven Software Engineering Research, IEEE
CS Press (2002)

26. WinWin Spiral Model & Groupware Support System. http://sunset.usc.edu/research/
WINWIN/index.html

27. Koenig N. and Howard A.: Gazebo: 3D Multiple Robot Simulator With Dynamics.
http://playerstage.sourceforge.net/gazebo/gazebo.html

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 122 – 135, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Development Process for Building OSS-Based
Applications

Meng Huang1,2, Liguang Yang1,2, and Ye Yang3

1 Lab for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, P.O.Box 8718, Beijing, 100080, China

2 Graduate School of the Chinese Academy of Sciences,
Beijing 100039, China

{hm, yanglg}@itechs.iscas.ac.cn
Http://www.cnsqa.com

3 Center for Software Engineering, University of Southern California,
Los Angeles CA 90089-0791,USA
yangy@sunset.usc.edu

Abstract. It has become great prominence that business organizations are
considering open source software (OSS) when looking for software system
solutions. However, building applications based on open source software
remains an essential issue for many software developers since the new
development process differs from traditional in-house development. In this
paper, we present a development process based on our experience on using open
source software in application development. The new process emphasizes the
early assessment to improve the architecture stability and project manageability
by assessing available OSS. A set of measurable assessment criteria is
established in assessing OSS candidates and making optimal decisions in the
development process. A case study is discussed to show the application of this
process.

1 Introduction

It is becoming more popular that business organizations apply open source software
(OSS) for their IT needs [1,2,3,4,5]. Some important motivation include cost reduction,
technology reuse, organizational and environmental considerations. In many cases, users'
needs cannot be fulfilled exactly by the existent OSS. Building applications basing on
existent OSS is essential tasks for the developers in such scenarios. Though the approach
of building OSS-Based Applications (OBAs) has been widely adopted, there is a lack of
well-established development process that accommodates the many distinguished OSS
features which can lead a seemingly simple development to disaster, if not handled
properly. OBAs' developers often feel confused about what to do next when blindly
following certain traditional process models, and results in schedule delay and cost
overrun due to tremendous rework over time. Building software applications from OSS
requires modifying, improving and integrating existent OSS instead of reinventing
wheels. Traditional in-house development cannot work well in such scenarios.

 A Development Process for Building OSS-Based Applications 123

What is open source software is still defined unclearly [1]. In this paper, we adopt a
loose concept of OSS that includes publicly available source code and
community-source software that can be freely distributed and modified. We define
OBAs as "applications including one or more OSS". Goals of building OBAs are :(1)
building or improving an OSS' functionality, performance or qualify to fulfill
customers' needs; (2) Integrating multiple OSS to deliver a more complex integrated
system solution; (3) including (1) and (2).

In most case, building OBAs is similar to developing COTS-Based Applications
(CBA). The essential tasks consist of selecting suitable OSS or COTS product,
adjusting them as needed, and integrating them with custom components, OSS, or
COTS. However, this is a significant difference between OBAs and CBA development.
In developing CBA, developers cannot modify COTS components for their special
needs because they rarely have access to the source code of COTS products, therefore
are hardly able to modify COTS [6,7]. In building OBAs, developers not only need to
integrate existent OSS, but also need to modify existent OSS because their quality are
irregular or their functionality cannot fully satisfy desired system functionality.
Therefore, developers cannot use the process of developing CBA to build OBAs
directly.

Our paper offers a development process of building OBAs that is analogous to the
process of developing CBA [7]. The new process emphasizes the early assessment to
improve the architecture stability and project manageability by assessing available
OSS. A set of measurable assessment criteria is established in assessing OSS
candidates and making optimal decisions in the development process.

2 Related Work

COTS-based development is based on the acquisition and integration of commercial
off-the-shelf products over in-house development [8]. Acquiring COTS products
includes identifying alternative candidate COTS products; assessing candidates; and
designing architecture based on selected COTS. Integrating COTS products includes
tailoring COTS components and developing glue code.

Assessing candidate COTS components is key factors of system development lifecycle
(SDL) [8,9,10]. Some recent research focuses on assessment method [10,11,12]. These
methods establish assessment criteria according to requirements specification. Some
methods in them assume the requirements specifications pre-existed before doing COTS
assessment [11,12], while others propose that establishing assessment criteria and
eliciting requirement should be performed concurrently [10]. Tradeoff between desired
requirements and available COTS packages is usually the key to success within
COTS-Based development [8,13]. Multiple criteria are needed to establish in assessment
process [14,11,15]. Which are used to collect data from various COTS candidates for
doing such tradeoff analysis [8,15]. Some recent researchers focused on designing CBA
development process that includes evaluation and integration [7,16,17,18,19]. They
believe an iterative process for developing CBA should meet volatility of COTS products
and concurrent evolution of requirements, architecture, and COTS choices. Those
process frameworks put acquisition and integration of COTS in the background of SDL
and support flexible and concurrent development process.

124 M. Huang, L. Yang , and Y. Yang

The following actions are carried out in developing CBA by developers:

⋅ Assessing candidate COTS according to criteria
⋅ Negotiating with customer about requirements and available COTS and making

decisions
⋅ Designing architecture on available COTS
⋅ Integrating COTS products
⋅ Merging the process of developing CBA into SDL

Those actions are performed similarly when building OBAs. OBAs approach may
accelerate development and cut costs, but the consequences of selecting the wrong
component can erase these benefits [3]. There are some researches about how to assess
OSS [1,3,5, 20] although they only focus on deploying OBAs in business
organizations. Some reported the importance of tradeoff among requirements, available
OSS and other project factors such as cost and schedule [3,5]. Further, although
developers can design architecture for OBAs, OBAs' architecture relies upon available
OSS largely. Integrating OSS into OBAs also like integrating COTS components into
CBA except OBAs' developers should improve selected OSS in functionality or
quality. Merging the process of building OBAs into SDL is a challenge for OBAs’
developers also [21].

Those analogous actions imply that OBAs’ developers could use a similar process
for developing CBA. Nevertheless, there are some differences between OSS and COTS
that require appropriate adjustments to accommodate the special OBA development
needs. These adjustments include the following three aspects:

1. Designing high-level architecture should be implemented before assessment.
Developers cannot afford to freeze high-level architecture design in early stage of

CBA development because interfaces among selected COTS cannot be fixed and system
architecture should be designed concurrently while assessing candidate COTS products.
However, in building OBAs, it is possible and reasonable to have high-level architecture
selected early in the development since interfaces between OSS can be adjusted,
customized, and even modified to meet particular system needs.

2. Particular attributes of OSS should be considered carefully during assessment.
In developing a CBA, developers evaluate candidate COTS packages by a set of

established evaluation criteria. Evaluation criteria often include attributes of system
functionality and performance, organization constraints, and priorities [22]. These are
equally important criteria for assessing different OSS if they are appropriately adjusted.
Additionally, in building an OBA, developers have to read and change source code for
their needs. Reading and changing source code require considering some other
attributes. In section 3, we explain which particular attributes should be considered.

3. The process of integrating OSS is similar to that of integrating COTS, but with
greater complicity.

In developing CBA, the integration actions include tailing COTS components and
developing glue code to make them work together. In this case, COTS is integrated as
black-box reuse. Since COTS is often not free, it always comes with sufficient
documentation and vendor support. However, since integrating OSS frequently
involves changing OSS source code without any “vendor” support, developer must
read through and understand the source code, determine which part should be modified
and how to modify, consider the resultant issues possibly cause by code modification.
In section 3, we define related actions during integrating OSS.

 A Development Process for Building OSS-Based Applications 125

3 A Development Process for Building OBAs

Firstly, a development process for building OBAs is presented in 3.1, which is an
analogous process of developing CBA. Because the special OBAs development needs
should be considered, we discuss the important issues about high-level architecture
design, special attributes of OSS and OSS integration of the process for meeting those
special needs in 3.2.

3.1 Descriptions of the Development Process for Building OBAs

The process for building OBAs is shown in Figure 1.

Yes

Activity 1 :
Identifying High-level

Requirements &Candidate OSS

Activity 2 :
Designing high-level Architecture

Activity 3 :
Eliciting Requirements and

Establishing Assessment Criteria

Activity 4 :
Assessing OSS according to

Criteria

Activity 6 :
Constructing In-house Products

Activity 7 :
Improving & Integrating OSS

Activity 8 :
productizing and transiting

applications

Yes

No

Suitable OSS exist?
Can Criteria or Architecture

be Adjusted?

No

End

Start

Activity 5 :
Adjusting Criteria or High-level

Architecture

Fig. 1. A Development Process for building OBAs

Activity 1: Identifying High-level requirements & Candidate OSS

Input · Conceptions of desired system and project restraints*
Step 1.1 Identify high-level requirements

1.2 Identify Candidate OSS according to OSS project profiles and high-level
requirements**

Output · High-level requirements and project restraints which describe boundary of
the project

· An inventory of candidate OSS that may be used possibly in the
applications

*Project restraints include cost, schedule and software & hardware environments.

126 M. Huang, L. Yang , and Y. Yang

**The project profiles [1,20,25] include project' age, application domain, programming
language, size, developers' state, number of users, modularity level, documentation level,
popularity, status, and vitality. By OSS project profiles and high-level requirements, a group of
OSS, which may be used in the application, is sorted out initially.

Activity 2: Designing High-Level Architecture

Input · High-level requirements, project restraints and inventory of candidate OSS
Step 2.1 Dividing the desired system into a set of modules. Each module is an

OSS and reflects one or more high-level requirements.
2.2 Sorting candidate OSS for every module in high-level architecture

Output · High-level architecture

Activity 3: Eliciting Requirements & Establishing Assessment Criteria

Input · High-level architecture
Step 3.1 Eliciting low-level requirements and distributing them into modules'

attributes of high-level architecture
3.2 Define total weights of the desired system as distributable benchmark
3.3 Assign weights for each requirement and project restraints***
3.4 Accumulating requirements weights in each module's attributes as

assessment criteria
Output · a set of OSS assessment criteria for modules in high-level architecture

***Developers must negotiate with users about how much weights are assigned to a
requirement.

Activity 4: Assessing OSS according to Criteria

Input · Candidate OSS
· Assessment criteria

Step 4.1 Assessing candidate OSS according to criteria
4.2 Choosing the suitable OSS for architecture

Output · Selected OSS

Activity 5: Adjusting Criteria or High-level Architecture

Input · If assessment criteria or high-level architecture can be adjusted
Step 5.1 Developers return to Activity 3 to negotiate with customers and adjust

criteria
5.2 If criteria cannot be adjusted, developers go to Activity 2 to reconsider

architecture
Output · Adjusted assessment criteria and high-level architecture

Activity 6: Constructing In-house Products.

Input · Requirements cannot be met by selected OSS
Step 6.1 Building in-house products for those requirements
Output · In-house products****

****Those in-house products may be OSS or not according to the OSS' license of other part in
the applications and organizations' policy.

Activity 7: Improving & Integrating OSS.

Input · Selected OSS
· In-house Product

 A Development Process for Building OSS-Based Applications 127

Step 7.1 Defining Necessary Interfaces of OSS.
7.2 Analyzing OSS' architecture, source code, and location of modification.
7.3 Improving Code and Unit Testing.
7.4 Integrating OSS and Integration Testing.

Output · OBAs system

Activity 8: productizing and transiting applications.

Input · OBAs system
Step 8.1 Doing test, documenting user manual

8.2 Collecting users' feedback and fixing reported bugs.
8.3 Transiting products to operation.

Output · OBAs product

3.2 Important Issues in the Process

Because the special OBAs development needs should be considered, we discuss the
important issues about high-level architecture design, special attributes of OSS and
OSS integration of the process for meeting those special needs.

3.2.1 Designing High-Level Architecture Before Assessment
In activity 2 of the process, the OBAs were divided into modules by high-level
architecture. Modularity improves maintainability of OBAs and development
efficiency by adding alternative OSS.

Although OBAs' low-level architecture relies on selected OSS largely, Developers still
design high-level architecture early since interfaces between OSS can be adjusted,
customized, and even modified to meet particular system needs by changing source code.

Basing on requirements and currently candidate OSS, developers start to design
high-level architecture. Developers will divide the desired system into a set of modules.
Each module is according to a set of requirements. The degree of success of this activity
is decided by developers' knowledge and experience on candidate OSS.

3.2.2 Attributes of OSS
In activity 3 of the process, attributes of OSS are used to build assessment criteria.
Attributes of COTS components are suitable for OSS also if they are adjusted slightly.
Furthermore, reading and changing source code in building OBAs require considering
more other attributes. The stability of OSS’ architecture should be considered because
modularity and repairing architecture of OSS are important issues while OSS evolving.
OSS’ architecture instability will prevent developers to reuse OSS [2,23]. Another
attribute that should be considered is the development tools of OSS. OSS’ low cost has
contributed to the widespread adoption of sophisticated tools [21]. Developers should
accept the development tools of selected OSS if they want to change source code.
Otherwise, transferring the selected OSS to their familiar development circumstance
would consume many development resources. The third attribute is understandability and
revisability of source code; the quality of source code is an important problem in reusing
OSS [1,5,24]. Chaos in source code cuts the productivity of reading and changing source
code. Beside all these attributes coming from reading and changing source code, attribute
of OSS’ legality should be considered too. A risk in reusing OSS is third parties’ patents
or other intellectual-property rights [25].

128 M. Huang, L. Yang , and Y. Yang

Based on COTS’ attributes and OSS' particular attributes, our process uses the
following set of attributes to assess OSS (Table 1).

It is very important to assign weight appropriately for every attribute based on
stakeholders' agreement to facilitate the quantitative evaluation analysis later on.
Detailed scales, either qualitative or quantitative, should also be defined for each
criteria in order to measure candidate OSS’ score with respect to that criteria.

Table 1. Attributes of OSS

Attributes of OSS Description
Correctness of Functionality If the functionality of OSS consists with its

statement?
Flexibility of Interface The easy degree that the OSS' interfaces can

be used in different environment.
Availability/Robustness The degree that the OSS operate correctly

when using.
Installation/Upgrade Ease The easy degree that install/upgrate the OSS

within a hardware or software environment.
Security The degree that the OSS prevents

unauthorized access and harm
Portability The easy degree that the OSS can be

transferred from one environment to another.
Product Performance OSS' performance in execution, data

capacity, response time, and so on.
Functionality The degree that the OSS fulfills function

needs.
Understandability of Interface Document quality, simplicity, and testability

of development interfaces.
Ease of Use in Interface The easy degree that developers use the OSS'

interface.
Maturity The length of time that the OSS is available

and team of OSS exist.
Version Compatibility of Interface Compatibility of interface between earlier

and later versions.
Inter-Component Compatibility The easy degree that OSS exchange data with

other OSS
Training The degree that OSS' vendor/developers

provide training in using the OSS
Cost of Procurement and Maintenance The cost of procurement and periodic

maintenance
Developers’ Support Response time for problem, capacity in

dealing with problem
Architecture Stability Evolution speed of the OSS' architecture
Usability of Development Tools The easy degree that in-house developers use

the OSS' development tools
Understandability and Revisability of
Source Code

Quality of source code and their documents

Legality of Source Code The legality of OSS' source code

 A Development Process for Building OSS-Based Applications 129

3.2.3 Improving and Integrating OSS
In activity 7 of the process, selected OSS and in-house products are improved and
integrated to OBAs. If selected and in-house products can be integrated to fulfill
customers' needs without improvement in interfaces or quality, developers integrate
them and test the integrated system against defined test cases. Else, developers improve
the selected OSS in interfaces or quality with custom coding.

This activity consists of the following steps, which accommodates the differences of
OSS integration from COTS integration, as illustrated in Figure 2.

Step 7.2:
Analyzing Selected OSS’

Architecture, Source Code and
Location of Modification

Step 7.3:
Improving Code and Unit Testing

No

Selected OSS
In-house Products

OBAs
Step 7.4:

Integrating OSS and Integration
Testing

Yes

Step 7.1:
Defining Necessary Interfaces of

OSS

If there are problems

Can be integrated directly?

Fig. 2. Actions of Improving & Integrating OSS

Step 7.1: Defining Necessary Interfaces of OSS.
If it is needed to integrate multiple OSS with custom coding, necessary interfaces
between multiple OSS should be defined according to high-level architecture.

Step 7.2: Analyzing OSS' Architecture, source code and location of modification.
Developers analyze architecture and source code of selected OSS that needs to be
improved, then locate where code will be improved for implementing new interface or
enhancing quality of selected OSS.

Step 7.3: Improving Code and Unit Testing.
After locating where code will be improved, developers perform code modification as
needed. Then, the units testing are carried out to verify the correct modification.

Step 7.4: Integrating OSS and Integration Testing.
All OSS are integrated and OBAs are tested. If there are problems during integration,
developers should enter Step 7.1 to improve the system.

4 Case Study

The case was a project of building an email system using open source software. The
process introduced in Section 3 was used to build the system, which kept the project
under control and end up with an extremely satisfying OBA. The most important part of
the email system, Mail Transfer Agent (MTA), is used as an example to show how to
assess the candidate OSS.

130 M. Huang, L. Yang , and Y. Yang

4.1 Identifying High-Level Requirements and Candidate OSS

After eliciting requirement from customer, the high-level requirements were identified.
High-level requirements include:

1. Mail Transfer Agent (MTA) which supporting SMTP (Simple Mail Transfer
Protocol) to receive and relay email.

2. To allow users to receive and send email from their remote computers, the email
system supports the standard email protocols -- Interactive Message Access
Protocol (IMAP4) and Post Office Protocol (POP3).

3. To allow users to receive and send email by web browser, the email system
supports webmail.

4. To improving the security of the email system, the email system provides SMTP
authentication and defend spam and virus by content filter.

The project restraints include platform (LINUX), cost (less than 20PM), schedule
(less than 3 month), etc.

We searched current email systems and efficient authentication technologies; secure
technologies; configuration technologies, etc. Then we identified a set of candidate
OSS (Table 2).

4.2 Designing High-Level Architecture

High-level architecture design of the email system is illustrated in Figure 3. The
high-level architecture design based on common experience of email system.

The results of sorting candidate OSS for architecture are shown in Table 2.

Table 2. Candidate OSS

Modules in High-level Architecture Candidate OSS
MTA Sendmail

Postfix
Qmail

User Authentication Syrus SASL
Courier

POP3/IMAP Syrus IMAPD
Free pop3
Gavamail Server
Mercur POP3 and IMAP Server

Webmail TWIG webmail
SQwebmail
IMP webmail
Open webmail

Email Database Unified Mail Queue*****
*****This is not an OSS, but a standard for mail database. We chose the standard for keeping
compatibility among modules.

At the time, there was not an OSS offering content filter. We decided to build a
content filter by in-house development.

 A Development Process for Building OSS-Based Applications 131

Email system

Content Filter

Email Database

user Authentication

MTA(SMTP) POP3/IMAP

WebMail

Fig. 3. High-Level Architecture of the Email System

4.3 Eliciting Requirements and Establishing Assessment Criteria

After designing high-level architecture, we elicited requirements and established
assessment criteria of the email system. We first elicited low-level requirements and
distributed them into modules' attributes. For an example, some functionality
requirements distributed into MTA functionality attributes are shown in table 3. Then,
we defined 4,000 as total weights for distributable benchmark and assigned weights to
requirements basing on discussions between team members and customers. Lastly,
each attributes’ weights of module in high-level architecture were calculated as
assessment criteria. The table 4 was an example for the assessment criteria of MTA; the
last column presents corresponding weights assigned.

Table 3. An Example for Weights of Some Functionality Requirements That Were Distributed
into MTA Functionality Attribute

No. Requirements Weights
1 Email Queue Manager 15
2 Smtpd Parameters Control 15
3 Address Verification 10
4 Maillist Support 10
5 Clients Connect Control 10
6 Relay Rules 10
7 Proxy Support 10
8 Queue Configuration 15
9 Mailbox Limit 10

10 Icp Control 10
11 Email Head Control 10
12 UCE (unsolicited commercial email) Control 15
13 Address Classes 10
14 Access Policy Delegation 10
15 Address Rewriting 10
16 Multi Domain Support 10
17 Virtual Domain Support 10
18 Log Support 10

132 M. Huang, L. Yang , and Y. Yang

Table 4. Assessment Criteria of MTA

No. Attributes Weights
1 Correctness of Functionality 150
2 Flexibility of Interface 80
3 Availability/Robustness 100
4 Installation/Upgrade Ease 60
5 Security 120
6 Portability 80
7 Product Performance 60
8 Functionality 200
9 Understandability of Interface 80

10 Ease of Use in Interface 60
11 Maturity 80
12 Version Compatibility of Interface 100
13 Inter-component Compatibility 80
14 Training 100
15 Cost of Procurement and Maintenance 80
16 Developers’ Support 60
17 Architecture Stability 150
18 Usability of Development Tools 80
19 Legality of Source Code 60
20 Understandability and Revisability of Source Code 100

Total weights 1880

Table 5. Result of Assessing Candidate MTA

Scores of Candidates No. OSS attributes
Sendmail Postfix Qmail

1 Correctness of Functionality 150 150 120
2 Flexibility of Interface 60 80 80
3 Availability/Robustness 90 90 80
4 Installation/Upgrade Ease 30 50 60
5 Security 100 110 80
6 Portability 60 80 70
7 Product Performance 50 60 40
8 Functionality 180 180 160
9 Understandability of Interface 60 80 70

10 Ease of Use in Interface 40 60 50
11 Maturity 80 70 60
12 Version Compatibility of Interface 90 80 80
13 Inter-component Compatibility 70 80 80
14 Training 90 90 60
15 Cost of Procurement and Maintenance 80 80 80
16 Developers’ Support 60 60 50
17 Architecture Stability 150 150 120
18 Usability of Development Tools 70 70 60
19 Legality of Source Code 60 60 60
20 Understandability and Revisability of

Source Code
90 90 80

 Total 1650 1720 1540

 A Development Process for Building OSS-Based Applications 133

4.4 Assessing Candidate OSS

We assessed the candidate OSS according to the set of assessment criteria. For an
example, assessment results of MTA are shown in table 5. According to assessment
result, we chose Postfix as MTA of the email system.

As the same process, we chose Cyrus IMAPD as the POP3/IMAP, Cyrus SASL as
SMTP user authentication, and Sqwebmail as webmail.

4.5 Improving, Integrating OSS and Productizing

The selected OSS cannot fully meet customers' needs in content filter; therefore, after
designing and implementing content filter by in-house development, we defined
necessary interfaces between content filter and Postfix. At the same time, Postfix is
needed to improve in Chinese language support and users configuration modules. We
analyzed the architecture and source of Postfix. After analyzing, we realized those new
interfaces between content filter and Postfix by coding functions such as
GetHeadOfMail, GetContentOfMail, FilterMailByKeywords, FilterMailByDB, etc
while improved the code in Chinese language support and users configuration modules.
Then, we combined those new functions and improved code into Postfix. After unit
testing and integration testing, we delivered the email system to users.

4.6 Lessons Learned

1. Building OBAs from existent OSS can cut cost, accelerate schedule, and improve
quality of products. If we developed the email system from the first line code, it would
use more than 200 PM based on experiential estimation. However, by using existent
OSS, we cost only 15 PM to finish our product. We got an email system with high
performance and security. Now it ran steadily in 2 companies.
2. OBAs' developers must select OSS carefully during building OBAs on existent OSS.
Many researches in deploying OSS indicate qualities of existent OSS are irregular and
functionality of them contrast clearly with each other. Our experiences in the case
validate those findings.
3. During building OBAs, there are many tradeoffs among available OSS,
requirements, designing, and other projects factors such as cost and schedule. Those
tradeoffs aggravate the complexity of selecting OSS.
4. During building the OBAs, we adapt a strategy that we only considered stable
versions of OSS in identifying candidate OSS. The benefits of the strategy are we need
not consider those new versions that are validated deficiently during identifying
candidate OSS. The disadvantages are we cannot fully utilize the OSS' features in new
versions. We believe the strategy will induce a bit of extra works in future maintenance
and upgrade of our email system.

5 Conclusions

With many excellent OSS coming forth, it is more popular that deploy OSS in business
organizations. Many developers build OBAs on existent OSS instead of build them
from beginning. The process of in-house development cannot work well in such
scenarios.

134 M. Huang, L. Yang , and Y. Yang

In most case, the process that builds OBAs on existent OSS is largely similar with the
process of developing CBA. Selecting correct OSS, adjusting them as needed, and
integrating them are essential actions during system development lifecycle. OBAs’
developers can use an analogous process with developing CBA to build OBAs.
However, there is a significant difference between OSS and COTS in right and
motivation of modifying source code. Therefore, developers cannot use the process of
developing CBA to build OBAs directly.

Our paper offers a development process of building OBAs. The process is analogous
to the process of developing CBA in emphasizing the early assessment of OSS. For
difference exists between OSS and COTS, we adjusted the process of developing CBA
to accommodate OBAs development in early high-level architecture design, attributes
of OSS, and OSS integration. A case study is discussed to show the application of this
process.

OSS community is a rapidly evolving world that complicates the OBAs development
reality. As for future work, we plan to enhance the process by introducing
accommodating mechanisms and strategies to address the OSS refreshment during both
development phase and maintenance phase. Future experimental studies will also be
performed on more projects to validate the applicability of our process and further
refine it accordingly.

Acknowledgement. Work reported in this paper is supported by the National Natural
Science Foundation of China under grant Nos. 60273026, 60473060 and the Hi-Tech
Research and Development Program (863 Program) of China under grant Nos.
2004AA112080, 2005AA113140.

References

1. Wang, H., Wang, C.: Open Source Software Adoption: A Status Report. IEEE Software,
Vol. 18, No. 2 (2004) 90-95

2. Fitzgerald, B.: A Critical Look at Open Source. IEEE Computer IEEE Software, Vol. 37,
No. 7 (2004) 92-94

3. Norris, J., Kamp, P.: Mission-Critical Development with Open Source Software: Lessons
Learned. IEEE Software, Vol. 21, No. 1 (2004) 42-49

4. Dedrick, J., West, J.: An Exploratory Study into Open Source Platform Adoption.
Proceedings of the 37th Annual Hawaii International Conference on System Sciences. 2004

5. Madanmohan, TR., De', R.:Open Source Reuse in Commercial Firms. IEEE Software, Vol.
21, No. 6 (2004) 62 -69

6. Barros, M., Werner, C., Travassos, G.: Scenario Oriented Project Management Knowledge
Reuse within a Risk Analysis Process. International Conference on Software Engineering
and Knowledge Engineering (SEKE’01). (2001)

7. Yang, Y., Port, D., Boehm, B., Buhta, J., Abts, C.: Composable Process Elements for
COTS-Based Applications, 5th International Workshop on Economics-Driven Software
Engineering Research (EDSER-5). (2003).

8. Alves, C., Finkelstein, A.: Challenges in COTS decision-making: a goal-driven
requirements engineering perspective. Proceedings of the 14th international conference on
Software engineering and knowledge engineering. (2002) 789-794

 A Development Process for Building OSS-Based Applications 135

9. Dean, J. Vidger, M.: COTS Software Evaluation Techniques. Proceedings of The NATO
Information Systems Technology. Symposium on Commercial Off-the-shelf Products in
Defence Applications. (2000).

10. Ncube, C. Maiden, N.: PORE: Procurement-Oriented Requirements Engineering Method
for the Component-Based Systems Engineering Development Paradigm. International
Workshop on Component-Based Software Engineering. (1999).

11. Kontio, J.: A COTS Selection Method and Experiences of Its Use. Proceedings of the 20th
Annual Software Engineering Workshop. (1995).

12. Kunda, D., Brooks, L.: Applying Social-Technical Approach for COTS Selection.
Proceedings of the 4th UKAIS Conference. (1999).

13. Carney, D.: COTS Evaluation in the Real World. SEI Interactive, Carnegie Mellon
University,December (1998).

14. Alves, C., Castro, J.: CRE: A Systematic Method for COTS Components Selection. XV
Brazilian Symposium on Software Engineering (SBES). (2001).

15. Sivzattian, S., Nuseibeh, B.: Linking the Selection of requirements to Market Value: A
Portfolio-Based Approach. 7th International Workshop on Requirements Engineering:
Foundation for Software Quality. (2001).

16. Basili, V., Boehm, B.: COTS Based System Top 10 List. IEEE Computer, Vol. 34, No. 5
(2001) 91-93.

17. Benguria, G., Garcia, A., Sellier, D., Tay, S.: European COTS Working Group: Analysis of
the Common Problems and Current Practices of the European COTS Users. COTS-Based
Software Systems (Proceedings, ICCBSS 2002), Springer Verlag, Dean, J., Gravel, A.
(eds.). (2002)44-53.

18. Albert, C., Brownsword, L.: Evolutionary Process for Integrating COTS-Based Systems
(EPIC): An Overview. CMU-SEI-2002-TR-009, (2002).

19. Morisio, M., Seaman, C., Parra, A., Basili, V., Kraft, S., Condon, S.: Investigating and
Improving a COTS-Based Software Development Process. Proceedings of the 22nd
International Conference on Software Engineering (ICSE 22). (2000) 32-41.

20. Capiluppi, A., Lago, P., Morisio, M.: Characteristics of Open Source Projects. Proceedings
of the 7th European Conference on Software Maintenance and Reengineering(CSMR
2003). (2003)317-328

21. Spinellis, D., Szyperski, C.: How Is Open Source Affecting Software Development?. IEEE
Software (Vol. 21, No. 1): (2004)28-33.

22. Boehm. B., Abts, C., Brown, A.W., Chulani, S., Clark,B., Horowitz, E., Madachy, R.,
Reifer, D., Steece,B.: Software Cost Estimation with COCOMO II. Prentice Hall. (2000).

23. Tran, J., Godfrey, M., Lee, E., Holt, R.: Architectural Repair of Open Source Software.
Proceedings of the 2000 International Workshop on Program Comprehension (IWPC'00).
(2000)

24. Godfrey, M., Tu, Q.: Evolution in open source software: A case study. Proceedings of the
International Conference on Software Maintenance (ICSM'00). (2000) 131-142

25. Ruffin, M., Ebert, C.: Using Open Source Software in Product Development: A Primer.
IEEE Software, Vol. 21, No. 1(2004)82-86

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 136 – 150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Study on the Distribution and Cost Prediction of
Requirements Changes in the Software Life-Cycle

Chengying Mao, Yansheng Lu, and Xi Wang

College of Computer Science and Technology,
Huazhong University of Science and Technology, 430074 Wuhan P.R. China

maochy@yeah.net

Abstract. Software development is a dynamic process. Requirements change
(RC) is inevitable and brings great challenges to the software development.
How to precisely predict requirements change is especially important in the
field of requirements engineering. In this paper, an assessment framework for
the factors of RCs’ distribution is constructed firstly. Apart from the rough pre-
diction method based on the statistic process control of RCs, an artificial neural
network method for predicting RCs’ distribution is presented. In this case, the
weight of each factor is calculated by a fuzzy logic method, called experts rank-
ing. Furthermore, we propose a model to pre-evaluate the cost caused by RCs.
With some practical projects data, a validation experiment has been drawn,
whose result shows that our method and model are practical and efficient to
predict the distribution and cost of RCs.

1 Introduction

With the rapid increase of size and complexity of software systems, the difficulty
resulting from requirements change becomes outstanding and greatly bothers software
developers. They profoundly understand the claim made by Fred Broochs [1], “The
hardest single part of building a software system is deciding precisely what to build”.
The status of requirements analysis and definition in the whole software development
life-cycle is increasingly significant, which directly influences the success of the de-
velopment. As a result of that, the Requirements Engineering (RE), a newly occurring
subject which mainly focusing on the study of software requirements appears. In the
recent years, RE becomes one of the hottest issues in the fields of software engineer-
ing all over the world.

Generally speaking, RE is an engineering of implementing the requirements
analysis. Requirements analysis refers to revising the unformulated requirements
statements into the detailed requirements definition, even formulizing it into require-
ments specification. It is noted that requirements analysis is not always for good.
Software development is a dynamic process. This often causes software requirements
to change while development is still in progress. Though there are plenty of effective
and applicable techniques, tools and methods used for capturing and managing
requirements [2,3], software requirements inevitably change throughout system de-
velopment and maintenance process. These changes are driven by several factors,
including system complexity, techniques, market demands and government regulation

 A Study on the Distribution and Cost Prediction of Requirements Changes 137

[4]. Requirements change makes it so hard to estimate the schedule and cost of a
project that the product quality is uncontrollable, which brings great challenges to the
project [5,6,7]. As a consequence, we need to identify a better approach to manage the
impacts of continuously changing requirements. We believe that the sufficient meas-
urement and precise prediction are the most important steps towards better and effec-
tive managing requirements change.

In this paper we analyze the main factors resulting in the requirements change
firstly. Secondly, we discuss their quantitative evaluation in experts ranking approach,
and apply the Artificial Neural Network (ANN) to predict the distribution of require-
ments change in the software life-cycle. According to the distribution, we evaluate the
cost of software development produced by the requirements change.

The rest of the paper is organized as follows: In the next section, it is a brief over-
view of the recent software requirements change researches, and a simple introduction
of the ANN is displayed. In Section 3, the methods of predicting the requirements
changes occurring throughout the entire software development process are discussed.
Based on the content of Section 3, the method of evaluating requirements change cost
is introduced in Section 4. In Section 5, we use a case study to validate the correctness
and feasibility of our methods. Section 6 presents the conclusion and future work in
this area.

2 Background

2.1 Software Requirements Change

Requirements analysis is particularly a complex task. It requires developers have the
knowledge of management and psychology as well as proficient skills. Software pro-
jects often start at the time when the requirement is not obvious and complete enough
[7,8]. Even though the intention is for software requirements specifications to be
captured and formed correctly in the initial stage of development, there are still some
other inevitable factors that will lead to the requirements change throughout the entire
process of development and maintenance. We name this change as the Requirements
Change (RC), and Requirements Volatility (RV) is the rate of RC. The formal defini-
tions of them can be presented as follows:

Definition 1. Requirements Change is the number of changes (addition, deletion, and
modification) in a given period of development life-cycle, and Requirements Volatility
is the ratio of changes to the total number of requirements.

According to the occurrence of changing the requirements, RCs can be classified
into two categories [9]: (1) Pre-SRS RC, which refers to the requirement modification
before the complete software requirements document is fixed (at the early stage of
software development), (2) Post-SRS RC, which occurs during the later phases of
software development (i.e. design, coding, testing and maintenance). We argue that
the former type of RC is constructive while the second is possibly destructive because
it is claimed that it will affect the productivity of the software development process,
scope creep and the quality of final product. For instance, the rate of the progress is
hard to control, so the cost of the project is hard to budget. In this paper, we focus on
the study of post-SRS RC. The RC in the following parts all refers to the second one.

138 C. Mao, Y. Lu, and X. Wang

Recently there are quite a few investigations concerning the requirements change
and its influence. T. Hall et al. [10] made a survey by having an informal discussion
with developers, project managers and senior managers from twelve software compa-
nies. They found that most of the RCs were caused by the organization instead of the
techniques, and the maturity of a company had a close relation with the pattern of
requirements. Via E-mail from the 430 software corporations in Australia, Didar
Zowghi et al. [9] discovered that the requirements change had a great impact on the
expiration of the project process as well as the finance overspending. They also
pointed out two key factors influencing the RC: One is the communication between
software users and developers, the other is the method of requirements analysis and
modeling. N Nurmuliani et al. [6] had another point, they analyzed the requirements
changes in the life-cycle of a system called GDS and concluded three important fac-
tors of RC: (1) Customers’ needs (market demands); (2) Developers’ understanding of
the software product domain; (3) The change of the organization policy. N. F. Schnei-
dewind et al. [11] made a detailed discussion about the risk of the software reliability
and maintainability from the RC.

At present, studies concerning the analysis of RCs distribution and prediction are
rare. Q. Wang employs the Statistic Process Control (SPC) to make a statistic for the
historical projects information [12]. It can discover the statistical distribution of RCs
in some specific software development organizations and enable the guidance of the
RC prediction of a new project (the method will be introduced in Section 4), but it is
lack of self-adaptability. In summary, the analysis of RCs in software project devel-
opment mainly focuses on the software productivity, software releases, or on its im-
pact on an isolated phase [11,13,14,15]. We apply the model ANN to predict the RCs
distribution in each stage of software development life-cycle. Based on that, we pro-
pose a cost assessment model for the RCs.

2.2 Artificial Neural Network

ANN is a newly mathematical model grounded on the biological neural systems of
modern science. It has many favorable properties, such as intelligent, self-adaptive,
learning ability and so on. Due to these good characteristics, it has gradually been
applied in the field of software engineering and achieved better effect [16,17,18,19].
For example, Charles Anderson et al. [18] applied ANN to direct the optimization of
test suite. Reun Kumat et al. [19] also employed the ANN to evaluate the quality of
software.

Back-propagation (BP) [20] is the most popular training algorithm for multilayer
neural networks. Except input and output layers, BP network has one or more hidden
layers. The network training is gained by a two-stage learning algorithm, i.e., forward
pass and backward pass. The forward pass propagates the input vector X=(x1, x2, …,
xn) through the nodes of hidden layers until it reaches the output layer Y=(y1, y2, …,
ym) (see Figure 1). In the second stage of network training, the output error propagates
backward to update network weights. BP network is a highly non-linear mapping
system from input-end to output-end, i.e., f: Rn Rm, f(X)=Y. The Kolmogrov’s theo-
rem tells us that any continuous function can be accurately approximated by a three-
layer BP network [20]. Here, we adopt the three-layer BP network to predict the dis-
tribution of RCs in each stage of software life-cycle.

 A Study on the Distribution and Cost Prediction of Requirements Changes 139

•
•
•

•
•
•

•
•
•

•
•
•

•
•
•

Fig. 1. Basic configuration of the BP network

3 Prediction of Requirements Changes

3.1 Factors of Requirements Change

The inducements of RC are various, which involve a number of factors such as technol-
ogy, management, work environment and psychology science. The analysis of the fac-
tors causing requirements change is the effective measures to avoid changes, especially
good for the prediction of the frequency and distribution of RCs. So called frequency of
RCs is the ratio of the number of RCs to the total number of requirements. There are
plenty of studies involved in the RCs’ causation. One style employs the statistical analy-
sis from the Change Request (CR) [21] of systems in practice [6]. The other gains the
main factors by the conversation or poll from the developers or project managers [10].
Our major task is to reflect the factors that lead the frequency of RC to change, but the
change reasons of RCs’ distribution have something with causation of RCs. Grounded
on the conclusions of references [4,6,8,9,10,14,22], we attribute the factors relating to
the change of RCs’ frequency and distribution to four major factors: (1) Project charac-
ter, (2) software developers’ condition, (3) users’ condition and (4) project management.
Each factor is composed of a set of items, and each item is presented in the quantitative
form of the difficulty coefficient. In other words, it shows the possibilities of project
failure risk caused by that item. Its value can be evaluated by the developers, adminis-
trators and experts in software engineering.

3.1.1 Factor of Project Character
The major feature of a software project under investigation is its ultimate size. It is often
characterized by the number of code lines, the size of the source files and so on. We
employ the predicted number of sub-systems (also called modules) to measure the pro-
ject. The prediction result is highly reliable because the alteration of the number of main
functional modules is rare after the completion of the requirements analysis. In general,
we consider that the difficulty coefficient increases with the number of modules. The
subsequent feature is the number of manpower. Generally speaking, it is fit for about
three persons to participate in one sub-system, but the granularity can be adjusted ac-
cording to the practical situation. If the number of participants per module is more or
less than the average, the difficulty coefficient will increase. Suppose the total number
of the persons involved in a project is P, and the number of predicted sub-systems is M,
we can use the formula | - 3 |P M to calculate the difficulty. The amount of the

available budget (especially in the phase of requirements analysis) is also one of the
factors affecting project. The more sufficient cost is provided, the lower the difficulty

140 C. Mao, Y. Lu, and X. Wang

coefficient is. Furthermore, the techniques applied in the project and techniques risk also
do influence the RC, as well as the technology accumulation in the past. If the system
has preferable reuse resources (e.g. source codes, project documents, development ex-
perience, etc.), it will decrease the risk of RC.

Some projects are forced to end up curtly due to the pressure from the limitation of
schedule budget, so it is very necessary to make assessment of the sufficiency of re-
quirements analysis activity. Here we use the style of developers’ self-evaluation. The
sufficiency of requirements analysis increases while the risk of RC decreases. The
details of project character are as follows, weight of significance is referred to the RC
risk of each sub-item.

Table 1. The guideline of assessing project character

No. Sub-items Difficulty coefficient Weight
1 The number of sub-systems (or mod-

ules)
0.2(10), 0.4(10~20), 0.6
(20~30), 0.8(30~40), 1.0
(>40)

0.2

2 Total number of developers 0.2, 0.4, 0.6, 0.8, 1.0 0.1
3 Project budget 0, 0.5, 1.0 0.05
4 Complexity of techniques and its risk 0, 0.5, 1.0 0.15
5 Reusable resource 0, 0.5, 1.0 0.2
6 Sufficiency of requirements analysis 0.2, 0.4, 0.6, 0.8, 1.0 0.3

3.1.2 Factor of Developers
Similar to the classification in Section 3.1.1, the factor of developers can also be divided
into six sub-items: (1) Developers’ experience, that is to say, development-years they
experienced and their ages, we can notice that the age between twenty and thirty-five is
the best period to employ software development. On the other hand, it reflects that de-
velopers with more experience take the lower RC risk. (2) The condition of mastering
development approaches and tools. If developers are familiar with the approaches and
tools, it will help them to consider project’s requirements more comprehensively. (3)
The familiarity with the business knowledge. (4) The experience training for project
development, such as requirements analysis strategies and methods of writing require-
ments documents. (5) Degree of communication between developers and users. It can be
evaluated from the aspects of the times of interviews and the capability of interactions.
We conclude that bad communication leads to great challenge to RC. (6) Internal com-
munication and cooperation in development team.

Table 2. The guideline of assessing factor of developers

No. Sub-items Difficulty coeff. Weight
1 Developers’ experiences 0.2, 0.4, 0.6, 0.8, 1.0 0.15
2 Familiarity with development approaches

and tools
0, 0.5, 1.0 0.1

3 Familiarity with the business knowledge 0.2, 0.4, 0.6, 0.8, 1.0 0.2
4 The training for development 0, 0.5, 1.0 0.1
5 Degree of communication 0.2, 0.4, 0.6, 0.8, 1.0 0.3
6 Internal communication and cooperation 0.2, 0.4, 0.6, 0.8, 1.0 0.15

 A Study on the Distribution and Cost Prediction of Requirements Changes 141

3.1.3 Factor of Users
The influences to RC distribution caused by the users can be precisely categorized as
following: (1) The span of their occupations and working experiences. Their suffi-
cient understanding of the business is advantageous to the software development. (2)
The definitude of users’ requirements goal. The more explicit goal means the more
sufficient in early requirements analysis. (3) Internal negotiation and consistency of
the requirements. When sufficient internal negotiation and the consistency of re-
quirements are achieved, we define the difficulty coefficient as 0. Otherwise the coef-
ficient is 0.5 or 1.0. (4) The enthusiasm of the participation. If the users are against
the project, the difficulty coefficient will be defined as 1.0. (5) The extent of the us-
ers’ mastery of computer knowledge. The difficulty coefficient will rise when the
users know little about the relative computer skills. (6) The users’ satisfaction at the
initial requirements specification documents. There will be few changes in the later
stages if the initial documents are fit for the users’ taste.

Table 3. The guideline of assessing factor of users

No. Sub-items Difficulty coeff. Weight
1 Working experience 0.2, 0.4, 0.6, 0.8, 1.0 0.1
2 Definitude of users’ requirements goal 0.2, 0.4, 0.6, 0.8, 1.0 0.25
3 Internal negotiation and consistency 0, 0.5, 1.0 0.2
4 Enthusiasm of the participation 0, 0.5, 1.0 0.1
5 Mastery of computer knowledge 0, 0.5, 1.0 0.05
6 Satisfaction at the initial specification 0.2, 0.4, 0.6, 0.8, 1.0 0.3

3.1.4 Factor of Project Management
Similarly, the factor of project management has five measurement indexes shown as
follows.

Table 4. The guideline of assessing factor of project management

No. Sub-items Difficulty coeff. Weight
1 Sufficiency of requirements inspection 0.2, 0.4, 0.6, 0.8, 1.0 0.4
2 Configuration of requirements tools 0.2, 0.4, 0.6, 0.8, 1.0 0.2
3 Formalization of requirements documents 0.2, 0.4, 0.6, 0.8, 1.0 0.2
4 Configuration management for RC 0, 0.5, 1.0 0.1
5 Rationality of organization and management 0.2, 0.4, 0.6, 0.8, 1.0 0.1

The above table provides a quantitative framework for evaluating the factors which
will influence the frequency and distribution of RCs. The factors and their sub-items
can be adjusted on the basis of the actual situation of software development organiza-
tions. This framework is a combination of existing research results and our accumu-
lated experience during information systems development. More detailed evaluation
framework can be constructed by the correlation analysis which is presented in Refer-
ence [11]. Furthermore, the correlation analysis technique can also be applied to
merge some closely related sub-items.

142 C. Mao, Y. Lu, and X. Wang

3.2 Method of Predicting RC

RCs are affected by various factors. But as for specific software development organi-
zation, the RCs’ frequency and distribution still follow some rules in the sense of
statistics. Based on the employment of the statistical analysis and ANN learning on
the related historical data of RCs, we can easily predict the distribution of RCs. For
constructing a prediction model of RCs, we give the following assumptions:

 Assume the recorded data are from the software development processes in which
exists some relativity. For example, they are all derived from the information system
under development. In general, the projects developed by a software organization are
almost under a similar background.

 Assume the granularity of all requirement items is comparative. Software com-
panies usually have referential standards for their developers so that the granularity
can’t be of great difference.

 Assume all projects under analysis are not groping, because this type of projects
is too indeterminate to make a rational prediction.

From the assumptions mentioned above, it is easy for us to conclude that the data
used for analysis can’t be collected from different development organizations. In
other words, a company’s historical data can’t be used to predict another’s RCs. Here
we will address two approaches for the prediction.

3.2.1 Prediction of RCs’ Distribution Based on SPC
Wang’s study demonstrated that [12]: (1) For a software organization, the frequency
of RCs is a relatively steady value when its capability of software process is mature.
(2) The distribution of RCs has a relatively stable statistical rule. Based on their re-
search, we can adopt a method for predicting RCs as below: Firstly, we calculate the
average value pμ of the RCs’ frequency of previous projects, and set the number of

original requirement items as orN , so the probable number of RCs is rc p orN Nμ= ⋅ .

Secondly, we get the distributed proportions of RCs in each stage of development
processes, that is, the design, coding, testing and maintenance. As a consequence, we
can get the number of probable RCs in each stage.

This approach is easy to operate. But the capability of software organizations is
constantly upgrading, and the early distribution can’t well reflect current condition,
i.e., this approach belongs to static prediction. The improvement is to use the most of
the latest data to execute statistical analysis. We’ll introduce a dynamic and self-
adaptive approach to the prediction in the next sub-section.

3.2.2 RC Prediction Based on ANN
As illustrated in Section 3.1, four factors play crucial roles in the distribution of RCs.
Hence, it is necessary to present a quantitative evaluation for these factors. In this
paper, we apply the method of experts ranking to quantify them. Assume the risk
values resulting from the Project Character (PC), Developers’ Condition (DC), Us-
ers’ Condition (UC) and Project Management (PM) are Vpc, Vdc, Vuc, Vpm respec-
tively. The process of quantitative evaluation is as following: Take the PC for exam-
ple, suppose PC has n sub-items, and the weight of each sub-item is wi (1 i n). We
choose m experienced ones from the project developers or administrators as “judge

 A Study on the Distribution and Cost Prediction of Requirements Changes 143

experts”. An evaluation matrix R corresponding to this factor can be produced by
ranking each sub-item when the assessment framework in Section 3.1 is referenced.

11 12 1

21 22 2

1 2

([0,1],1 ,1)

m

m
ij

n n nm

r r r
r r rR r i n j m

r r r

= ∈ ≤ ≤ ≤ ≤
L
L

M M O M
L

Then associating with weight of each sub-item, the quantitative result of the factor PC
can be drawn as follows:

1 1

1
()

n m

pc i ij

i j

V w r
m = =

= (1)

Obviously, the value of Vpc is between 0 and 1. For instance, the probable RCs risk
caused by the factor PC in a project is described as below:

0.4 0.4 0.6 0.4 0.4
0.6 0.2 0.4 0.4 0.2
0 0 0 0.5 0

0.5 0.5 1.0 0.5 0.5
0.5 0.5 0.5 0 0.5
0.4 0.2 0.4 0.4 0.2

R =

Well then, Vpc=(0.2*2.2+0.1*1.8+0.15*3+0.2*2+0.3*1.6)/5=0.395. The value of
Vdc, Vuc and Vpm can also be calculated by the formula (1). Generally speaking, larger
values represent greater occurrence possibility of RCs. The evaluation activity should
be synchronous with project development, that is, it is required to make a detailed
assessment after the completion of requirements specification documents. When a
project is accomplished, we can adjust part of sub-items so as to prepare the predic-
tion for the next project.

We put the above assessment values and Nor together as the input of ANN, i.e.,
X=(Vpc, Vdc, Vuc, Vpm, Nor). The output of ANN is composed of the RCs distribution
values in the four stages (i.e., design, coding, testing and maintenance). It is denoted
as following: Y=(Nd, Nc, Nt, Nm). We choose the Sigmoid function as the mapping
from input layer nodes to hidden layer nodes, such as () 1/(1)xf x e−= + . And a linear

function is used to relate the hidden layer with output layer.
The prediction of RCs’ distribution can be carried out in two steps: Step1, learning

phase. Collect the correlative data of previous projects as the input and output vectors
respectively, then to train the network. Step 2, prediction phase. When the error of the
network reaches a convergent point, we put the data of current project (i.e., Vpc, Vdc,
Vuc, Vpm and Nor) into the network to calculate the number of the possible RCs in each
stage after requirements analysis. The whole process of RCs prediction is shown in
Figure 2.

As shown in the formula (1), the decision of sub-items’ weight is very important.
The value in Table 1~4 is only for reference. The difference of the sub-items’
weightiness in a factor is merely qualitative, so the assignment on instinct is generally
inaccurate. But we can adopt the method of Analytical Hierarchy Process (AHP),
which has been used for deciding the weight of software quality characteristics in
[23], to weight sub-items. This method contains consistency check, so the judgement
error is in an acceptable level.

144 C. Mao, Y. Lu, and X. Wang

Fig. 2. ANN prediction framework for the RCs distribution

The significant advantage of the prediction approach based on ANN is the ability
of dynamic self-adaptive learning. This approach not only makes good use of the
statistical rules of RCs’ distribution in the historical projects, but also reflects the
maturity enhancement of the software organization. Figure 2 shows that it depends on
the developers’ self-assessment of four factors during the software development. As a
consequence, the implementation of this approach can accelerate the quantitative and
normative representation for project management, which is in accordance with the
demand of the level 4 in CMM [24].

4 Pre-evaluation of the Cost for RC

Although to ascertain the RCs’ distribution in each stage of software life-cycle is very
important, the management of the cost caused by RCs is also unable to be neglected.
Existing research on RC cost only concentrates on one specific stage, or the reliability
and maintenance risk. Under such condition, we propose a prediction model for the
additional cost caused by RCs.

4.1 Taxonomy of Requirements Changes

There are a few ways used to classify the RCs [6], such as by the RC’s reason, or by
the change origin etc. Here we mainly concentrate on the RC’s change types. The
taxonomy to classify the change requests is in terms of:

 Requirement addition: adding a requirement to make up for the omission or meet
the customers’ requirements;

 Requirement deletion: deleting or removing existing requirements from the busi-
ness strategy or the requirements redundancy;

 Requirement modification: modifying requirements owing to technical restrict or
design improvement. This case doesn’t include the rewording of requirements text
which is not essential modification.

It is insufficient for us to predict the RC cost only by the RCs’ distribution in each
stage. It also needs to know the number of each RC type. ANN’s prediction ability

 A Study on the Distribution and Cost Prediction of Requirements Changes 145

depends on the training on historical data, so it is important to get RC number of the
three types mentioned above in each stage. It can be dealt with under the following
two conditions: (1) If the software organization puts good RCs management in prac-
tice, the number can be gained from the data analysis framework mentioned in [6]. (2)
As for those organizations without requirements management, the number of three RC
types can only be worked out by comparing the requirements specifications, detail
design documents, testing documents and maintenance documents. Of course, the
second case is not as accurate as the first.

For a stage following requirements analysis, such as design, coding and testing
etc., we should construct another ANN to predict the number of each RC type. The
input is the same as the network in Section 3.2, while the output is modified to the
proportion of three RC types, i.e., (, ,)a d mY t t t= , where ta, td and tm represent the rate

of the requirement addition, deletion and modification respectively, and ta+td+tm=1.
The prediction process is also divided into two steps as above. The number of each
type can be calculated via referring the proportion and the total RC number in this
stage.

4.2 Model of RC Cost Pre-evaluation

There are many models of software cost estimation at present. Among them the mod-
els of COCOMOII [25] and GOM/CGOM [26,27] are widely accepted. But it is a pity
that they all ignore the cost caused by RCs. According to the classification of RCs, we
apply ANN to predict the number of each RC type in each stage respectively, then
pre-evaluate the RC cost in the whole software life-cycle. The total RC cost (C) con-
sists of the additional cost caused by RCs in the phases of Design (Cd), Coding (Cc),
Testing (Ct) and Maintenance (Cm), i.e., C=Cd+Cc+Ct+Cm. We discuss each one as
follows:

(1) The calculation of Cd: During the phase of detailed design, the requirements
specification documents are analyzed and classified to establish a detailed implemen-
tation plan. The endeavor of requirement addition, deletion and modification is nearly
equivalent, so it is not necessary to distinguish them. In this case, we denote the extra
cost for a RC as , so the RC cost in the design stage is

d dC Nα= ⋅ (2)

(2) Cc: Unlike the design stage, the cost of realizing requirement addition, deletion
and modification is different in the phase of coding. Generally, the additional cost of a
requirement modification is the biggest, denoted as m. And the cost of addition (a)
takes the second place, the least is the deletion cost (d), i.e., < d< a< m. So the RC
cost in the coding stage can be calculated by the following formula.

()c a a c d d c m m c a a d d m m cC t N t N t N t t t Nβ β β β β β= ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ + ⋅ (3)

(3) Ct: It is similar to the coding stage. The additional costs for each requirement
addition, deletion and modification are noted as a, d and m (d < a < m) respectively.
And there is such a relation: a< a, d< d, m< m. Hence,

(' ' ')t a a d d m m tC t t t Nγ γ γ= ⋅ + ⋅ + ⋅ (4)

(4) Cm: The maintenance is more complex than the above three stages. In general,
only a part of project maintainers are developers, or even they are all not developers.

146 C. Mao, Y. Lu, and X. Wang

When RCs happen, the foremost thing is to understand the correlative parts with
changes. We adopt an approach proposed in [28] to quantify the degree of changes
comprehension. It proceeds in two aspects: Software Understanding Increment (SU)
and Programmer Unfamiliarity (UNFM). SU is determined by maintainers’ self-
assessment on the facets of documents and source code. Each facet is divided into five
ranks (the value ranges from 0.1 to 0.5). The higher value represents the worse under-
standing, and vice versa. The last value of SU is the average of their evaluations on
both facets. The value of UNFM is expressed quantitatively in Table 5.

Table 5. Rating scale for programmer unfamiliarity (UNFM)

UNFM increment Level of unfamiliarity
0.0 Completely familiar
0.2 Mostly familiar
0.4 Somewhat familiar
0.6 Considerably familiar
0.8 Mostly unfamiliar
1.0 Completely unfamiliar

The difference between Cm and Ct is merely the increment produced by the SU and
UNFM, because the modifications in these two stages are all made for a completed
system.

('' '' '')(1)m a a d d m m mC t t t SU UNFM Nγ γ γ= ⋅ + ⋅ + ⋅ + ⋅ (5)

The factors we considered may be insufficient, so the above is only a rough pre-
evaluate model of RC cost at present.

5 Case Study

In order to validate the methods of predicting RCs’ distribution and cost, a case study
was employed with the projects’ data of our laboratory in the recent two years. The
survey of the six selected projects is shown in the Table 6.

The risk weights of factors that will possibly influence the RCs’ distribution in
each project are determined by the self-assessments of developers and administrators.
Among them, the risk values of the first four projects are evaluated following the
completion of the project, while the latter two are given in development process. The
RCs’ distribution of a project is calculated by the statistic analysis of CR data, which
will be described in Table 7.

While validating the prediction method of RCs’ distribution, the data of the former
five projects were picked up to train the BP network. While the network was stable,
we used it to predict the RCs’ distribution of the sixth project. The experiment was
drawn in the environment of Matlab 7.0 and adopted the 5×35×4 BP Network, whose
configurative parameters were as follows: epochs=2×104, goal=0.005, min_grad=
1.0×10-10, mu_max=1.0×108. Because the initial value of network’s weight is assigned
randomly by the Matlab neural network toolbox, it can’t ensure the error convergence

 A Study on the Distribution and Cost Prediction of Requirements Changes 147

Table 6. Descriptions of the projects for case study

Projects Description Development tools
jxhd A network charging system in Hongdu Air-

port
VC, PB, SQL Server

hustmis An educational administration and students
work management system in HUST

PB, JSP, EAServer, SQL
Server

lamis An instrument & assets management system
in HUST

PB, .NET, SQL Server

gzsf A decision support system (DSS) in Guang-
zhou bureau of water conservancy

.NET, PB, Oracle, Arcinfo

fcms A realty management system Delphi, .NET, SQL Server
whsw A DSS of a bureau of water resource similar to (4)

Table 7. RCs’ factors and their distribution of projects

Projects Vpc Vdc Vuc Vpm Nor Nd Nc Nt Nm
jxhd 0.402 0.470 0.255 0.550 45 2 3 2 1
hustmis 0.775 0.652 0.780 0.412 372 34 22 28 21
lamis 0.560 0.640 0.725 0.605 295 20 13 29 24
gzsf 0.285 0.305 0.232 0.260 264 6 5 4 2
fcms 0.325 0.402 0.265 0.300 67 3 2 1 1
whsw 0.395 0.255 0.385 0.300 281 12 9 8 4

of each training. We have to make sure that the error of adopted network is conver-
gent. Consequently, the predictive result is: Nd’=11, Nc’=7, Nt’=9, Nm’=5. In contrast
with Table 7, it is obvious that the RCs’ distribution predicted by the ANN is much
more precise.

In a similar way, we can apply ANN to predict the number of the three change
types in the project whsw. Combined with the RC cost prediction model mentioned in
Section 4, the project cost increment resulted from the RCs can be worked out. The
pre-evaluation’s parameters are as following: =0.5, (a, d, m)=(1.5, 0.5, 2.0), (a, d,

m)=(1.8, 1.0, 3.0), SU=0.4, UNFM=0.8.
The results of the pre-evaluation are shown in the row 4 of Table 8. Row 3 indi-

cates the extra cost compared with the plan during the practical development. Here,
we measure the cost by the scale of person-day (p-d for short). From the comparison
we can conclude that the results of the pre-evaluation are reasonable. Because RC is
only on reason for cost increase, the RC cost is generally less than the practical cost
increment. However, RC plays the most important role in the cost increase, so the two
cost increments (predictive and practical) are quite close to each other.

Table 8. Cost increment comparison between the predictive and the practical

RCs & relevant cost
Nd

(add.,del.,mod.)
Nc

(a., d., m.)
Nt

(a., d., m.)
Nm

(a., d., m.)
Num. of predictive RCs 8 2 1 2 1 4 2 1 6 1 0 4
Num. of practical RCs 7 3 2 4 1 4 0 1 7 0 0 4
Predictive RC cost (p-d) 5 11.5 22.6 18.2
Practical RC cost (p-d) 6 14 24 25

148 C. Mao, Y. Lu, and X. Wang

6 Conclusions and Future Work

In the entire process of software development and maintenance, requirements may
evolve constantly. Requirements changes have a significant impact on software pro-
ject uncertainty, in particular the scopes of schedule overrun and cost overrun. This
indicates that requirements change still remains a challenging problem in the field of
software engineering. This paper concentrates on the study of prediction of RC distri-
bution and its cost pre-evaluation. Based on the analysis of RC factors in the existing
literatures and the investigations on information systems developments of our labora-
tory, an assessment framework for the factors of RCs’ distribution is made. It employs
a fuzzy logic method, named experts ranking, to ensure the quantitative results con-
vincible. Subsequently, an ANN method used to predict the RCs’ distribution is pre-
sented. Following the predictive distribution, a model for evaluating the RC cost is
proposed. In addition, we apply some historical data from practical projects to vali-
date them. The results show that ANN is feasible to predict the RCs’ distribution, and
the RC cost pre-evaluation model is also precise.

This paper only offers some insights based on the exploratory research into the as-
pect of the RC prediction and its cost evaluation, the proposed framework and model
need to be further specified. A critical review of our methods highlights some direc-
tions for future research: (1) Apart from ANN, some traditional prediction methods
can be also adopted to assist the RCs’ prediction. The method of curve fitting has
been used to carry out the above experiment, and the result shows that the precision of
curve fitting is nearly equivalent to that of ANN when the data set is small. The rea-
son of this phenomenon is that the small data set is not sufficient for training the net-
work. However, the ANN is superior to the curve fitting when training set is adequate.
(2) The sensitivity analysis can be employed on the data in Table 7 to get the primary
factors that cause the change of RCs’ distribution. This is of great benefit to improve
the process management of software organizations. (3) The input and output patterns
of the neural network need to be further explored. Then a more precise network model
can be acquired.

Acknowledgements

This work was supported in part by the Defense Pre-Research Project of the “Tenth
Five-Year-Plan” of China under Grant No.41315.9.2, and the Defense Pre-Research
Project of the Navy Equipment Ministry under Grant No.10104010201. We’d like to
thank all project developers and managers from our laboratory for their support of this
research.

References

1. Brooks, F.: The Mythical Man-month: Essays on Software Engineering (2nd edition). Ad-
dison-Wesley Publisher, Boston MA (1995) 179–203

2. Zhang, J. Z., Xu, J. F.: Advances in Requirements Engineering. Journal of Computer Re-
search and Development, Vol. 35, No. 1. Science Press, Beijing (1998) 1–5 (in Chinese)

 A Study on the Distribution and Cost Prediction of Requirements Changes 149

3. Lu, M., Li, M. S.: Review of Methods and Tools of Software Requirements Engineering.
Journal of Computer Research and Development, Vol. 36, No. 11. Science Press, Beijing
(1999) 1289–1300 (in Chinese)

4. Barry, E. J., Mukhopadhyay, T., Slaughter, S. A.: Software Project Duration and Effort:
An Empirical Study. Information Technology and Management, Vol. 3, No. 1–2. Inder-
science Publishers, Switzerland (2002) 113–136

5. The Standish Group: CHAOS: A Recipe for Success. (1999) (www.standishgroup.com
/sample_research/PDFpages/chaos1999.pdf)

6. Nurmuliani, N., Zowghi, D., Powell, S.: Analysis of Requirements Volatility during Soft-
ware Development Life Cycle. In: Proc. of the 2004 Australian Software Engineering
Conference (ASWEC'04). IEEE Press, New York (2004) 28–37

7. Krasner, H.: Requirements Dynamics in Large Software Projects. In: Proc. of the 11th
World Computer Congress (IFIP'89). Elsevier Science Publishers B.V., Amsterdam (1989)
211–216

8. Christel, M., Kang, K.: Issues in Requirements Elicitation. TR.CMU/SEI-92-TR-12, Car-
negie Mellon University, Pittsburgh (1992)

9. Zowghi, D., Nurmuliani, N.: A Study of the Impact of Requirements Volatility on Soft-
ware Project Performance. In: Proc. of the 9th Asia-Pacific Software Engineering Confer-
ence (APSEC'02). IEEE Press, New York (2002) 3–11

10. Hall, T., Beecham, S., Rainer, A.: Requirements Problems in Twelve Software Compa-
nies: An Empirical Analysis. IEE Proc. of Software Engineering, Vol. 149, No. 5. IEEE
Press, New York (2002) 153–160

11. Schneidewind, N. F.: Investigation of the Risk to Software Reliability and Maintainability
of Requirements Changes. In: Proc. of IEEE International Conference on Software Main-
tenance. IEEE Press, New York (2001) 127–136

12. Wang, Q., Li, M. S.: Measurement of Software Requirement Based on SPC. Chinese Jour-
nal of Computers, Vol. 26, No. 10. Science Press, Beijing (2003) 1312–1317 (in Chinese)

13. Lane, M., Cavaye, A.: Management of Requirements Volatility Enhances Software Devel-
opment Productivity. In: Proc. of the 3rd Australian Conference on Requirements Engi-
neering (ACRE'98). Deakin University Press, Geelong (1998)

14. Stark, G., Oman, P., Skillicorn, A., et al.: An Examination of the Effects of Requirements
Changes on Software Maintenance Releases. Journal of Software Maintenance: Research
and Practice. Vol. 11, No.5. John Wiley & Sons, Inc., Hoboken, NJ (1999) 293–309

15. Malaiya, Y. K., Denton, J.: Requirements Volatility and Defect Density. In: Proc. of the
10th International Symposium on Software Reliability Engineering. IEEE Press, New
York (1999) 285–294

16. Idri, A., Mbarki, S., Abran, A.: Validating and Understanding Software Cost Estimation
Models based on Neural Networks. In: Proc. of 2004 International Conference on Informa-
tion and Communication Technologies: From Theory to Applications. IEEE Press, New
York (2004) 433–434

17. Yang, G. X., Gao, D. Q., Song, G. X.: An Overall Evaluating Method for Software Quali-
ties Based on Neural Networks. Journal of East China University of Science and Technol-
ogy, Vol. 30, No.3. East China University Press, Press (2004) 292–295 (in Chinese)

18. Anderson, C., Mayrhauser, A., Tom, C.: Assessing Neural Networks as Guides for Testing
Activities. In: Proc. of the 3rd International Software Metrics Symposium. IEEE Press,
New York (1996) 155–165

19. Kumar, R., Rai, S., Trahan, J. L.: Neural Network Techniques for Software Quality
Evaluation. In: Proc. of Annual Reliability and Maintainability Symposium. IEEE Press,
New York (1998) 155–161

20. Hagan, M. T., Demuth, H. B., Beale, M.: Neural Network Design. PWS Publishing Com-
pany, Boston MA (1996)

150 C. Mao, Y. Lu, and X. Wang

21. Crnkovic, I., Funk, P., Larsson, M.: Processing Requirements by Software Configuration
Management. In: Proc. of 25th EUROMICRO Conference, Vol. 2. IEEE Press, New York
(1999) 260–265

22. Javed, T., Maqsood, M., Durrani, Q. S.: A Study to Investigate the Impact of Require-
ments Instability on Software Defects. ACM SIGSOFT Software Engineering Notes, Vol.
29, No. 3. ACM Press, New York (2004) 1–7

23. Xiao, H. M.: A Quantitative method on Software Quality Evaluation. Journal of Northwest
Normal University (Natural Science), Vol. 36, No. 4. Northwest Normal University Press,
Lanzhou (2000) 31–35 (in Chinese)

24. Software Engineering Institute: The Capability Maturity Model: Guidelines for Improving
the Software Process. Addison-Wesley Publisher, Boston MA (1995)

25. Boehm, B., Abts, C., Brown, A. W., et al.: Software Cost Estimation with COCOMOII.
Prentice Hall (2000)

26. Pham, H., Zhang, X. M.: A Software Cost Model with Warranty and Risk Costs. IEEE
Transactions on Computers, Vol. 48, No. 1. IEEE Press, New York (1999) 71–75

27. Liu, H. W., Yang, X. Z., Qu, F., et al.: A Study on Software Cost Model Based on CGOM.
Chinese Journal of Computers, Vol. 26, No.3. Science Press, Beijing (2003) 1333–1336
(in Chinese)

28. Boehm, B., Brown, A. W., Madachy, R., et al.: A Software Product Line Life Cycle Cost
Estimation Model. In: Proc. of the 2004 International Symposium on Empirical Software
Engineering (ISESE'04). IEEE Press, New York (2004) 156–164

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 151 – 163, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Requirements Engineering Processes Improvement:
A Systematic View

Anliang Ning, Hong Hou, Qingyi Hua, Bin Yu, and Kegang Hao

Institute of Software Engineering, Northwest University,
Taibai Road 229#, Xi’an, China (710069)

yiran_ning@163.com,hhong66@sina.com
,{huaqy, yubin, hkg}@nwu.edu.cn

http://www.nwu.edu.cn

Abstract. Requirement is the foundation for both software development and pro-
ject management activities, so an effective requirements process which has a po-
tential influence on the quality of the final software product must be committed by
all stakeholders. However current process improvement maturity models pay little
attention to requirements engineering process and they are “black-box test” for
organizations’ competence. It is the precondition for our research to understand
the fundamental issues and to identify the characteristic that requirement process
possessed. We suggest a systematic view for requirement process improvement
that includes measurement-based improvement for activities, methods, peoples as
“white-box test”, emphasizing the people factor, such as communication and col-
laboration, etc. Our future work will involve structuring the platform or tools
which integrate methods, technologies, checklists, templates, lessons-learned, and
providing basic supporting for requirements process improvement and distributed
requirements development and management.

1 Introduction

As our societies rely ever more on the transfer and processing of information for day-
to-day life, reliance on the quality of software systems is becoming of paramount. To
achieve high quality in software, one has to start from high quality requirements [25].
A comment from Sanjiv who was one of CHAOS University participants, “If you
don't nail the requirements, you fail the project. If you nail the requirements, you'll
deliver.” [28]. Understanding the value of good requirements and managing them well
can be the single biggest factor in lowering the cost and improving the success rate of
software projects. Therefore requirements are regarded as the foundation for both
software development and project management activities, all stakeholders must be
committed to an effective requirements process. It is well-known that software proc-
esses have an important influence on the quality of the final software product, and it
has motivated companies to be more and more concerned about software process im-
provement when they are promoting the improvement of the final products. There are
many evidences that process improvement has led to real improvements in both soft-
ware product quality and organizations' profitability. Software Process Improvement
(SPI) already offers the means to improve processes abilities or mature in the later

152 A. Ning et al.

stages of the software development process. In recent years, the SEI's Capability Ma-
turity Model (CMM/CMMI) for Software and the ISO 9000 quality standard(s) have
been enthusiastically embraced throughout the industry [2]. However, the experience
of our industrial was neither the CMM nor ISO 9000 address requirements processes
adequately; current process improvement and maturity models pay little attention to
requirements engineering.

Therefore, to understand the fundamental issues and to identify the characteristic
that requirement process possessed was discussed in section 2. To explore the effec-
tive approaches (measurement-based white-box test) to improve requirements proc-
esses, especially to emphasize the improvement of relationship among the technolo-
gies, activities, people from a systematic view in section 3, it is a novel, creative idea
for requirements processes and its improvement. On the other hand, by providing the
sufficient technology supporting to people factors (i.e. communication and collabora-
tion) improvement, as the more decisive role in requirement development and man-
agement is discussed in section 4 in the paper.

2 Requirements Engineering Processes

Brooks, in his classic paper on the essence and accidents of software engineering,
stated that “the hardest single part of building a software system is deciding precisely
what to build... Therefore, the most important function that the software builder per-
forms for the client is the iterative extraction and refinement of the product require-
ments” [3].

More and more, the organizations consulted consider the principal problem areas in
software development to be the requirements specification and the management of
customer requirements. Improving the processes of discovering, documenting and
managing customer requirements is critical for future business success. Because of
the persistence of these problems, requirements engineering attracts much interest and
investment. About requirement engineering process, we all also want to find the most
effective way to help industrial practitioners and to identify how they could make best
use of existing good practices [1]. In order to do this it is important for us to under-
stand requirements processes, because these requirements processes provide the con-
text within which new practices must be used, and practitioners need to be able to
assess their current processes in terms of the requirements problems which they ex-
perience and then select practices appropriate to the improvements which they wish to
make. From two different perspectives, the context of requirements engineering proc-
ess and the reason why requirement process is complex are discussed in section 2.1
and 2.2.

2.1 Context of Requirement Engineering Process

Improving the quality of requirements is crucial. But it is a difficult objective to
achieve. To understand the reason one should first define what requirements engineer-
ing is really about. Broadly speaking, software systems requirements engineering
(RE) is a process of discovering the purpose, by identifying stakeholders and their
needs, and documenting these in a form that is amenable to analysis, communication,

 Requirements Engineering Processes Improvement: A Systematic View 153

and subsequent implementation[4]. So requirement engineering process is a multi-
disciplinary, human-centered process, such as computer science, psycho-social sci-
ences, economics, and engineering converge in RE, contributing to the multi-
disciplinary approach that has characterized this discipline for a quarter of a century
now [25].

Now the software development world is experiencing an irreversible trend towards
the globalization of business [5]. This creates the need to achieve a thorough under-
standing of collaborative activities such as requirements engineering and design of
software in distributed development environments. Collaborative approach to soft-
ware requirements management is necessary in modern systems development, so as to
improve communication between project stakeholders and thereby bring about im-
provements in productivity and quality.

If we want to improvement requirement process, we should firstly understand it.
Up to now, that we know some knowledge on requirements process involve:

• Requirements lie at the heart of every well-run software project, supporting the
other technical and management activities. Changes that you make in your re-
quirements development and management approaches will affect other proc-
esses, and vice versa [21].

• It is not a discrete front-end activity of the software life cycle, but rather a proc-
ess initiated at the beginning of a project and continuing to be refined throughout
the lifecycle [10].

• Clear requirements as the third most important factor for successful project de-
velopment which was identified by a Standish Group report; incomplete and
changing requirements as the second and third most important factors leading to
unsuccessful projects; and incomplete requirements as the number-one factor for
canceled projects [23].

• Requirements errors are the most expensive errors to fix because they become
magnified as they go uncorrected. These errors become increasingly more diffi-
cult to correct as you move further along the software development lifecycle and
actually have a snowball effect. Boehm estimated that the late correction of re-
quirements errors could cost up to 200 times as much as correction during such
requirements engineering [6].

2.2 Why Requirements Engineering Processes So Complex

Software requirements have been repeatedly recognized during the past 30 years to be
a real problem. In early empirical study, Bell and Thayer observed that inadequate,
inconsistent, incomplete, or ambiguous requirements are numerous and have a critical
impact on the quality of the resulting software [7]. Noting this for different kinds of
projects, they concluded that “the requirements for a system do not arise naturally;
instead, they need to be engineered and have continuing review and revision”. Re-
quirements engineering must address the contextual goals why the software is needed,
the functionalities the software has to accomplish to achieve those goals, and the con-
straints restricting how the software accomplishing those functions is to be designed
and implemented. Such goals, functions and constraints have to be mapped to precise
specifications of software behavior; their evolution over time and across software
families has to be coped with as well [8]. Thus the actual is ([19], [39]):

154 A. Ning et al.

• The scope is fairly broad as it ranges from a world of human organizations or
physical laws to a technical artifact that must be integrated in it; from high-level
objectives to operational prescriptions; and from informal to formal. The target
system is not just a piece of software, but also comprises the environment that
will surround it; the latter is made of humans, devices, and/or other software.
The whole system has to be considered under many facets, e.g., socio-economic,
physical, technical, operational, evolutionary, and so forth.

• There are multiple concerns to be addressed beside functional ones - e.g., safety,
security, usability, flexibility, performance, robustness, interoperability, cost,
maintainability, and so on. These non-functional concerns are often conflicting

• Requirement specifications may suffer a great variety of deficiencies [9]. Some
of them are errors that may have disastrous effects on the subsequent develop-
ment steps and on the quality of the resulting software product - e.g., inadequa-
cies with respect to the real needs, incompleteness, contradictions, and ambigui-
ties; some others are flaws that may yield undesired consequences (such as
waste of time or generation of new errors) - e.g., noises, forward references,
over-specifications, or wishful thinking.

• There are multiple parties involved in the requirements engineering process,
each having different background, skills, knowledge, concerns, perceptions, and
expression means - namely, customers, commissioners, users, domain experts,
requirement engineers, software developers, or system maintainers. Most often
those parties have conflicting viewpoints.

• Requirements engineering covers multiple intertwined activities.
- Domain analysis: the existing system in which the software should be built is

studied. The relevant stakeholders are identified and interviewed. Problems and
deficiencies in the existing system are identified; opportunities are investigated;
general objectives on the target system are identified there from.

- Elicitation: alternative models for the target system are explored to meet
such objectives; requirements and assumptions on components of such models
are identified, possibly with the help of hypothetical interaction scenarios. Al-
ternative models generally define different boundaries between the software-to-
be and its environment.

- Negotiation and agreement: the alternative requirements/ assumptions are
evaluated; risks are analyzed; "best" tradeoffs that receive agreement from all
parties are selected.

- Specification: the requirements and assumptions are formulated in a precise
way.

- Specification analysis: the specifications are checked for deficiencies (such
as inadequacy, incompleteness or inconsistency) and for feasibility (in terms of
resources required, development costs, and so forth).

- Documentation: the various decisions made during the process are docu-
mented together with their underlying rationale and assumptions.

- Evolution: the requirements are modified to accommodate corrections, en-
vironmental changes, or new objectives.

• There are many appropriate methods and techniques used for requirements engi-
neering, which will have defined standards for requirements documents, re-
quirements descriptions, etc. The organization may use automated tools to

 Requirements Engineering Processes Improvement: A Systematic View 155

support process activities. It will have management policies and procedures in
place to ensure that the process is followed and may use process measurements
to collect information about the process to help assess the value of process
changes.

3 The Systematic View: Measurement-Based Process
Improvement for Activities, Techniques, Human

The software process is a production system regulated by a management system.
Managerial commitment is paramount in bringing about effective changes in working
practices; tools and methods may assist but a clear management lead, supported
through sustained reinforcement, is essential if the necessary changes in behavior and
culture are to be realized in practice and become a permanent feature ([1], [31]).
Software development depends critically on human creativity and talent. [6] has re-
ported, for instance, that people factors have an influence on productivity six times
greater than the use of software tools. [3] argues that methodology alone (i.e. process
models) will not “inspire the drudge”. If the quality of software requirement devel-
opment want to be improved, then a coherent model of the software requirement
process is required that does full justice to both the technical and the social dimen-
sions of the process. A complementary emphasis on people and process is required.
Without a broad approach that embraces process, people and technology, the danger
is that any attempt to “improve the process” will founder.

Fig. 1. requirement process - a systematic view

In essence, socio-technical theory conceptualizes organizations as open systems
(i.e. as intelligent entities that interact with and adapt to changing environments)
composed of technical and social “subsystems”. The technical subsystem of an or-
ganization refers to tasks, processes and technologies; the social subsystem denotes
the people who work for the company, their “psychological need” for fulfilling and
satisfying work, and the way that they are organized (e.g. as autonomous groups or in
line management structures).

156 A. Ning et al.

Technical improvements can have social costs (e.g. process automation which restricts
individual autonomy, CASE tools which rigidify roles) such that overall performance is
worsened rather than improved. It is vital that both technical and social dimensions of
the workplace are redesigned together, with the aim of improving performance through
increased efficiency. The key to improving performance is to optimize the joint design
of the technical subsystem (deliberations) and the social subsystem.

Most RE research is conceptual and concentrates on methods or techniques, pri-
marily supporting a single activity. Moreover, the rare field studies we actually have
do not establish a link between RE practices and performance. So in remaining sec-
tion, based on thorough understanding of requirement and its inherent complexity, we
emphatically discussed the process (set of activities) improvement in section 3.1 and
3.2, and social/humanities factors’ improvement in section 4.

3.1 Black-Box Test: The Weakness of Existing Standards and Models for
Process Improvement

In order to improve an organization’s requirements engineering process ability, exist-
ing process must be assessed. Developing an accurate process model is a complex
business and most assessment techniques tend to require specialist process assessment
input. This is achieved by identifying the requirements practices used by assessing
them against a checklist of the good practices described in the [10]. The requirements
process is much less homogeneous and well understood than the software develop-
ment process as a whole. There are two complementary classes of standard which are
relevant to requirements engineering process improvement:

SPI methods are aimed at evaluating organizations' software processes and providing
guidance on what can be improved and how. Although the ISO 9000 family of quality
standard(s) has not strictly an improvement standard, but has much in common with
those parts of improvement models which deal with the attainment of basic levels of
process maturity [11]. There is no section specific to requirements engineering and
little is said about the activities involved in eliciting, analyzing and validating the re-
quirements. These standards offer little direct help to an organization committed to
serious quality improvements in their requirements process. The SEI's CMM for
software version defines standards to be attained by different process areas for the
different phases of the development life-cycle. The experience of the industrial or-
ganizations show the benefits are harder to gain when applied to the requirements
process. In contrast to the CMM, SPICE has a continuous architecture where there is
a less rigid correspondence between practices, processes and maturity levels. This is
intended to encourage a more flexible approach where improvement effort may be
focused on the most needy process areas ([40],[41]).

Life-cycle process standards which are concerned with providing reference models
of the software development process. They deal with process models, the activities
which comprise a process and their products, and these models or standards apply
across the development life-cycle so requirements processes are not the focus. Exist-
ing life-cycle standards are a valuable source of basic good practices but the our aims
is to provide more focused coverage of how they can be integrated in a requirements
process, what their benefits and costs will be and what problems may be encountered.

 Requirements Engineering Processes Improvement: A Systematic View 157

The major characteristic of all the above standards and models is that they are ori-
ented towards assessing organizations' competence against a set of process criteria
using forms, checklists and templates. That is to say, it is black-box test for organiza-
tions’ competence. Inevitably, process assessment is difficult and is based on a snap-
shot view of the organization. Organizations are increasingly keen on performing in-
ternal assessments, both as a preparation for official accreditation visits but also sim-
ply to help identify their process weaknesses. This reflects growing recognition of the
potential for cost savings from process improvement and parallels the enthusiasm for
business process reengineering (BPR) and total quality management (TQM) in other
business areas ([17],[40]).

3.2 White-Box Test: Measurement-Based Process Improvement

Software measurement by itself cannot solve the problems in requirement process
improvement, but it can clarify and focus your understanding of them. Moreover,
when done properly, sequential measurements of quality attributes of products and
processes can provide an effective foundation for initiating and managing process
improvement activities. Effective measurement processes help software groups suc-
ceed by enabling them to understand their capabilities, so that they can develop
achievable plans for producing and delivering products and services. Measurements
also enable people to detect trends and to anticipate problems, thus providing better
control of costs, reducing risks, improving quality, and ensuring that business objec-
tives are achieved. Business goals and strategies, together with factual data about at-
tribute of product quality and process performance, are the key drivers that lead to
actions that improve a software process. In short, measurement methods help to iden-
tify important events and trends and effectively separate signals from noise are in
valuable in guiding software organizations to informed decisions ([12],[20],[21],[24]).

Fig. 2. measurement-based process improvement framework

158 A. Ning et al.

Figure 2 illustrates our generic requirements process improvement model which de-
fines activities aimed at identifying and resolving requirements defects while coping
with those which inevitably emerge at later stages and then measure, improve them.
The model:

• encourage a more flexible, continuous approach where improvement effort may
be focused on the most needy processes/activities areas.

• can be adopted in a way which allows an organization to plan and evaluate im-
provements to its requirements process.

• reflect the requirements processes’ iterative nature

It must be pointed out that process ability/maturity level is only one of the factors
which affect the quality of the final requirements document. Other important factors
are the ability and experience of the people involved in the process, the novelty, diffi-
culty and size of the problem and the time and resources available, etc.

4 Humanities Factors and Its Improvement

We cannot ignore the fact that people issues rather than technology underlie the ma-
jority of systems development problems [13]. Software development is carried on by
people, and indeed many commentators have taken pains to stress that high perform-
ance depends decisively on these “people factors”. Human, social and organizational
(HSO) factors play a decisive role in software development in terms of determining
functional and non-functional characteristics of software products. The fundamental
rules for collecting requirements are shifting in importance from the data to be proc-
essed by the system and the operations which process that data, to human–computer
interaction and social and organizational factors. Traditional requirements analysis
focus lacks human issues and does not address adequately the impact of social and
organizational matters in software systems design and development. Ethnography
analysis studies have been used over the last decade to fill this gap and to provide a
different viewpoint of how a software system must be conceived and examined, espe-
cially in work settings where collaboration between individuals in a computer-
supported environment is the primary issue ([14],[23]).

As we seen from the Figure 1 the context in which RE takes place is usually a hu-
man activity system, and the problem owners are people. Engagement in an RE proc-
ess presupposes that some new methods or technologies, such as computer-based sys-
tem could be useful, but these will change the activities that they supports. Therefore,
RE needs to be sensitive to how people perceive and understand the world around
them, how they interact, and how the sociology of the workplace affects their actions.
RE draws on the cognitive and social sciences to provide both theoretical grounding
and practical techniques for eliciting and modeling requirements:

- Cognitive psychology provides an understanding of the difficulties people may
have in describing their needs [15].

- Anthropology provides a methodological approach to observing human activities
that helps to develop a richer understanding of how computer systems may help or
hinder those activities [16].

 Requirements Engineering Processes Improvement: A Systematic View 159

- Sociology provides an understanding of the political and cultural changes caused
by computerization. Introduction of a new computer system changes the nature of the
work carried out within an organization, may affect the structure and communication
paths within that organization, and may even change the original needs that it was
built to satisfy [17].

- Linguistics is important because RE is largely about communication. Linguistic
analyses have changed the way in which the English language is used in specifica-
tions, for instance to avoid ambiguity and to improve understandability. Tools from
linguistics can also be used in requirements elicitation, for instance to analyze com-
munication patterns within an organization [18].

Finally, there is an important philosophical element in RE. RE is concerned with
interpreting and understanding stakeholder terminology, concepts, viewpoints and
goals. Hence, RE must concern itself with an understanding of beliefs of stakeholders
(epistemology), the question of what is observable in the world (phenomenology), and
the question of what can be agreed on as objectively true (ontology). Such issues be-
come important whenever one wishes to talk about validating requirements, especially
where stakeholders may have divergent goals and incompatible belief systems. They
also become important when selecting a modeling technique, because the choice of
technique affects the set of phenomena that can be modeled, and may even restrict
what a requirements engineer is capable of observing [4].

So effective communication and collaboration should be recognized and enhanced,
that is the good way to improve productivity and quality by fading humanities/social
negative influence.

4.1 Communication and Collaboration in Requirement Process

The requirements engineering phase of software development projects is character-
ized by the intensity and importance of communication activities. And it is widely
recognized that communication problems are a major factor in the delay and failure of
software projects [35]. During requirements engineering phase, the various stake-
holders must be able to communicate their requirements to the analysts, and the ana-
lysts need to be able to communicate the specifications they generate back to the
stakeholders for validation, etc. Sound requirements processes emphasize a collabora-
tive approach to product development that involves multiple stakeholders in a partner-
ship throughout the project. Identifying the real requirements requires an interactive
requirements process, supported by effective mechanisms, methods, techniques, and
tools [33]. By extension, therefore, the requirements on particular software are typi-
cally a complex combination of requirements from different people at different levels
of an organization and from the environment in which the software will operate [31].

Informal communication is very important for coordination of work and for learn-
ing the culture of an organization. It is also crucial for the perpetuation of the social
relations that underlie collaboration and generally, in any situation that communica-
tion is required to resolve ambiguity. Through informal communication, the reaction
to a requirement-related issue is propagated much quicker locally than across sites. At
the same time, informal communication within one site has a positive impact on the
local negotiation process. There is significantly greater ability to tap into immediate
knowledge in co-located development. In both organizations, requirements-related

160 A. Ning et al.

communication between remote sites is mostly done through “formal” channels, i.e.
the bi-weekly meetings, when the communication is focused on urgent issues and
leaves little room for small talk. Outside these meetings, the communication between
stakeholders is primarily channeled through the non-interactive email, or phone calls,
when improper knowledge management techniques make the communication ineffec-
tive. Reliance on asynchronous channels contributes to issues identified at one site,
small or big -- which may crop up on a daily basis -- go unrecognized at the other site,
and thus unresolved for a long time [35]. Geographically distributed requirements
teams is a complex phenomenon that covers several dimensions ([30], [36], [37]):

Inadequate communication. Distance introduces barriers to informal and face-to-
face communication, and the stakeholders’ communication is dependent on the qual-
ity of using synchronous or asynchronous electronic communication tools.

Knowledge management. The sheer quantity of information and knowledge about
requirements from multiple sources at remote customer sites was not appropriately
shared with the developers.

Cultural diversity. Differences in stakeholders’ language and national culture affect
global collaboration. Equally important was the impact of differences in organiza-
tional and functional culture. Not only did remote sites develop their own organiza-
tional culture, but also the distance widened the gap between the different functional
departments of the organization (marketing, business management, development and
engineering). This had a significant impact on achieving a common understanding
and negotiation of requirements.

Time difference. The large distribution of stakeholders introduced large time-zone
differences and allowed little overlap available for synchronous collaboration.

4.2 Congruent Tools/Platforms for Humanity Factors’ Improvement

While it is known that global projects bring additional challenges to project manage-
ment, there was an unanimous dissatisfaction with the Project Manager’s skills in
identifying a clear direction for the RE process and roles to support it. The concept of
“not working together” emerged when the impact of distance was discussed with the
stakeholders, and resulted in the attitude of “there is no knowledge of what the others
are doing, or should do”. The lack of well-defined roles and expectations led to misin-
terpretation of actions, due to stereotyping about cultures and working styles. It often
generated negative attitudes, exacerbated by existing conflicts due to political strug-
gles, and hence changed the atmosphere of the requirements negotiations ([36], [38]).

The requirements conflicts and tradeoffs are critical aspects that occur throughout
the software development and software engineers need to better understand the tech-
nological impacts on the performance of groups resolving requirements issues in dis-
tributed development structures. Because of the complexity of software development
projects, and also because stakeholders are likely to be geographically distributed, the
use of an automated tool to support such collaboration is essential. Recent advances in
technology, in conjunction with major changes observed in fundamental concepts of
requirements analysis, have altered the way software is produced nowadays. The ex-
plosion in telecommunications and the continuous growth of the Internet as a means
to communicate, exchange information and trade, caused significant revisions in cer-
tain phases of software life cycle models. For example, the need for continuous

 Requirements Engineering Processes Improvement: A Systematic View 161

change in content and functionality in web applications urged the establishment of
tentative configuration management mechanisms and forced a quicker development of
software products. Multimedia Web-based meeting tools such as NetMeeting are be-
coming ubiquitous for communication on the Internet. By providing audio and video
channels and real time sharing of applications, they emerge as potentially useful tools
for such communication ([30], [36], [37]).

5 Future Work and Conclusion

Based on the above understanding on requirement process improvement principle, the
next step is to construct a platform or tool, named WbCRE, for requirement develop-
ment and management, which integrate the practical metrics for white-box test proc-
ess improvement, and many methods, technologies guider, templates, checklists, les-
sons-learned, and others basic elements, such as objective data for practical measure-
ment analysis which collected automatically from requirement processes, remote
communication and collaboration techniques supporting tools, etc. Although, there
are several requirement management tools exercised in industries, such as Analyst
Pro, Caliber-RM, DOORS, IRqA, Rational RequisitePro, but none of them adopting
quantity technology or methods to help the improvement of requirement proc-
ess([26],[29],[32]).

It is a systematic engineering problem for us to improve the productivity and quality
of requirement engineering product, SRS, but existing models and standards are ori-
ented towards assessing organizations' competence. Organizations are increasingly
keen on identifying their process weaknesses and maximizing the ROI (return of in-
vest). Only to improve requirement process can not ideally solve the problem faced.
We have announced that to achieve reliable and durable gains in software quality,
both the social and the technical dimensions of the software process must be given
equal weight within a unified conceptual framework. More generally, it provides a
theoretical framework in which a broad debate about the design of process support
systems can be conducted which addresses both technical and social concerns.

References

1. J. Carver and V. Basili : Identifying Implicit Process Variables To Support Future Em-
pirical Work, Proceedings of the 17th Brazilian Symposium on Software Engineering
(SBES 2003).

2. Humphrey, W., Snyder, T. and Willis, R. : Software Process Improvement at Hughes Air-
craft, IEEE Software, 8 (4) (1991) 11-23.

3. F.P. Brooks: "No Silver Bullet : Essence and Accidents of Software Engineering". IEEE
Computer, Vol. 20 No. 4 (April 1987) 10-19.

4. B. Nuseibeh and S. Easterbrook : Requirements Engineering: A Roadmap , Proceedings of
International Conference on Software Engineering (ICSE-2000), 4-11 June 2000, Limer-
ick, Ireland, ACM Press(2000).

5. Herbsleb JD and Moitra D : Global software development. IEEE Software, (March/June
2001) 16–20.

6. B.W. Boehm : Software Engineering Economics. Prentice-Hall(1981).

162 A. Ning et al.

7. T.E. Bell and T.A. Thayer : “Software Requirements: Are They Really a Problem?”, Proc.
ICSE-2: 2nd Intrnational Conference on Software Enginering, San Francisco, (1976) 61-
68.

8. P. Zave : “Classification of Research Efforts in Requirements Engineering”, ACM Com-
puting Surveys, Vol. 29 No. 4 (1997) 315-321.

9. B. Meyer : “On Formalism in Specifications”, IEEE Software, Vol. 2 No. 1, (January
1985) 6-26.

10. Sommervile, I. and Sawyer, P. : Requirements Engineering A Good Practice Guide,
Wiley(1997).

11. Paulk, M. : A Comparison of ISO 9001 and the Capability Maturity Model for Software,
CMU/SEI-94-TR-12, Software Engineering Institute, USA(1994).

12. William A. Florac, Robert E. Park and Anita D. Carleton : Practical Software Measure-
ment: Measuring for Process Management and Improvement, CMU/SEI-97-HB-
003,(1997).

13. Guinan, P.J., Cooprider, J.G. and Faraj, S. : ‘Enabling Software Development Team Per-
formance During Requirements Definition: A Behavioral Versus technical Approach’, In-
formation Systems Research, 9(2) (1994) 101-125.

14. Andreou, A. : "Promoting Software Quality Through a Human, Social, and Organizational
Requirements Elicitation Process," Requirements Engineering, 8(2) (July 2003) 85-101.

15. Posner, M. I. (Ed.) : Foundations of Cognitive Science. MIT Press(1993).
16. Goguen, J. and Jirotka, M. (Ed.) : Requirements Engineering: Social and Technical Issues.

London: Academic Press(1994).
17. Lehman, M. M. : Programs, Life Cycles, and Laws of Software Evolution. Proceedings of

the IEEE, 68(9) (1980) 1060-1076.
18. Burg, J. F. M. : Linguistic Instruments in Requirements Engineering. Amsterdam: IOS

Press(1980).
19. R Jeffery, S Lauesen, D Zowghi and D Damian : Conducting Empirical Research in Re-

quirements Engineering, 6th Workshop on Requirements Engineering, Eds. Aybuke Au-
rum; Ross Jeffery,The University of New South Wales, Sydney (2001) 49 – 50

20. Mingshu Li : User-Driven Domain-Specific Software Requirements Analysis, 13th Inter-
national Conferences on System Engineering (ICSE'99), Nevada,USA.(1999).

21. Karl E. Wiegers : Software Requirements, second edition, Microsoft Press(2003).
22. Wang Qing and Li Ming-shu : Measurement of Software Requirement Based on SPC, Chi-

nese Journal of Computers, Vol.26, No.10(2003).
23. Ralph R. Young : Effective Requirements Practices, Addison-Wesley(2001).
24. Ren Fake, Zhou Bosheng and Wu chaoying : Study on Software Measurement Process,

Journal of Beijing University of Aeronautics and Astronautics, Vol.29, No.10 (2003)
25. Björn Regnell, Erik Kamsties and Vincenzo Gervasi : Summary of the 10th Anniversary

Workshop on Requirements Engineering: Foundation for Software Quality
(REFSQ’2004), www.resg.org.uk

26. http://www.volere.co.uk
27. Guide to the Software Engineering Body of Knowledge SWEBOK® 2004 Version, 2.1–

2.16, IEEE Computer Society, http://computer.org,
28. http://www.standishgroup.com
29. http://www.incose.org
30. Damian, D., et al. : "An Empirical Study of Facilitation of Computer-Mediated Distributed

Requirements Negotiations," Fifth International Symposium on Requirements Engineer-
ing, Los Alamitos, California: IEEE Computer Society Press (2001) 128-135.

31. S. Robertson and J. Robertson : Mastering the Requirements Process: Addison-Wesley
(1999).

 Requirements Engineering Processes Improvement: A Systematic View 163

32. Anliang Ning and Hong Hou : Software Economics Concept in Modern Software Devel-
opment, National Software and Applications Conference (NASAC2004), Beijing Univer-
sity of Aeronautics and Astronautics, (2004).

33. Michael Lang and Jim Duggan : A Tool to Support Collaborative Software Requirements
Management, Requirements Engineering (2001) 161–172

34. Katrina Hands, D. Ramanee Peiris and Peter Gregor : Development of a computer-based
interviewing tool to enhance the requirements gathering process, Requirements Engineer-
ing (2004) 204–216

35. Jane Coughlan and Robert D. Macredie : Effective Communication in Requirements Elici-
tation: A Comparison of Methodologies, Requirements Engineering (2002) 47–60

36. Damian, D., and D. Zowghi : Requirements Engineering Challenges in Multi-Site Soft-
ware Development Organizations, Requirements Engineering,8(3) (August 2003) 149-
160.

37. Damian, D., et al. : An Exploratory Study of Facilitation in Distributed Requirements En-
gineering, Requirements Engineering, 8(1) (February 2003) 23-41.

38. Dale, R. : Using a Requirements Management Tool in Technical Requirements Negotia-
tions, Fourteenth Annual International Symposium on Systems Engineering, Seattle,
Washington: International Council on Systems Engineering(2004).

39. Axel van Lamsweerde : Requirements Engineering in the Year 00: A Research Perspec-
tive, 22nd International Conference on Software Engineering, (2000)June 04 - 11, Limer-
ick, Ireland.

40. Sawyer, Pete, Ian Sommerville and Stephen Viller : Requirements process improvement
through the phased introduction of good practice, Software Process - Improvement and
Practice, 3(1) (1997) 19-34.

41. www.isospice.com

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 164 – 176, 2005.
© Springer-Verlag Berlin Heidelberg 2005

S-RaP: A Concurrent, Evolutionary Software
Prototyping Process

Xiping Song, Arnold Rudorfer, Beatrice Hwong, Gilberto Matos,
and Christopher Nelson

Siemens Corporate Research Inc. 755 College Road East,
Princeton, NJ 08540, USA

{xiping.song, arnold.rudorfer, beatrice.hwong,
gilberto.matos, christopher.nelson}@siemens.com

Abstract. This paper defines a highly concurrent, software rapid prototyping
process that supports a sizable development team to develop a high-quality,
evolutionary software prototype. The process is particularly aimed at developing
user-interface intensive, workflow-centered software. The Software Engineering
Department and User Interface Design Center at Siemens Corporate Research
(SCR) have successfully practiced this process in prototyping a healthcare
information system over the last year. We have evolved this agile, iterative
software development process that tightly integrates the UI designers and the
software developers with the prototype users (e.g., marketing staff), leading to
efficient development of business application prototypes with mature user
interfaces. We present the details of our process and the conditions that make it
effective. Our experience with this process indicates that prototypes can be
rapidly developed in a highly concurrent fashion given a stable prototyping
software architecture and access to readily available domain knowledge.

1 Introduction

Rapid software prototyping is an effective way to facilitate communication among the
customers, the requirement engineers and the marketing staff by providing them with
an executable, intuitive representation of a target system. Prototyping is an effective
approach to evaluate and refine software requirements [4][5][6][7]. Prototyping is
also used to aid the communications between the company’s marketing team and
potential customers, promoting the advanced features of the product and gathering
customer feedback. It helps to gain early customer buy-in for novel product ideas.

A software prototyping project can be “throwaway” or evolutionary. The
throwaway prototyping normally has a short duration and the software code will not
be reused for the corresponding product. The evolutionary prototyping has a potential
to mature a prototype into the final product and thus it needs to be of high quality and
with a software architecture that is compatible with the product software technologies.
In this paper we define a rapid software prototyping process that is aimed at
developing the evolutionary software prototype and can be applied during the early
phases (e.g., Requirements, Analysis and Design of RUP [10]) of the software

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 165

product development. We describe the process with sufficient detail so that other
organizations can apply this process as well. This process will be referred to as S-RaP
(Siemens Rapid Prototyping) throughout this paper.

A number of rapid prototyping approaches (e.g., agile modeling and software
development methods (e.g., Extreme Programming [9]) [5][8], RAD [4])) have been
described in the past. Agile methods usually emphasize involving the product users in
the prototyping, and encourage a rapid users-to-developers feedback cycle. Project
management and tracking are often not emphasized by those methods. Some agile
methods rely completely on using experienced developers.

S-RaP is similar to Extreme Programming (XP) method [9] in that it uses a
storyboard (XP uses a similar idea called Story Card) and extensively involves
product users during the development. Our contribution is that S-RaP is a unique and
effective approach that provides specific details for concurrent and iterative
prototyping of certain kinds of software applications within certain project
constraints. Those applications and project constraints are

• High software quality within short development life cycle (a few weeks or
months): Some of the quality attributes could be reliability, customizability, us-
ability, and code maintainability. In the projects where S-RaP was originated, the
company’s marketing team planned to use the prototype to communicate with
customers at pre-scheduled dates. Thus prototypes need to demonstrate an overall
high quality. Because the prototype is required to be highly customizable and
high fidelity, “throwaway” prototyping that is built upon hardwired code and
scripted scenarios is not acceptable.

• Support the visibility of project progress: The effort for which this process
originated is to deliver a prototype for a major trade show. This is different from
many other prototyping efforts that are only for technology evaluation or for a
few potential customers. Thus, project management must be able to evaluate the
project progress and manage the risk effectively.

• Workflow driven: The targeted prototype is viewed as a piece of software
supporting a set of workflows. A workflow within the scope of this paper refers to a
sequence of users’ UI interactions to achieve a certain business function. For
example, checking in the patient with the use of a healthcare information system
would be a workflow. Use-case refers to a specific instantiation of the workflow.
For example, checking in a particular patient (e.g., John Smith) would be a use-
case.

• The architecture of the prototype is largely known in advance: Particularly,
S-RaP is aimed at software applications built upon n-tiered web application
architecture. With a known architecture at the start of prototyping, the
prototyping process can be more focused on the implementation of specific user
requirements.

• Use of inexperienced developers: The project where this process originated was
a series of short-term contracts between SCR and a Siemens company. Due to
fluctuations in development resource needs, SCR had to engage quickly new de-
velopers. Even if the developers had advanced development skills, they were un-
familiar with the application areas (e.g., medical financial calculation, hospital

166 X. Song et al.

bed management). Thus the process needs to facilitate their application knowl-
edge ramp-up through early exposure to relevant concepts.

• Ill-defined requirements: The initial requirements from the users are unclear
and the developers also need time to acquire domain knowledge. However, the
business application has been in practice for a long time (e.g., the healthcare
financial applications).

• Emphasis on UI interaction: A mature and intuitive UI is a key acceptance
criterion for most software systems. Evaluating alternative UI designs for the
software prototype is a key activity.

From the above characteristics, we can see that S-RaP does not have some
characteristics and constraints required by other agile methods. For example, some
agile methods require using experienced developers while S-RaP is designed to use
inexperienced developers. S-RaP is also aimed at supporting the development of the
software with specific architectures (i.e., n-tiered, MVC based architectures).

Initially, in our early use of S-RaP, we laid out this process as a project plan that
included the definitions of the concurrent activities and key reviewing activities. In
this paper we will define the process in detail, following the process engineering
approach as suggested in [2]. First we define the requirements in Section 2 for the
process and then in Section 3, define the process. Finally, in Section 4, we will
discuss our experiences with S-RaP, specifically how we used and managed this
process to carry out a successful project.

2 Process Requirements

Because of the prototype characteristics targeted by S-RaP as described in Section 1,
S-RaP must provide the following support (note that in this paper the user is often
referred to the people who will use the prototype to define and validate the product
requirements, such as marketing staff or requirements engineers):

• Support high concurrence in a sizable project team: It must support a sizable
development team (e.g., 20-30 developers) working on the prototype in parallel
to facilitate a quick delivery. This is one of the unique requirements of our proc-
ess since many of the software prototyping activities tend to be at small scale and
performed with a small team (5-6 developers). The parallelism could be achieved
in a number of ways; the activities of same kind (e.g., UI design) are performed
concurrently on the different portions of a prototype, or the activities of the dif-
ferent kinds (e.g., UI design and UI implementation) are performed on the same
portion of the prototype.

• Enable user involvement: because of the vague initial requirements, the process
must involve the users in making all the requirements decisions and approve
major UI designs.

• Allow iteration: Since the requirements are not well defined, the users and UI
designers must see the prototyped behaviors to be able to adjust the existing re-

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 167

quirements and UI design. Thus, the process must be iterative enough to allow
continuous changes to the user interface and system behaviors.

• Promote cooperation between UI designers and developers: In order to avoid
miscommunication between UI designers and software developers, the process
should foster quick feedback on feasibility and usability between these two
teams.

• Sufficient documentation: Due to the short development life cycle, it is not
possible to develop extensive documents since that would create too much over-
head for the project. The document should be just sufficient to ensure that the
prototype is delivered with the correct UI look-and-feel and behaviors.

3 Process Definition

Figure 2 uses a basic flow chart to define the S-RaP process. The process starts from
the top-left corner and finishes at the bottom-right corner. From the project planning
and tracking point of view, it consists of three phases. Thus, the project management
can evaluate the project progress based upon the numbers of workflows that are being
mainly developed in each phase. However, from the development point of view, the
activities are performed concurrently through those three phases. For example, the UI
Design Phase and the Prototype Implementation Phase are largely carried out in parallel.

The solid-line objects in the diagram are the steps as we defined in our plan of the
project where the S-RaP process was originated. The major outputs of the process are
the prototype and the storyboard that contains the prototype requirements. The
prototype requirements can be used as the initial requirements document of the
corresponding product. Each workflow will be implemented by using this process.
Thus, at one point of the project, there can be a number of instantiations of the S-RaP
process that concurrently develops a number of workflows.

3.1 UI Design Phase

The user interface design begins with the initial understanding of the workflow and
prior experience in developing similar functions. The UI designer will carry out this
activity with extensive involvement of the users and limited participation of the
software engineers who will be implementing the user interface. This activity requires
a varied number of meetings with the users depending on the different complexities of
the targeted workflows. This activity will deliver a document called a storyboard that
defines each workflow (e.g., check-in of a patient for a healthcare information
system). The storyboard is a Microsoft PowerPoint document. The first page is a text
description of the function that the workflow achieves. The next page is a diagram
(e.g., a flowchart-alike diagram) of the workflow. Following the diagram, each page
of the storyboard defines one screen shot of the workflow. The interactions and
behaviors embedded in the screen shot are described in the notes area of the document
(see Figure 1). A storyboard is an evolving artifact, initially based upon the ideas
from the users. However, it will be further refined during the user reviews (either at
UI design or UI implementation level) or during the requirements meetings with the
users. Since this activity attempts to describe dynamic system behaviors with static

168 X. Song et al.

screen shots and English, the workflow description in the storyboard is likely
incomplete, at least at the beginning of the documentation. However, the storyboard
will be further refined and completed along with the maturing prototype throughout
the S-RaP process. The finished storyboard contains both the prototype requirements
and the UI design.

The UI design can start with an existing preliminary style guide to ensure design
consistency. The use of such a style guide can make the UI design and
communication with users more effective and efficient. For example, a modification
to the UI design can be consistently applied to other similar UI designs via the style
guide. The consistent naming of the UI presentations will make the communication
easier. However, it is also understood that prototyping will enhance the style guide, so
the style guide becomes a deliverable of the prototyping as well.

A long and complex workflow can be divided into two or more sub-workflows to
enable multiple UI designers to work concurrently on the same workflow.

Activity Review with Users ensures that all the major users are satisfied with the
user interface and the system behaviors. The main user contact must approve the UI
design as sufficiently complete so it can be final-reviewed by all the major users. All
the major stakeholders will attend this review and decide if the storyboard will be
approved. This activity is largely a requirement activity that is focused on the UI
look-and-feel and correct interaction sequences. Due to the limited meeting duration,
the meeting can be focused on only the important requirement issues. The review
meeting will not verify all the behaviors of the workflow with the users.

Fig. 1. Sample page from the storyboard

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 169

UI Design

Review w/
users

UI
Implementation

Review w/
users

Data (Model)
Design/

Implementation

 Integration/Bug
Fixing

System
Testing

Acceptance
Testing

Storyboard
(per workflow)

UI Design Not Approved

Impl. Not Approved

UI Design Approved

Testing Not Passed

Testing Passed

Test Not Passed

Finished

Acceptance Testing
Phase

Prototype
Implementation

Phase

UI Design PhaseUI Problem, not approved

Application
Service

Development

Initial
Requirements

Fig. 2. A diagram illustrating the S-RaP prototyping process

3.2 Prototype Implementation Phase

3.2.1 UI Implementation
The UI Implementation activity starts as soon as a portion of a workflow’s storyboard
has been developed and its basic layout is relatively stable (e.g., about 30-40%
finished). It is not necessary to wait until the storyboard is completed. Implementers
can first start implementing the most stabilized UI designs. This enables a high

170 X. Song et al.

parallelism between the UI Design and the UI Implementation. The UI Implemen-
tation activity delivers an executable, interactive user interface of the prototype,
possibly using mock-up data. This ensures that the workflow appears realistic, and
thus users can easily review the workflow’s dynamic behaviors before completely
validating more detailed prototype requirements.

For inexperienced developers, this activity can be started even earlier to allow the
developers to have extra time to become familiar with the prototype architecture.
What they develop during this period of time will likely be extensively modified later.

The Review with Users activity of the UI implementation cannot be started until
the UI Design Review is finished. This ensures that the validation of the dynamic
aspect of the prototype requirements can be based upon the validated static aspect of
the prototype requirements. It is possible that the implementation will reveal areas of
improvement in the UI design (e.g., missing required interactions for users). This
would lead to an extra UI design iteration. However, if the UI design change is minor
and does not require changing the requirements, this will not cause an additional UI
design review. Since at this point the prototype is interactive, the users will be able to
see some complete interactive use-cases of the prototyped workflow. Thus, the
requirements can be further refined and more completely validated with users. For
example, for “checking-in patients into a hospital” workflow, since it is interactive
and the users can actually execute it, the working prototype can ensure that the UI
design is complete at least for one use-case (for a particular patient) of the workflow.

3.2.2 Data Design and Implementation
Unlike a “throwaway” prototype that completely relies on mock-up data, the
evolutionary software prototype needs to use realistic data and the data changes
should remain realistic after being accessed and modified by the users. The data
design can consist of two parts. One is the data model and another is the actual data
value set that will be stored in the data model. Since S-RaP is aimed at supporting
evolutionary prototyping, it needs to support the data design and implementation.

To support highly concurrent processes of refining requirements of UI look-and-
feel, dynamic UI interactions and the data changes, S-RaP can start the data model
design once a few of the storyboards are initially defined. The data designers can
analyze the UI designs to understand what data needs to be accessed and modified. In
addition, by analyzing the prototype behaviors specified in the storyboards, the data
designers can better understand the relationships among the different data. Based
upon this understanding, data designers can develop a data model that can be
converted into a database design and a data access layer (e.g., Java classes) that
supports the direct access from the UI implementation. During this activity, the data
designers will discuss the data requirements with users as well to gain an overall
understanding of the requirements across multiple workflows.

The data design is the second task of this activity. This task is to ensure that the
data values are realistic as well as sufficient for exploring a variety of interesting use-
cases that would use the varied data values. It will identify a basic data set (e.g., the
patient demographics data) and the rules that govern which data should be allowed to
appear in certain workflows. Such rules depend heavily on the application domain
knowledge. Thus, the development of those rules requires the communication with the
users.

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 171

3.2.3 Application Service Development
This activity develops the application services that support the prototype behaviors.
The application services support the business logic that can be shared among a num-
ber of workflows. For example, it supports the calculation of a reimbursement for a
patient. Starting this activity early gives the developers extra time to gain the domain
knowledge required for implementing the services. This activity is started immedi-
ately after a few storyboards are initiated. The developers for this activity must dis-
cuss with the users the requirements for the behaviors of the services they will im-
plement. With an in-depth understanding of the application service requirements, the
service application developers can provide useful inputs to the data model designers
for how the data should be structured to effectively support the data accesses from the
application services.

3.2.4 Integration and Bug Fixing
This is the final activity for each workflow to be developed. During this activity, the
developers will integrate the UI implementation code and application service code. The
developers may need to implement the UI/data interface code to facilitate the data sup-
port for each UI (e.g., forms in the Struts architecture [3]). The developers will unit-test
the developed workflow against the corresponding storyboard. This is often teamwork
between the developers who are involved in the previous activities such as Application
Service Development and UI Implementation development. Sometimes, if the data
model needs to be changed, it will require the participation of the data designers.

3.2.5 System Testing
The system testing is to test the functional behaviors of a workflow after it has been
fully integrated with all the required business logic and persistent support. It differs
from the “unit testing” in: 1) it is carried out by testers who do not implement the
particular workflow being tested, and 2) it will formally report the defects which will
then be tracked by project management and the test lead. The storyboard is used as
the testing script for verifying the prototype behaviors. At this stage, the testers verify
the prototypes against the storyboard for every detail.

3.3 Acceptance Testing

The prototype users will carry out the acceptance testing. The users are the people
who will demonstrate the prototype to their customers for the proposed new product
features. Like the system testers, the users use the storyboard as the requirements to
verify the prototype behaviors and the user interface compliance. Since the users have
previously approved the storyboard, there should be little disagreement between the
testers and the implementation team as to whether the prototype UI and behaviors are
implemented correctly. Acceptance testing can be viewed as a final step to validate
the actual requirements, since the users will perform the testing, based both on the
storyboard and their understanding of the application domain.

4 Experience

In using this process, we developed a healthcare information system. The prototype
has the attributes as we described in Section 1. Specifically, a Siemens marketing

172 X. Song et al.

team planned to use this prototype to communicate with Siemens customers on pro-
posed features. The initial requirements of the prototype were based upon their exist-
ing understanding of the customer needs and their knowledge on the prior similar
products. Prior to our prototyping effort, a large portion of existing understanding of
customers’ needs was neither well documented nor organized in a way to support
product development. Thus, our prototyping activity had two goals: 1) To develop the
prototype that is a marketing and requirement solicitation tool for the marketing team,
2) To formulate the product requirements elicited from the Siemens customers in an
organized and tangible manner.

The prototype consists of 6 workflows and each workflow was specified with a
storyboard that has on average about 25 screen-shots. The prototype is required to be
customizable; the data displayed in the prototype UI can be customized for different
customer audiences. The business rules can be added or modified to enforce the pro-
totype data compliance. The schedule for the delivery was very tight and firm (we
needed to deliver the prototype in four months) while the prototype was required to be
extremely reliable and with high look-and-feel quality. Our development team had on
average 20 staff members throughout the project duration.

By using S-RaP, we finished the project even a little earlier than the scheduled de-
livery dates even though at the start, the project was considered as highly risky for
delivering on time. The project size in terms of the number of requirements, projected
lines of implementation code, and number of team members all exceeded those of our
prior projects. Our success in applying the S-RaP process concurrency indicates that
concurrent and iterative prototyping is highly effective for the development of a large
software prototype within a short development life cycle. In the following sections we
discuss our observations in detail.

4.1 Progress Visibility

The following diagram provides a combined snapshot view as the project manager
evaluated the project progress. Note that this is not a view directly shown by the pro-
ject-planning tool (i.e., Gantt Chart), but rather a project progress envisioning by the
project manager based upon the executing project plan. The span of each box indi-
cates roughly where the major activities for each workflow fall. For example, the
diagram shows that Workflow 1 was finished while Workflow 6 was being developed
in parallel in both UI Design and the Prototype Implementation phase. After a work-
flow development had completely been moved from one phase to another, the project
manager will know most of the work in the past phase had been finished. The span of
a specific workflow across multiple phases (for example, Workflow 5 is in UI Design
and Prototype Implementation) indicates that the activities of both phases are still
taking place. The implementation phase will be under way for the data and service
aspects, or for the parts of the UI whose UI design has been matured and approved.

The S-RaP process provided the project manager with four checkpoints to evaluate
if a workflow has passed certain development phase: 1) ”UI Design Review with
Users”, 2) “UI Implementation Review with Users”, 3) Problem list from System
Testing, and 4) Problem list from the Acceptance Testing. 1) and 2) are two very
specific activities that will either approve or reject the reviewed artifacts Thus, they

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 173

provided clear information for the project manager about the progress. Since the
problem lists describe specific defects of the prototype found at certain dates for each
workflow, they were very informative for evaluating the project progress.

Prototype Impl.

Workflow 5 Dev.

Workflow 4 Dev.

Workflow 3 Dev.

Workflow 2 Dev.

UI Design
Acceptance

Testing

Workflow 6 Dev.

Project Progress

Finished

Workflow 1
Dev.

Fig. 3. Project progress envisioning

4.2 Concurrent Prototype Development

We successfully applied the S-RaP concurrency as we planned. Our experience
however indicates that the concurrent activities should be highly interactive among
the different teams (e.g., UI design and UI implementers). Those interactions can
trigger the iterations of the activities in a more timely fashion. For example, the
requirements of different system aspects (e.g., UI look-and-feel, and the dynamic
interactions) were developed concurrently. However, once an initial working
prototype was created, the detailed UI interactions and data behavior provided by the
prototype affected the UI design again. Reviewing the UI prototype provided an
opportunity for users to iteratively refine their UI requirements with the developers.
To reduce the time spent on those team interactions, a representive member of one
team can participate in the requirement meetings of other teams.

One major issue for the concurrent development is that the concurrent activities
can cause substantial rework that outweighs the time gains from the activity execution
concurrency. We addressed this issue by allowing the dependent activities to be
carried out only on the stable requirements. Thus, the activities can speed up the
iterative refinement of requirements rather than cause a complete rework of the
requirements. For example, a storyboard draft in our project had over about 40 screen-
shots that define UI and interactions. We started the UI implementation on the first 10
screen-shots that were relatively well defined. Thus, while the UI designers worked

174 X. Song et al.

on the other slides, the developers implemented the first part of the workflow and
provided the UI designers with feedback more quickly than if this had been done in a
linear order.

Our experience also shows that concurrent development requires a centralized
coordination, so the requirement changes can be managed to ensure their consistency
across different workflows. In our project, there were three to four workflows being
implemented concurrently. The project lead tracked the issues coming from the
different teams and coordinated some unified approach to address those issues that
can be about the implementation techniques or prototype requirements such as the
consistent system behaviors. For example, two different workflows allow users to
enter the data. However, when to save the data can be an issue (e.g., immediately after
the data is entered, or after the “OK” button is pressed). Sometimes, whether we
should keep the behaviors consistent depended on different application purposes. The
identification of these sorts of issues sometimes led to a team meeting or a meeting
with users to resolve the unclear requirements that can have a global impact on
multiple workflows.

Another important benefit of this process is that it supports incremental delivery to
users. One major issue in our project was that if we delivered the prototype exactly on
the scheduled delivery date, the users would not have enough time to acceptance-test
the prototype. The incremental delivery supported by S-RaP process very effectively
solved this problem since the incremental delivery involved the users in the
concurrent development process. In our project, the system-tested workflows were
packaged into a number of groups and then delivered to users incrementally. Thus,
while the other workflows were still being developed and system-tested, the users
were able to acceptance-test the delivered workflows. The early acceptance testing
also provided the development team sufficient time to fix the bugs, which would be
impossible if the process were completely sequential and the delivery were not made
incrementally.

4.3 Start System-Testing Early

One important factor that contributes to the successful use of S-RaP in this project is
to start the system testing early. As soon as the integration for a workflow was stable,
the system testers started the system testing for this workflow. Sometimes, for a long
workflow, the system testing can be started on a finished portion of the workflow.
The system testing helped identify quite a few problems that were not identified
during the UI Implementation Review. Partially, it was due to the fact that the UI
Implementation Review is more oriented towards the requirements validation, not the
system verification. Thus, portions of the workflow implementation that were not
related to the requirement issues were often not reviewed. The system testing was
aimed at testing all the details of the prototype. Thus, it revealed the previously
overlooked problems. Thus, it is extremely important to understand that the approved
prototype implementation cannot in any way to replace the system testing.

About 10% of the development staff performed the system testing. The project
leads played a significant role in the system testing. This helped them to have an
accurate estimate about the project progress and to identify issues (e.g., developers’
misunderstanding of the requirements) early. Since the project lead had a broad view

 S-RaP: A Concurrent, Evolutionary Software Prototyping Process 175

of the workflows being concurrently developed, the identification of issues helped
him to estimate the impacts on the other workflow developments (e.g., efforts
required for making the changes).

UI designers who previously worked on the storyboards also tested most of the
prototypes with an emphasis on the UI look-and- feel. This helped to identify the
detailed UI issues that were often overlooked by the system testers.

5 Conclusions and Future Work

Highly concurrent, evolutionary software prototyping for certain application types
that have stable application practice can be very feasible and effective. Even if the
user interaction definition is initially unclear, if the application practice is well
understood by the users, then the data model design and application services can be
developed in parallel with the UI design to a large extent. Hence, the requirements for
the different system aspects can be defined concurrently to speed up the prototype
development.

The S-RaP prototyping process helps mature the prototype requirements that will
then be used as the inputs to the product requirements. The UI design, implementation,
system/acceptance testing of the prototype correspond to the different stages of the
requirements activities, namely, requirement elicitation, analysis, specification, and
validation. UI and the implementation reviews facilitate the above activities. The
prototype system testing and acceptance testing can reveal potential requirement
issues (e.g., behavior consistency) across different workflows. As with any method
that involves customers throughout the software development, S-RaP requires the
project management and development leads to manage the customer involvement
efficiently and sufficiently. For example, the manager needs to direct the customers to
describe only the domain knowledge that is relevant to the desired prototype
behaviors. Otherwise, customers and software developers can both waste their time
discussing irrelevant issues.

A well-designed software process can be essential to the success of a software
prototyping and development project. However, process alone will not guarantee the
project success. Its success additionally requires a good understanding of the process
(and its rationales) by all key project staff at the project start and by the entire team
soon after. The project leads and developers need to understand when they should
defer a design decision making to the next prototyping iteration and when they should
design and implement the system to the level of perfection. Documenting and
representing such knowledge and criteria can be challenging since they are often not
very tangible and measurable. We believe that capturing such knowledge however will
be very useful for understanding rapid software prototyping and specifically, for using
S-RaP more effectively. This should potentially be a future research topic for us.

References

1. Gamma E., et al.: Design Patterns, Addison-Wesley (1977)
2. Song, X., Osterweil, L: Engineering Software Design Processes to Guide Process Execu-

tion, IEEE Transactions on Software Engineering, Vol. 24, No.9 (1998) 759-774

176 X. Song et al.

3. Cavaness, C.: Programming Jakarta Struts. O’Reilly & Associates (2002)
4. Millington, D., Stapleton J.: Developing A RAD Standard. IEEE Software. Vol. 12, No. 5,

(1995) 54-55
5. Martin, C. R.: Agile Software Development, Principles, Patterns and Practice, Prentice Hall

(2002)
6. Hwong B., Laurance, D., Rudorfer A., Song, X.: User-Centered Design and Agile Soft-

ware Development Processes, CHI, April 25-29, Vienna, Austria, (2004)
7. Gunaratne, J., Hwong, B., Nelson C., Rudorfer A.: Using Evolutionary Prototype to For-

malize Product Requirements, workshop with International Conference on Software Engi-
neering (2004)

8. Boehm, B, Turner R.: Balancing Agility and Discipline, Addison-Wesley (2002-2003)
9. Beck K.: Extreme Programming Explained, Addison-Wesley (2000)

10. Kruchten P.: The Rational Unified Processes, Addison Wesley (1999)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 177 – 191, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Aspect-Oriented Software Development
and Software Process

Stanley M. Sutton Jr.

IBM T. J. Watson Research Center,
Hawthorne, NY, 10532 USA
suttons@us.ibm.com

Abstract. Aspect orientation is an increasingly promising approach to software
development. It affords benefits deriving from advanced separation of concerns,
including concern modeling, encapsulation, extraction, and composition. These
may enable the development and evolution of software on a higher semantic
level, with unprecedented control and flexibility. Aspect orientation may hold
similar benefits for software process. Aspect orientation has implications for
process on three levels: aspect-oriented products, aspect-oriented processes, and
aspect-oriented process languages. It also facilitates insight into how the
software-process spectrum may be unified. Macroprocess and microprocess
concerns do not overlap, but some relationship between them is necessary. The
relating of macroprocess concerns and microprocess concerns is the concern of
a mesoprocess level, the principal home for process engineering, the purpose of
which is to realize the ends of the macro level in terms of the means provided
by the micro level. Aspect orientation should also benefit to a rigorous, orderly,
and effective discipline of process engineering.

1 Introduction

Software process is generally about the development of software artifacts, using
software tools, and working in software formalisms. Thus software process must
necessarily accommodate itself to views and realizations of those artifacts, tools, and
formalisms (although it may also seek to influence those views and realizations).
Often these reflect programming or data-modeling paradigms, such as procedural or
object orientation. Aspect orientation is a relatively new paradigm that has emerged
from a programming model to stake a legitimate claim to being a software-
development paradigm: aspect-oriented software engineering (AOSD). AOSD is still
an emerging field with many open research issues. However, it has received
considerable attention from research and commercial communities and it has
produced interesting and significant results, especially in the area of programming but
also in other areas of the life cycle. Thus, the implications of AOSD for software
process (and process engineering in general) should be considered. Additionally,
aspect orientation provides a useful perspective from which to consider the unification
of the software-process spectrum and contributions to the formation of a discipline of
process engineering. Section 2 of this paper discusses some of the key ideas in

178 S.M. Sutton Jr.

AOSD. Section 3 then considers implications of aspect orientation for software
process on three levels. Section 4 addresses unification of the software process
spectrum, using the aspect-oriented perspective to propose a third, integrating level of
the spectrum and to consider how aspect orientation may contribute to process
engineering. Finally, Section 5 presents conclusions.

2 Aspect-Oriented Software Development

“Aspect oriented” has been given two different meanings in software development.
The original and narrower meaning relates to a method of programming that involves
special treatment of “aspects”, where an aspect was originally defined as (program)
property that cannot be cleanly encapsulated in a “generalized procedure” [28]. A
later but comparable definition is a program property that forces crosscutting in the
implementation [15]. However, aspect-oriented programming in this narrower sense is
one of a number of efforts that address the more general topic of “advanced
separation of concerns.” Examples of these approaches include subject-oriented
programming [18], composition filters [1], adaptive programming [30], and
multidimensional separation of concerns [45]. The term “aspect-oriented” has also
been adopted to refer to this broader field. Unless otherwise stated, that is the sense in
which I use the term (and the acronym AOSD). Some important ideas from AOSD are
as follows:

• Advanced separation of concerns: Practically all approaches to AOSD are
founded on the idea that conventional mechanisms for separating concerns are
inadequate. The problem is that concerns are separated by means of system
decomposition, and this allows only a single, dominant decomposition to be
imposed, supporting only a single, dominant structuring of concerns. However,
many systems can be decomposed in multiple ways, and no single decomposition
can effectively separate all of the concerns that a realistic system must address.
This leads to scattering, in which some concerns necessarily crosscut the dominant
decomposition, and tangling, in which some modules necessarily combine multiple
concerns. Additionally, for a long-lived system, the concerns of relevance will
change over time. Consequently, the initial decomposition is likely to become less
and less appropriate to current concerns and more and more problematic to
maintain, extend, integrate, and so on. Thus, more “advanced” means of separating
concerns are needed.

• Aspect-oriented programming: As noted, aspect orientation in the narrow sense
is a particular perspective on advanced separation of concerns that addresses the
problem of crosscutting concerns. Aspect-oriented programming [28] distinguishes
these crosscutting concerns as aspects. It explicitly recognizes the crosscutting
relationships, which are referred to as pointcut specifications in many AOP
systems. It provides the means to localize the code for an aspect in a single module
and provides a mechanism for composing (or weaving) the aspect code into the
(dominant) base code of a program according to these crosscutting relationships.
This addresses the scattering of aspectual concerns by localizing them in aspect
modules, and it addresses tangling in the base program by enabling the omission of

Aspect-Oriented Software Development and Software Process 179

aspectual concerns. AOP mechanisms are typically defined in relation to an
existing programming language (such as Java [28, 22], C++ [41], C [9] and several
others [3]), and so the AOP mechanisms supplement the separation-of-concerns
mechanisms already available in those languages.

• Subject orientation: Subject orientation [18] is the idea that different participants
in a system (whether human or automated) may have different views of various
entities in the system. Conversely, any given entity in a program may have to play
multiple roles corresponding to multiple users or stakeholders1. Subject orientation
gives another argument against the suitability of a single, dominant decomposition
for software systems, for in general no one decomposition can coherently represent
the perspective of all subjects. (The elements of concern to a subject may be
scattered over multiple implementation classes, and the implementation classes in a
system may tangle the concerns of multiple subjects.)

• Multidimensional Separation of Concerns: MDSOC [45] is (in part) a
generalization of subject-orientation that holds that elements in a software system
should be considered to belong to multiple independent concerns simultaneously.
In other words, a system should be decomposable in multiple ways at the same
time, for example, by features, behaviors, structures, and qualities [44]. MDSOC
provides a basis not only for conceiving, viewing, and organizing software
according to multiple dimensions of concern but also for extracting and composing
software elements according to multiple dimensions of concern (e.g., as in Hyper/J
[22], and the Concern Manipulation Environment (CME) [21,13]). This subverts
the tyranny of the dominant decomposition [20] in a way that goes beyond that of
strict aspect orientation by obviating the need for any dominant decomposition (or
base program) and enabling elements from various decompositions to be used with
equal priority.2

• Explicit modeling of concerns: Another idea that emerges from MDSOC, as first
embodied by Hyper/J [22] and generalized in later work [44,31,48], is that
concerns should be modeled explicitly, as first class entities in and of themselves,
independently of particular software artifacts that may implement them. This can
be seen as an application of the principle of separation of concerns to the treatment
of concerns in the software life cycle. The importance of concern-modeling as a
first-class activity is that it enables stakeholder concerns, and the relationships
among them, to be captured explicitly at a high level of semantics. These concerns
can be captured independently of the various artifacts and activities through which
they will be realized, but the concerns can still be related to those artifacts and
activities. This enables a concern model to serve as a high-level, “semantic hyper-
index” into the software process and its products [44]. A concern model can be
used to organize, analyze, interrelate, navigate, and query life-cycle elements,

1 This is of course very similar to the idea of Viewpoints [32], although the subject-oriented

authors were initially concerned with more fine-grained elements (such as classes) within a
program, whereas the Viewpoints authors were initially concerned with more coarse-grained
elements (such as artifacts) within a software development process.

2 The aspect-base view of (for example) AspectJ [27] is often called asymmetric AOP, while
the concern-concern view of (for example) Hyper/J [22] is often called symmetric AOP.

180 S.M. Sutton Jr.

allowing stakeholders to conduct their activities and to access the system under
development directly in terms of their interests.

• Applicability across the life cycle (and beyond): Although the original ideas
relating to aspect orientation were articulated in terms of implementations
[18,28,22], much work has since extended these ideas across the life cycle.
MDSOC applies across the life cycle [45], and work has been done (for instance)
on aspect-oriented requirements engineering [4,7,24,47], aspect-oriented design
and architecture [8,5], and aspect-oriented analysis and testing [35,50,38].
Additionally, many ideas in aspect orientation should be applicable outside of the
software domain. For example, mechanisms for concern extraction and
composition should be applicable to any sort of structured information artifact or
work product. Also, concerns can be modeled for any sort of entity that is capable
of holding interest in some matters or in reflecting some matters of interest (such as
organizations, processes, and artifacts, whether relating to software, engineering in
other domains, business, government, manufacturing, and so on).

A number of elements of aspect orientation have process implications. In my
opinion, the most important are the explicit modeling of concerns to represent
stakeholder interests at a high conceptual level, the ability to conceive, organize, and
view software according to concerns, and the ability to extract and compose software
elements based on concerns.

It is worthwhile to consider the process implications of aspect orientation for two
reasons. First, aspect orientation is a growing movement and, although it is still
relatively new, it has produced some significant results. The International Conference
on Aspect-Oriented Software Development has been held annually since 2002, and
workshops on topics relating to aspect-oriented software development have been held
at major software-engineering conferences since well before then. There are research
groups in aspect orientation at a growing number of universities. Finally, the
promotion and/or use of AOSD has received significant attention from several
commercial organizations, including IBM [37,22,21,12,11], BEA [6], PARC (Xerox)
[34], JBoss [26], among others (often through open-source projects). Also its
applicability to “real-world” projects has been the subject of significant research
programs ([16], [10]).

The second reason to consider the process implications of aspect orientation is that
aspect orientation holds many prospective benefits for software engineering,
including increased understandability, improved maintainability, easier evolution,
greater reuse, and more. These qualities would also be of considerable benefit in
process engineering. Implications of aspect orientation for software process are
discussed in the following section.

3 Implications for Software Process

Aspect orientation has implications for software process on three levels: relating to
products, relating to processes or process-programs, and relating to process languages.

Aspect-Oriented Software Development and Software Process 181

3.1 Implications Relating to Products

Aspect orientation has implications for the nature and kinds of software artifacts.
Since elements relating to specific concerns can be more fully separated, individual
units may become physically smaller and more numerous and semantically simpler
and more focused. At the same time, because these elements are smaller, simpler, and
more focused, the ability to reuse and share them may increase. Increased sharing
and reuse may reduce the total size of the artifact base for a given set of products (or
product variants). However, ease of composition for reusable elements may tend to
increase the number of products (or product variants) that are be developed. Artifacts
representing composition or weaving directives will be necessary, but these will play
a role analogous to traditional configuration and build files. Concern models may
come to represent an important new category of artifact.

Aspect orientation also has implications for the nature of the activities in which we
work with software products. Generically, AOSD will include activities like the
identification (or mining) and modeling of concerns, the association of software
artifacts to concerns, the organization of artifacts according to concerns, the extraction
of new units from existing units to achieve greater specificity of concerns, the
composition of new units from existing units to achieve greater breadth of concerns,
and the specification of extraction and composition directives.

The specific roles played by aspect-oriented activities in software development
depend on the kind of process. For example, in legacy migration, the principal aspect-
oriented activities may be to browse, query, and navigate the existing artifact base,
identify the concerns represented there, map units and their parts to identified
concerns, logically encapsulate and/or physically extract elements according to
concerns identified, and recompose extracted elements to obtain the prior system or to
introduce new variations. In new development, the activities may be to identify
concerns to be addressed by the new system, develop artifacts to address specific
concerns, specify composition directives, and compose the new system according to
the directives. When a new product is to be based on reuse from existing components,
it will be important to browse and query a base of components based on the concerns
they address. When the activity is debugging, it may be addressed by composing in
code for measuring, monitoring, analyzing, logging, and reporting, applying
composition and extraction to address problems, and then removing the diagnostic
code from distributed products.

We can also envision some more general consequences for aspect-oriented
software products. The ability to include or exclude concern-specific elements from a
system should tend to facilitate the development of product families (including the
conversion of “single-variant” products into families). The ability to extract concern-
specific elements from existing systems (legacy or not) and then to recombine these in
comparable or entirely new products should promote reuse. Conversely, the ability to
extract and (re)compose concern-specific elements of a system increases the ability to
configure, adapt, tailor, and evolve the system. This may help to extend system
lifetimes. Better separation of artifacts according to concerns affords the opportunity
for better separation of processes since activities on different concerns may proceed in
parallel. This may make aspect orientation especially appropriate for open-source
projects and may better enable commercial (or other proprietary) developers to
provide value-added elements into open-source projects [19].

182 S.M. Sutton Jr.

It is important to note that the adoption of aspect-orientation need not be all-or-
nothing [13]. The changes to existing development practices can be minimal.
Composition can be used in implementation (coding) without necessarily requiring
changes to other parts of the life cycle. Concern modeling can be performed at any
stage of development, potentially relating to any sort of artifact, without necessarily
affecting those artifacts or requiring the use of composition. Concern mining can
operate on an existing artifact base (now typically a code base) without affecting that
base. Composition can be used to temporarily inject measuring, monitoring, and
logging code into systems for purposes of testing or validation [29].

As noted in Section 2, there are aspect-oriented tools for several common
programming languages, and there have been research prototype systems that apply
aspect orientation to UML. There are several systems [21,36,17,25] that support
some form of querying or modeling of concerns in code or other artifacts. These
typically work in the Eclipse [14] open-source software development environment, a
modern environment where AOSD tools can be used with “conventional” Java
technology and other software tools.

3.2 Implications Relating to Processes and Process Programs

If we view processes and process programs as a kind of software product, then it is
natural to imagine that the technologies and methods of aspect orientation may be
applied to processes and process programs just as they are to ordinary software. For
instance, process languages may be extended to incorporate aspect-oriented elements
(similar to the introduction of aspects, pointcuts, and advice into Java by AspectJ
[27]), or tools may be developed to enable the aspect-oriented treatment of existing
process languages (similar to the ability to treat unmodified Java in an aspect-oriented
manner using Hyper/J [22]). Concern modeling can be applied to processes and
process programs, reflecting both organizational and implementation issues (such as
macroprocess and microprocess concerns). Process elements could then be defined to
address specific concerns, and process programs could then be composed to address
the set of concerns applicable to a process.

There has already been some work in the aspect-oriented community that addresses
process. The aspect-oriented treatment of business rules has been demonstrated
[46,2], and there have been efforts on the aspect-oriented modeling of business
processes [33,51].

Additionally, process may be an especially suitable domain for aspect-orientation.
For instance, many process languages comprise relatively rich collections of language
constructs compared to conventional programming languages. This situation has
arisen as process-language designers have raised and broadened the scope of process
languages in order to address the variety of processes concerns more directly. Thus
many process languages already speak directly to a diversity of “microprocess”
concerns including activities, activity control, rules, events, transactions, product and
process consistency, exception handling, resources, artifacts, and more.

If aspect-orientation can be applied to process, then benefits like those for product
development should be obtained for process development. It should be possible to
develop specific aspects of a process more or less independently or in parallel. These
can be developed by experts in the particular process-aspect domains, whether in the

Aspect-Oriented Software Development and Software Process 183

core functional areas (e.g., requirements specification, architecture, etc.) or in
“crosscutting” concerns (e.g., security, accounting, resource management, etc.). The
aspects addressing particular concerns (functional or nonfunctional) may be more
readily reusable in other processes. By varying selected aspects (e.g., the way product
requirements are gathered or resource allocation is performed) it may be relatively
straightforward to develop process families or to tailor process instances to the
particular concerns of particular projects.

The applicability of aspect orientation to processes does not depend on the use of
programs to define processes. Aspect-oriented concepts and tools have been applied
at most (if not all) stages of the software life cycle, many of which do not involve
code at all, such as domain modeling, requirements specification, architecture, and
design. Also, concerns are a generic concept, concerns can be modeled independently
of any artifact type, and concerns can be modeled to reflect the interests of any sort of
stakeholder in any sort of stake. Thus concerns can be modeled for enterprises,
processes, agents, models or programs, artifacts or work products, and so on.
Regardless of whether processes are conceived as software, processes reflect and
address concerns just as software does, and so processes are subject to modeling and
manipulation in terms of concerns just as much as software is.

3.3 Implications Relating to Process Languages

In considering the implications of aspect orientation for process languages, we can
view the languages in the usual role of languages or in the less usual role of products.

Process Languages as Aspect-Oriented Languages. With respect to process
languages, one issue raised by aspect orientation is whether process languages should
be aspect-oriented. Some motion in this direction is needed if we want to treat
processes and process programs as aspect-oriented artifacts. One path is to add new,
aspect-oriented modules and constructs to an existing process language, as AspectJ
adds elements representing advice, aspects, and pointcuts to Java. The other is instead
to add these notions via distinguished annotations into an unchanged language, as
AspectWerkz [6] does for Java. Another path is not to change the language (or
programs) at all, but to change (or extend) the technology with which one works with
the language, keeping aspect-oriented information separately from programs. This
approach is used in Hyper/J [22] for Java, in which ordinary Java elements (classes,
members, etc.) can be composed or extracted, and for which concern models and
composition relationships are maintained in artifacts separate from the code.

Process Languages as Aspect-Oriented Products. Process languages are a form of
software, and, as with other forms of software, we can consider what it might mean to
apply aspect orientation to them. In my view, the chief benefit is the prospect of
defining families of process languages based on alternative compositions of language
constructs and semantics. In the absence of a generally accepted term for such
languages, I will refer to them as “composed languages.”

The idea of composed languages is somewhat anticipated in the process domain by
the idea of “factored” languages such as JIL [42]. JIL contained a variety of high-

184 S.M. Sutton Jr.

level constructs that would specifically reflect the variety of concerns evidenced by
software processes. However, as software processes reflect a large variety of
concerns, software-process languages that attempt to address these concerns can
become complex. The idea behind JIL was to enable process programmers to work
with subsets of the language, comprising specific subsets of factors, that could be
tailored to address the specific concerns of specific processes. Variants of JIL could
be defined that might or might not include transactions, triggers, rules, procedures,
and so on, depending on the concerns of the processes for which the languages were
to be used. These language variants would be smaller and simpler than the full
language and thus might be more readily understandable and adoptable. Additionally,
because the various factors of the language would correspond to relatively
independent concerns, they might be programmed relatively independently, by
process programmers with particular expertise in the particular concerns. Little-JIL
[49] is a successor to JIL (although not strictly a subset of it) that focuses on the
“coordination” concern. It provides an elaboration of the coordination factor of JIL,
and it avoids the complexity of concerns that are not intrinsic to coordination.

JIL represents a particular family of languages comprising the various subsets of
factors it contains. Members of this language family are obtained, in effect, by
extraction from the full language. The idea of composed languages generalizes the
factored approach, potentially allowing an open set of factors, or language aspects,
including alternative constructs and semantics, and potentially allowing an open set
of factor compositions, hence resulting in an open set of composed process
languages.

There are a number of reasons that favor consideration of a family of process
languages compared to a single process language. No single process language has
been widely adopted in practice. This is probably at least in part because the sets of
concerns pertinent to processes varies from organization to organization, project to
project, and process to process—just as they do for conventional applications—and
no single language will be ideal for all sets of concerns. Finally, the ability to tailor
the process language to the process may simplify development and maintenance,
reduce costs, and improve time to delivery.

There are also a number of reasons that favor the consideration of a family of
process languages compared to the use of multiple, independently defined languages.
There may be considerable overlap of semantic concerns in the different languages
(say, different languages with triggers, different languages with user roles, etc.).
These could be regularized and simplified if the same language aspect for a particular
concern (say, user roles) could be shared among multiple languages. The impedance
mismatch between processes written in different languages might also be reduced if
those languages are members of the same family. Additionally, it may be easier to
evolve languages as the semantic concerns relevant to the languages evolve.

A major issue in the use of multiple process languages is the burden of
understanding the languages and using them effectively. For families of composed
languages, this problem may be reduced by the similarity of language aspects across
languages. It may also be reduced by the possibility that language factors may be
used more or less independently, by developers who are specialists in those factors.

Aspect-Oriented Software Development and Software Process 185

4 Unifying the Software-Process Spectrum

For this workshop the software process spectrum has been defined with respect to two
endpoints: microprocess and macroprocess. The challenge is to address how we may
unify the spectrum between these endpoints and thereby enable the creation of a
rigorous, orderly discipline of software-process engineering. Aspect orientation
affords two perspectives on this issue. One is a conceptual perspective on the
relationship of the microprocess and macroprocess levels, from which emerges a third
level. The other is a practical perspective on an approach to process engineering.

4.1 Microprocess, Macroprocess, and Mesoprocess

To address this issue from an aspect-oriented perspective, we can consider the
concerns that characterize each level of process. The topic statement for the
workshop listed several concerns for the microprocess level:

Microprocess concerns:
• Description of processes that is precise, complete, detailed, unambiguous
• Detection of process flaws
• Facilitation of human-machine synergies

More generally, we can consider that microprocess concerns typically involve the
representation of processes and things that can be done with process representations.
These concerns may also suggest an orientation based on software concepts and
technologies, since software engineering may be the domain in which these sorts of
concerns are most effectively addressed in general. The topic statement for the
workshop also listed several concerns for the macroprocess level:

Macroprocess concerns:
• Process architectures
• Process behavioral characteristics
• Process fit with organizational systems and characteristics

More generally, we can consider that macroprocess concerns usually involve the
outward manifestations of a process in execution, especially with respect to the
organizational context in which it executes. These concerns may not suggest any
particular interest in software concepts and technology, as they emphasize the external
aspect and effect of processes without consideration of how processes are realized.

These two sets of concerns do not overlap. Evidently, though, they can be
interrelated: processes that execute and are observed on the macro level can have a
basis in definition and interpretation on the micro level, and the specific requirements
relating to concerns on the macro level should be supported by specific process
representations that address concerns of the micro level.

What is missing from the opposition of microprocess versus macroprocess is an
explicit connection between the two. I believe that there is another significant level of
process research, development, and application, namely, the mesoprocess level, the
purpose of which is to realize process goals as defined on the macro level in terms of
formalisms and mechanisms as defined on the micro level. Thus, the mesoprocess
level has the following sorts of concerns:

186 S.M. Sutton Jr.

Mesoprocess concerns:
• Process development processes and platforms
• Selection and application of process languages
• Process execution platforms
• Specific processes

More generally, these concerns are involved in establishing the relationship
between the macro and micro levels, realizing the organizational process objectives in
terms of organizational process means.3

Concerns on the macro level motivate the selection of process development
processes and platforms, the selection and use of process languages, the choice of
process execution platforms, and the choice and execution of specific processes. On
the meso level, choices are made, and process-development processes are carried out,
to achieve the desired fit of product-development processes with organizational
systems and behaviors, and to obtain desired process behaviors, in an architecture that
is suitable for the architecture of the organization and its resources. Selections of
processes, languages, and technologies on the meso level will be based on their ability
to support desired levels of precision, completeness, detail, and clarity, to enable the
detection of process flaws, and to facilitate human/machine interactions.

In other words, the mesoprocess level is the level of meta-processes, such as
process-development processes, which is missing in the dichotomy of macroprocess
versus microprocess. The meso level is thus the principal level on which process
engineering, as an applied art, occurs.

4.2 Process Engineering

Aspect orientation provides some significantly new approaches to software
development. These include

• The promotion of concerns to first-class entities in the software life cycle, thus
raising the level of abstraction at which we work with software

• The overthrowing of the tyranny of the dominant decomposition by enriching
the means and increasing the flexibility for separating and combining concerns

• A shift of the basic activities of software development toward the identification,
encapsulation, extraction, and composition of concerns, thereby facilitating the
change and exchange of software

Of course, aspect orientation is not without challenges. These include issues of
consistency and correctness (as of composed or extracted elements, or composition
and extraction specifications), expressiveness (as of aspects, pointcuts, and
composition relationships), generality (as in the tradeoff of power versus ease of use),
dynamism (as in the composition of new concerns into running applications), and
complexity (as in the detailed modeling of concerns for large applications, or in

3 It may seem that the mesoprocess concerns are based on ideas of “process programming”,

but that is only one possible approach to addressing concerns on this level. For instance, all
processes must be developed and implemented somehow, whether by software engineering
or other techniques, and all processes must be defined somehow, whether by programming
language, modeling language, or natural language.

Aspect-Oriented Software Development and Software Process 187

managing the composition relationships for large product families). These issues are
the subject of research in the aspect-oriented community.

The potential benefits of aspect-oriented approaches are such that they could be of
significant value in the domain of process engineering. Thus, at the mesoprocess
level, a discipline of process engineering might very well be based on aspect-oriented
principles and practices. Similarly, many of the issues that confront the realization of
aspect-oriented product development (consistency, correctness, expressiveness,
generality, dynamism, complexity) have also been (and remain) issues in software
process research and development. So the concerns of aspect-oriented research and
software process research have a natural alignment.

Some examples of potential applications of aspect orientation in process
engineering are as follows:

• Concern modeling across the process levels: Conventional software development
relies on the representation of concerns and their interrelationships in the various
artifacts that are developed across the life cycle. Aspect orientation (in part)
advocates the reification of concerns in separate models that are independent of
life-cycle artifacts. A concern model can thus serve as a domain model where the
domain is the application under development. As such, it can serve as a kind of
index to the artifacts in the product under development, represent relationships
among them, and facilitate traceability and analysis at the semantic level of
concerns. This may have special relevance in process engineering, for capturing
concerns on the macroprocess level, abstracting concerns from the microprocess
level, and (through process-engineering processes on the mesoprocess level)
supporting connection, analysis, and traceability between the two.

• Process families: Process families have been a particular concern of software
process research (for example, [23]). Organization-wide process families are a part
of the Capability Maturity Model [39] at level 3 (defined processes), at which reuse
of defined processes in an organization is established. Additionally, process
families may be especially relevant for product families [40] and domain-specific
software development. Aspect orientation lends itself to product families: concern
modeling can play a role analogous to feature modeling, capturing similarities and
variations of concerns across family members, and compositional techniques can
be used to compose family members from libraries of concern-specific family
assets. Also, concern-identification, encapsulation, and extraction capabilities
(along with recomposition) are useful in retroactively converting an isolated
product into a product line [43]. In process engineering, with defined processes
seen in the role of the product, aspect-oriented techniques can be used to define
process lines or to evolve process lines from individual defined processes.

• Process integration: Process integration is an important aspect of business
integration in commercial and engineering domains. The motivation to integrate
processes depends on some complementarity of their concerns. The ability to
integrate processes depends on the compatibility of their concerns. It also depends
on the ability to achieve the necessary interoperation of activities in the processes.
Concern modeling of organizations and processes has the potential to support the
analysis of the compatibility of processes at a high semantic level and to facilitate
the identification of process elements that are especially important for

188 S.M. Sutton Jr.

interoperation. The ability to extract and compose process elements would provide
a mechanism whereby incompatible elements of processes could be removed and
replaced by compatible elements. Extraction and composition also may provide a
means to enhance the interoperability of processes from different organizations, for
example, by incorporating processes of one organization as subroutines in the
processes of another, or by adding elements for communication and coordination.

Aspect orientation can also play many other roles, such as helping to evolve
processes in response to the evolution of organizational systems and characteristics,
the tailoring of process languages so as to be more appropriate for organizational
process-definition processes, and more. Thus, aspect orientation seems to address a
set of concerns that contribute in important ways to the resolution wide variety
problems in process engineering. On that basis it seems that aspect orientation can be
a substantial part of a rigorous, orderly, and effective discipline of process
engineering.

5 Conclusions

Aspect-oriented software development is a relatively new and increasingly promising
approach to software development. It offers a number of potential benefits for
software engineering, mainly deriving from advanced approaches to separation of
concerns, including (multidimensional) concern modeling, encapsulation, extraction,
and composition. These may enable the development and evolution of software on a
higher (concern-oriented) semantic level with unprecedented control and flexibility.

Aspect orientation may hold the same benefits for software processes and process
engineering in general. Aspect orientation has implications for process on three
levels: “conventional” processes for aspect-oriented products, aspect-oriented
processes and process programs or models (viewing process as products), and aspect-
oriented process languages (viewing process languages as products).

Aspect orientation also facilitates insight into how the software process spectrum
may be unified. Evidently the concerns of the macroprocess level and the concerns of
the microprocess level do not overlap, but both are essential, and some relationship
between them is necessary for the success of software process. The relating of
macroprocess concerns and microprocess concerns is the concern of a middle level,
the mesoprocess level, which is the principal home of meta-processes for process
engineering, the purpose of which is to realize the ends of the macro level in terms of
the means provided on the micro level. Aspect orientation should also offer benefits
to a rigorous, orderly, and effective discipline of process engineering.

Acknowledgements

My perspectives on the issues addressed in this paper have been influenced by many
people. In the area of AOSD, I want especially to thank Peri Tarr, Isabelle Rouvellou,
Harold Ossher, and William Harrison. In the area of software process I would
particularly like to thank Dennis Heimbigner and Lee Osterweil. Of course, any
problems in this work are entirely due to me.

Aspect-Oriented Software Development and Software Process 189

References

1. Ak it, M., Wakita, K., Bosch, J., Bergmans, L., and Yonezawa, A. Abstracting object-
interactions using composition-filters. In Object-Based Distributed Processing,
R. Guerraoui, O. Nierstrasz, and M. Riveill, Eds. LNCS 791. Springer-Verlag, Berlin
(1993) 152–184.

2. AOP for Business Rules. Website (2003) http://ssel.vub.ac.be/br/index.php
3. AOSD.net. Website (2005) http://www.aosd.net
4. Baniassad, E. and Clarke, S. 2004. Finding aspects in requirements with Theme/Doc. In

Early Aspects 2004: Aspect-Oriented Requirements Engineering and Architecture Design
Workshop (AOSD) http://trese.cs.utwente.nl/workshops/early-aspects-2004/Papers/
Baniassad-Clarke.pdf

5. Bass, L., Klein, M., and Northrop, L. 2004. Identifying aspects using architectural
reasoning. In Early Aspects 2004: Aspect-Oriented Requirements Engineering and
Architecture Design Workshop (AOSD) (Lancaster, UK).
http://trese.cs.utwente.nl/workshops/early-aspects-2004/Papers/BassEtAl.pdf

6. BEA Systems. aspectwerkz-workshopkit Project home (Website). https://aspectwerkz-
workshopkit.projects.dev2dev.bea.com/

7. Brito, I, and Moreira, A. 2004. Integrating the NFR framework in a RE model. In Early
Aspects 2004: Aspect-Oriented Requirements Engineering and Architecture Design
Workshop (AOSD) (Lancaster, UK). http://trese.cs.utwente.nl/workshops/early-aspects-
2004/Papers/BritoMoreira.pdf

8. Clarke, S., Harrison, W., Ossher, H., and Tarr, P. Subject-oriented design: Towards
improved alignment of requirements, design and code. In 14th Conf. Object-oriented
Programming, Systems, Languages, and Applications (OOPSLA) ACM (1999) 325–339.

9. Coady, Y., Kiczales, G., Feeley, M. and Smolyn, G. "Using AspectC to Improve the
Modularity of Path-Specific Customization in Operating System Code", Proceedings of the
8th European Software Engineering Conference held jointly with 9th ACM SIGSOFT
International Symposium on Foundations of Software Engineering (2001) 88-98.

10. Defense Advanced Research Projects Agency (DARPA). Program Composition for
Embedded Systems (Website) (1999) http://www.darpa.mil/baa/baa00-23.htm.

11. Eclipse AspectJ Development Tools Technology Subproject (Website). (2005)
http://www.eclipse.org/aspectj/

12. Eclipse AspectJ Technology Project (Website). (2005) http://www.eclipse.org/aspectj/
13. Eclipse Concern Manipulation Environment Technology Project (Website) (2005)

http://www.eclipse.org/cme/
14. Eclipse.org. (Website) http://www.eclipse.org
15. Elrad, T., Filman, R. E., and Bader, A. 2001. Aspect-oriented programming. Comm.

ACM 44, 10 (Oct.), 29–32.
16. Fraunhofer Institute Computer Architecture and Software Technology FIRST. TOPPrax –

Applying Aspect-Oriented Programming in Commercial Software
Development (Website) (2005) http://www.first.fraunhofer.de/en/topprax

17. Griswold, W. Aspect Browser for Eclipse (Website).
http://www-cse.ucsd.edu/users/wgg/Software/AB/

18. Harrison, W. and Ossher, H. 1993. Subject-oriented programming—a critique of pure
objects. In 8th Conf. Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA), (Washington, D. C.). ACM, 411–428.

190 S.M. Sutton Jr.

19. Harrison, W., Ossher, H., Sutton Jr., S., and Tarr, P. Concern Modeling in the Concern
Manipulation Environment. IBM Systems Journal, Special Issue on Open Source
Software (2005, to appear)

20. Harrison, W., Ossher, H., and Tarr, P. 2000. Software engineering tools and environments:
A roadmap. In Conf. Future of Software Engineering (Limerick). ACM, 261–277.

21. IBM. Concern Manipulation Environment (CME): a flexible, extensible, interoperable
environment for AOSD. http://www.research.ibm.com/cme/

22. IBM. Hyperspaces. http://www.research.ibm.com/hyperspace/
23. ISPW. 10th International Software Process Workshop: June 17-19, 1996, Dijon, France :

Proceedings, IEEE (1998) 119
24. Jacobson, I. and Ng, P-W. Aspect-Oriented Software Development with Use Cases.

Addison-Wesley Object Technology Series (2004) 464
25. Janzen, D. and De Volder, K. Navigating Code without Getting Lost. 2nd International

Conference on Aspect-Oriented Software Development. ACM (2003) 178—187
26. JBoss. JBoss Aspect Oriented Programming (Website) (2005)

http://www.jboss.org/products/aop
27. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold, W. G. 2001.

Getting started with AspectJ. Comm. ACM 44, 10 (Oct.), 59–65
28. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-M., and

Irwin, J. 1997. Aspect-oriented programming. In ECOOP'97 Object-Oriented
Programming, 11th European Conference, M. Ak it and S. Matsuoka, Eds. LNCS 1241.
Springer-Verlag, Berlin, 220–242.

29. Kimelman, D., Kruskal, V., Ossher, H., Roth, T., and Tarr, P. HyperProbe(TM) - An
Aspect-Oriented Instrumentation Tool for Troubleshooting Large-Scale Production
Systems. Demonstration Abstract, 1st Int'l Conf. Aspect-Oriented Software Development
(AOSD) (2002) http://trese.cs.utwente.nl/aosd2002/index.php?content=hyperprobe

30. Lieberherr, K. Adaptive Object-Oriented Software: The Demeter Method with
Propagation Patterns. PWS Publishing Company (1996).

31. Lohmann, D., and J. Ebert., J. 2003. A generalization of the hyperspace approach using
meta-models. In Early Aspects 2003: Aspect-Oriented Requirements Engineering and
Architecture Design Workshop (AOSD) (Boston, USA).
http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/Papers/LohEbe.pdf

32. Nuseibeh, B., Kramer, J., and Finkelstein, A. 1993. Expressing the relationships between
multiple views in requirements specification. In 15th Int'l Conf. Software Engineering
(ICSE) (Baltimore, Maryland). IEEE, 187–196.

33. Odgers, B. and Thompson, S.: Aspect-Oriented Process Engineering (ASOPE). In:
Moreira, M. D. and Demeyer, S. (eds.): Object-Oriented Technology, ECOOP'99
Workshop Reader, ECOOP'99 Workshops, Panels, and Posters, Lisbon, Portugal, June 14-
18, 1999, Proceedings. Lecture Notes in Computer Science 1743 Springer-Verlag, Berlin
Heidelberg New York (1999) 295.

34. PARC. AspectJ (2004) http://www.parc.com/research/csl/projects/aspectj/default.html
35. Rajan, H. and Sullivan, K. Generalizing AOP for Aspect-Oriented Testing. Proceedings

of the Fourth International Conference on Aspect-Oriented Software Development
(AOSD) (2005) 14-18

36. Robillard, M. and Murphy, G. Concern Graphs: Finding and Describing Concerns Using
Structural Pro-gram Dependencies. In Proceedings of the 24th Int'l Conf. of on Soft. Eng.,
(2002) 406—416

37. Sabbah, D. 2004. Aspects—From Promise to Reality. In 3rd International Conference on
Aspect-Oriented Software Development (AOSD) (Lancaster, UK). ACM, 1-2.

Aspect-Oriented Software Development and Software Process 191

38. Sereni, D. and de Moor, O. Static Analysis of Aspects. Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development. ACM (2003) 30-39

39. Software Engineering Institute (SEI). The Capability Maturity Model: Guidelines for
Improving the Software Process. Addison-Wesley Professional (1995) 464

40. Software Engineering Institute (SEI). A Framework for Software Product Line Practice
Version 4.2 (2004) http://www.sei.cmu.edu/plp/framework.html#outline

41. Spinczyk, O., Gal, A. S, and Schröder-Preikschat, W. AspectC++: An Aspect-Oriented
Extension to C++. Proceedings of the Fortieth International Conference on Tools Pacific:
Objects for internet, mobile and embedded applications - Volume 10 (2002) 53-60 (see
also http://www.aspectc.org/)

42. Sutton Jr., S. and Osterweil, L. The Design of a Next-Generation Process Language. In:
Jazayeri, M. and Schauer, H. (eds.) Proceedings of the 6th European Conference held
jointly with the 5th ACM SIGSOFT International Symposium on Foundations of Software
Engineering. LNCS 1301. Springer-Verlag, New York, Inc. (1997) 142—158

43. Sutton Jr., S. M. and Rouvellou, I. Advanced separation of concerns for component
evolution. In Workshop on Engineering Complex Object-Oriented Systems for Evolution
(Tampa, Florida) (2001) http://www.dsg.cs.tcd.ie/ecoose/oopsla2001/papers.shtml

44. Sutton Jr., S. and Rouvellou, I. Modeling of software concerns in Cosmos. In Kiczales, G.
(ed.) 1st Int'l Conf. Aspect-Oriented Software Development (AOSD) ACM (2002) 127–
133

45. Tarr, P., Ossher, H., Harrison, W., and Sutton Jr., S. N degrees of separation: Multi-
dimensional separation of concerns. In 21st Int'l Conf. Software Engineering (ICSE), (Los
Angeles). IEEE (1999) 107 – 119.

46. Tarr, P., Ossher, H., and Sutton Jr., S. Hyper/J: Multi-Dimensional Separation of
Concerns for Java (Tutorial) (2001)
http://www.netobjectdays.org/pdf/01/slides/tutorial/sutton.pdf

47. Tekinerdogan, B. ASAAM: aspectual software architecture analysis method. In Early
Aspects 2003: Aspect-Oriented Requirements Engineering and Architecture Design
Workshop (AOSD) (2003). http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/Papers/-
Tekinerdogan.pdf

48. Wagelaar, D. A concept-based approach for early aspect modelling. In Early Aspects
2003: Aspect-Oriented Requirements Engineering and Architecture Design Workshop
(AOSD) (2003) http://www.cs.bilkent.edu.tr/AOSD-EarlyAspects/Papers/Wagelaar.pdf

49. Wise, A., Cass, A., Lerner, B., McCall, E., Osterweil, L., and Sutton Jr., S. Using Little-
JIL to Coordinate Agents in Software Engineering. 15th IEEE International Conference on
Automated Software Engineering (ASE 2000) Proceedings. IEEE (2000) pp. 155—164

50. Zhao, J. Data-Flow-Based Unit Testing of Aspect-Oriented Programs. Proceedings of the
27th Annual IEEE International Computer Software and Applications Conference
(COMPSAC'2003) (2003)

51. Zhu, Jun. Personnel communication. IBM Research (2005) zhujun@cn.ibm.com

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 192 – 205, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Gradually Proceeded
Software Architecture Design Process*

Licong Tian, Li Zhang, Bosheng Zhou, and Guanqun Qian

Software Engineering Institute, Beijing University of Aeronautics and Astronautics,
 No. 37 Xueyuan Rd., Haidian District, Beijing, 100083, P.R. China

tianlicong@163.com, lily@buaa.edu.cn, bszhou@cyberspi.com.cn
qianguanqun@process.buaa.edu.cn

Abstract. When design software architecture for large systems, designers often
face with the problem how to move from requirements to a coarse-grained ab-
stract architecture, then gradually refine it into more concrete ones, and last to
detail design and implementation. Steps involved to implement such a process
remain vague. Designers usually implement this process intuitively and oppor-
tunistically. We propose a Gradually Proceeded Software Architecture Design
Process called GADesign. GADesign divides software architecture design into
several phases and provides a sequence of well-defined steps to make this proc-
ess more transparent and easier to be implemented.

1 Introduction

During the past ten years, architecture-based development has received a lot of atten-
tion in academia and industry as evidenced by numerous of architecture related tech-
niques. Such as, architecture description languages (ADLs) [1,2,3,4], architecture
styles/patterns [5,6], architecture evaluation methods [7,8], architecture documenting
guidance [9,10], architecture design tools [11,12], etc. However, to make full use of
these techniques, they must be incorporated into a design process.

As is well known, software architecture design for large systems is complex. Even
experienced software architects can’t make the complete definition of software archi-
tecture all at once, but need to do in a gradual manner: first begin with a coarse-
grained abstract architecture which may be partial and incomplete; then gradually re-
fine it into more concrete ones; and last to detail design and implementation. How-
ever, the steps involved in such a process remain vague. Designers implement this
process mainly depending on intuition and experience. There’s a need for a series of
well-defined steps to provide systematic guidance for it.

Several software architecture design methods do exist. Bass et al. propose Attribute
Driven Design (ADD) [13]. ADD focuses mainly on high-level architecture. The out-
put of ADD is an “initial software architecture design known as the candidate archi-
tecture”[14]. Jacobson, Booch and Rumbaugh propose in their Unified Software De-
velopment Process [15] an iterative, use case driven method for architecture design.
As Kazman et al. argue, this method focuses primarily on functional requirements of

* This work is supported by Beijing Government’ Sponsor Plan for New Star in Science and

Technology (No. H013610270112).

 A Gradually Proceeded Software Architecture Design Process 193

the system, while the guidance on quality attribute requirements is insufficient [14].
Meihong et al. propose ABC, an Architecture Based Component Oriented Approach
to Software Development [16]. The main contribution of ABC is the mapping of a
relatively detailed architecture into implementation, and the realizing of component
automatic assembly and deployment.

In this paper, we incorporate some existing techniques and propose a Gradually
Proceeded Software Architecture Design Process called GADesign. The main purpose
of GADesign is to provide a systematic, step-by-step guidance to software architec-
ture design, so as to make this process clearer and easier to be implemented.

This paper is organized as following: Section 2 presents some concept definitions
to establish the vocabulary of the paper. Section 3 gives an overview of the basic
ideas of GADesign. Implementation details of GADesign are presented in section 4.
Section 5 concludes this paper with future work.

2 Concept Definitions

These concepts are mainly introduced or adapted from references [9,17,18,19].

Software Architecture. Any well-defined form of a system’s fundamental organization
embodied in its components, their relationships to each other and the environment,
and the principles governing its design and evolution [9].

Software Architecture Requirement. Software architecture requirements are those re-
quirements that “shape” the architecture. If these requirements can be met, then the
architecture can be satisfactorily designed [17].

Software Architecture Tactic. A software architecture tactic is a technique or principle
used to address one or more architecture design issues. Some of them may be cap-
tured in patterns of various sorts, others may be general design principles (e.g. infor-
mation hiding), or measures the designer himself thinks of [18].

UML[19] Related Concepts. UML (Unified Modeling Language) is an industry stan-
dard for object-oriented modeling. In this paper, we use several UML related concepts
without further explanation, such as use case, use case analysis, sequence diagram,
etc. Readers can turn to UML reference books for more information.

3 Basic Ideas of GADesign

The basic ideas underpinning GADesign include:

-- Divide the whole process into several phases. Different phase focuses on differ-
ent sets of problems and describes the architecture with different level of details. Do-
ing this way, design information can be added incrementally, so it’s helpful to reduce
the complexity and risk of software architecture design.

-- Clearly define implementation steps for each phase, so as to make the design
process more transparent and easier to be understood and implemented.

-- Clearly define finish criteria for each phase, so as to implement architecture
evaluation phase by phase, instead of a one-time evaluation after all design work is
completed. So, it’s helpful to discover potential problems and risks earlier.

194 L. Tian et al.

Software Architecture Sketch

Software Requirements

Software Architecture Early Evaluation

Software Architecture Sketch Design

Software Architecture Definition Software Architecture Middle
Evaluation

Software Architecture Refinement

Executable Software Architecture
Software Architecture Post-
Deployment Evaluation

Transform Architecture to Implementation

Fig. 1. Outline of GADesign

Fig. 1 gives the process outline of GADesign.
The input to GADesign is a list of software requirements: functional requirements

are represented as use cases for their wide acceptance in current software develop-
ment; quality attribute requirements can be documented in any textual format.

GADesign divides software architecture design into three phases: Software Archi-
tecture Sketch Design (for short, SAS Design), Software Architecture Refinement and
Transform Architecture to Implementation.

Software Architecture Sketch Design
The main purpose of SAS Design is to provide system stakeholders with an initial
sketch of the system’s architecture (before diving into its strict definition) to enable an
early understanding of the high level structure of the system and roughly reason about
its potential ability to meet system’s requirements.

At this phase, designers concentrate their efforts on identifying what architecture
tactics can be used to meet architecture requirements, and then integrating these
tactics to construct a consistent, cohesive structure. Since the main purpose of SAS
Design is to make sure whether design decisions are feasible to meet system’s
requirements, so only core components of the system and their main connections need
to be shown. Strict definitions for interfaces and behaviors of single component are
information that suggested to be deferred to the next phase. These information are
imperative for system implementation and assembly, but not so important if we just
want to reason about system’s potential ability to satisfy some properties.

So in SAS Design, design results are described with coarse-grained concepts. Se-
mantic information of component may include:

 A Gradually Proceeded Software Architecture Design Process 195

-- a name, to identify the component in the model;
-- a functional description, to describe the role of the component in the system;
-- optional properties, to show auxiliary information, such as thorough outputs,

max connections, etc;
-- optional pattern information tags, to show its relationship with pattern roles, if

this component is created by instantiating certain pattern template;
-- operations and attributes, they are only treated as placeholders to show compo-

nents’ responsibility, not strict signatures of their methods and variables.

Connections between components are also described in a coarse-grained manner.
For example, we may use a common “data flow” connection to show data production
and requirement relationship between two components without specifying whether the
data is transferred by procedure call, shared variable or message passing. We may
connect component A and B with procedure call to imply that component A has the
potential to invoke component B’s operations, but need not to show exactly through
which interface and operation this call is invoked. An example metamodel for SAS
modeling is shown in Fig.2.

Fig. 2. An Example Metamodel for SAS Modeling

Software Architecture Refinement
The main purpose of software architecture refinement phase is to refine SAS model
into a more detailed architecture specification, so as to provide rigorous constraints on
software development. In this paper, we call this specification as Software Architec-
ture Definition (for short, SAD). Interface and behavior details of each component
and their interaction protocols are identified and defined with precise signatures.
More detail implementation mechanisms are identified and determined, such as proc-
esses/threads to cope with concurrent activities, inter-process communications,
resource managing and/or arbitrating strategies, persistence mechanisms, etc. In order
to minimize the effects of specific technique on architecture design, SAD is defined in
a platform-independent manner.

Control Flow

Data Flow

call

RPC

Message Passing

Architecture
Configuration

ConnectorInst
ance

0..*

Functional
Description

ComponentInstance 0..*

Functional
Description

Connector

1

0..*

+type

1..*

Property

0..*

Operation Attribute

Component
<<taggedValue>> patternInfo

0..*

+type
1..*

+target

+source

0..*

0..*
+placeholderOp

0..*
+placeholderAttr

0..*
+subComponents

196 L. Tian et al.

Fig. 3. An Example Metamodel for SAD Modeling

An example metamodel for SAD modeling is shown in Fig. 3.

Transform Architecture to Implementation
In this phase, SAD model is mapped into a component implementation platform (e.g.
EJB, CORBA, COM/DCOM). With the help of some tools, code sketch can be gener-
ated; components can be assembled and deployed. Thus, an executable architecture
can be achieved. Executable architecture is a partial implementation of the system,
built to demonstrate that the architectural design will be able to support the key func-
tionality and, more importantly, to exhibit the run-time properties in terms of per-
formance, throughput, capacity, reliability, scalability, and other “-ilities”.

At the end of each phase, an architecture evaluation can be performed, so risks can
be discovered earlier during design.

Another thing worth mentioning is that phases in GADesign are elastic. Depending
on the characteristics of your project, you can compress two phases into one, or divide
one phase into two or more smaller ones. And the principle is, when adjust the phases,
you must also define/redefine the finish criteria for each phase.

4 Implementation Details of GADesign

4.1 Software Architecture Sketch Design

This design phase can be carried out in five steps. The definitions of these steps are
enlightened by several different sources of technique achievements, such as Bass’s
Attribute Driven Design [13], Bachmann’s architectural tactic [18], Buschmann’s pat-
terns for applying patterns”[22], use case analysis techniques from UML[19], etc.

Operation

ConnectorInstance

Architecture Configuration

0..*

Role

Interface
1 0..*1

0..*

1 +type 1

1

2..*

1

ComponentInstance
0..*

Behavior

Port
**

+role
0..*

+player
0..*

0..*
+required

0..*
+provided

Property 0..*

Component

<<taggedValue>> patternInfo

0..*

1 +type 1

1
1..*

1
0..*

ArchElement

0..*+subElements

Connector

 A Gradually Proceeded Software Architecture Design Process 197

Step 1: Identify Software Architecture Requirements
A system may have many requirements, not all of these requirements have relations
with software architecture. The first step in software architecture design is to identify
those requirements that have influence on architecture design. This can be done by:

-- Choose architecturally significant use cases: Architecturally significant use
cases are use cases that expose high-risk capabilities that must be mitigated, those
have much difficulty to be implemented, or those that represent most important func-
tionality to users of the system.

-- Choose architecturally significant quality attributes: Architecturally significant
quality attributes are quality attributes that have global influence on the system, or
those may be distributed across several components. Quality attributes that only influ-
ence some local methods of a single component are not architecturally significant.

Step 2: Identify Candidate Architecture Tactics
After architecture requirements are identified, next to do is to identify candidate archi-
tecture tactics that can be used to meet these requirements.

First, consider if there’s a reference model exist in this domain, a reference model
can help to construct the initial functional decomposition of the architecture.

Then, for every quality attribute requirement, look for technique tactics that help to
meet its satisfaction. Architecture or design pattern libraries/catalogues can be taken
as the first step to start to search, they provide lots of reusable design solutions for
common design problems. Famous general-purpose libraries include POSA[6],
GoF[20], Shaw’s style list[5], etc. Domain-specific pattern libraries are also exist,
such as Douglass’s real time pattern catalogue [21]. To effectively use these pattern
libraries, designers need to be acquainted with the basic ideas of design patterns.

For requirements that are not addressed by available architectural patterns, archi-
tect can make a decision based on conversional design methods and his own experi-
ences and knowledge.

Identified tactics can be recorded in the form shown in Table 1.

Table 1. Candidate Architecture Tactics

Req
ID

Tactic
ID

Tactic Name Tactic Description Tactic
Status

Strengthen
/ Weaken

R_001 S_001_1 POSA.MVC+
POSA.CommandPr

ocessor

decoupling user
interface and

business process

suggested R_002
(0.8)

R_003
(-0.5)

Establish cross-reference relationships between requirements and tactics. Assign a
unique ID, a name, a brief description and a status (may be suggested, accepted or re-
jected) for each tactic. Items of Strengthen/Weaken represent the influence of each
tactic to other requirements.

Step 3: Trade-off Analysis and Tactic Selection
A large number of tactics may be identified, and these tactics are never standalone.
Before applying these tactics, a trade-off analysis must be carried out. For the time
being, we can’t provide a systematical method for trade-off analysis of architecture
tactics. We suppose that architects make this choice by experience.

198 L. Tian et al.

Step 4: Create Software Architecture Sketch
The task of this step is to apply the selected tactics to construct the software architec-
ture. Since each tactic will impose special constraints to architecture in terms of struc-
ture decomposition, functional distribution or how control and data flow through ele-
ments, so each tactic implies the existence of some components and connections, or in
other words, each tactic relates to a design fragment. For example, The Localize
Changes tactic for some kind of modifiability requirement suggests a three-tier client-
server model be used to allocate the client, database and business rules to separate
tiers and, hence, three components represent the three tiers can be identified, and po-
tential interactions between theses tiers are identified as connections between these
components. The Use an Intermediary tactic suggests that the communication be-
tween the tiers be mediated by some abstract interface, so a data access layer may be
created as the design decision relate to this design tactic. SAS model is constructed by
composing these design fragments. To make this composition process more controlla-
ble and easier to be implemented, we introduce the principles of “One Pattern At a
Time” and “Design Integration Precedes Implementation” proposed by Buschmann as
“patterns for applying patterns”[22].

The idea underpinning “One Pattern At a Time” is to integrate these tactics one by
one, with descending order of importance. Doing this way, we can follow their im-
plementation guidelines more easily, since aspects of other, not yet applied tactics, do
not need to be considered.

The idea underpinning “Design Integration Precedes Implementation” is that
designer should concentrate his focus on how to integrate separated design fragments
into a coherent structure to make them work together harmoniously. Before the inte-
gration is finished, don’t unfolding each fragment’s details. Too many details may di-
vert designer’s attention from critical decisions. You may create a design that has
several perfect design segments but on the whole cannot work properly. For architec-
ture design, this means, designers should pay more attention on how components
related to each other, not their interfaces details.

First, apply a large-scale pattern to implement the initial decomposition of the sys-
tem. Then, composite other tactic’s design fragment one by one and take an order
according to the requirement’s priority. When compositing a fragment, first check
whether the existing structure can directly support this fragment, if it can, then

C S

C

S-M
Ct

V

Ct
design fregment1

A

E

F
G
H

design fregment2 C

S-MCt-A

V

E

F
G
H

N

(1) construct initial structure
(2) composite design fregment1

(3) composite design fregment2
M V

Fig. 4. Design Segment Integration

 A Gradually Proceeded Software Architecture Design Process 199

continue to the next fragment; otherwise, adapt the structure to satisfy the property of
this fragment. This process is shown in Fig.4.

Step 5: Behavior Description
Without taking into account how elements behave when connected to each other,
there can be no assurance that the system will work as intended. Knowledge of sys-
tem’s behavior can be achieved by analyzing architecturally significant use cases. By
use case analysis, we can validate whether components can interact as intended to
meet system’s function. For example, if a component wants to send message to a des-
tination, however there’s no proper component to receive this message, then it implies
that new component should be added to the system to meet this requirement. When
doing use case analysis, if we can assure that the control or data flows between com-
ponents are reasonable, then message definitions need not be strictly specified, textual
phrases are usable. Since these operations are not the final signature definitions of
component’s methods, mark these responsibilities with <<placeholderOp>> to mind
designers that these operations should be refined further in subsequent design.

With the iterations between structure construction and behavior description, we can
finally get a SAS model. SAS model contains the core components of the system and
their main connections that reflect main architecture decisions that constrain the sys-
tem’s design and implementation. Because interface and behavior details of each
component have not been specified, we can just reason about whether or not the sys-
tem has the potential ability to meet certain properties, but can’t get enough informa-
tion for implementation.

4.2 Software Architecture Early Evaluation

Before announcing the finish of software architecture sketch design, an evaluation
should be performed to this initial architecture model. The main purpose of software
architecture early evaluation is to reason about the system’s ability to satisfy func-
tional and quality requirements.

Satisfaction of functional requirements can be examined based on use case analy-
sis, quality requirements can be evaluated using SAAM[7] based on quality scenarios.
In this paper, we just give the checkout list for architecture evaluation and don’t pro-
vide details for evaluation process. This is not the focus of this paper. Readers can
turn to [7] for more information about how architecture evaluation can be performed.

Checklist for software architecture early evaluation:

-- The key components and their connections have been identified, and every com-
ponent has a name and a functional description to show its role in the system.

-- The architecture covers all architecture requirements, that is, there’s no impor-
tant requirements remain unconsidered.

-- For each architecturally significant use case, there’s at least one interaction dia-
gram to show the realization of this use case.

-- For each architecturally significant quality attribute requirements, architect can
illuminate in SAS model how it is satisfied.

4.3 Software Architecture Refinement

SAS model focuses mainly on coarse-grained design, the focus of the architecture re-
finement phase is shifting to specific technology details, such as precise definition of

200 L. Tian et al.

component communication protocol and the interfaces of each component. The main
purpose of software architecture refinement is to define each architecture element
strictly to provide real constrains on software development. At the end of this phase,
we can get a more detailed model, called SAD (Software architecture definition). For
the purpose of design reusability, SAD model is described in a component technology
independent manner, no commitment to any component platform. Doing this way, it
allows us to potentially substitute one specific implementation mechanism for another
without adversely affecting the design.

Software architecture refinement consists of three forms of refinement: component
refinement, connector refinement and interface refinement. Component refinement is
mainly about the decomposition of high-level abstract components into concrete
smaller ones, this activity makes components more understandable and easier to be
implemented. Connector refinement is the refinement of the connections between
components, which makes interaction relationships between components more clear.
Interface refinement is to define the interfaces of components with strict operation
signatures. Activities associated with these three kinds of refinements are interleaved.

Following these steps to do software architecture refinement.

Step1: Create a primitive SAD model
A primitive SAD model can be constructed from SAS model according to some

mapping rules, as follows:
Rule M1. If a component in SAS is simple and already represent a single logical

abstraction, it can be directly mapped, 1:1, to a component in SAD.
Rule M2. An abstract component in SAS can be mapped to several concrete com-

ponents in SAD.
SAS may not characterize the full behavior of its components, and therefore may

use a single component type to represent a group of components that have common
behavior but significantly different at the implementation level, as shown in Fig 5.

Rule M3. Divide a component in SAS into several smaller components in SAD,
these smaller components together implement the behavior of the original component,
as shown in Fig6.

For rule M2 and M3, although the original component is substitute by new compo-
nents, a virtual packaging component (e.g. Processors in Fig.5 and Dispatch in Fig.6)
can be defined to group the derived components.

Processor

Processors

Textual
Processor

Binary
Processor

Processor Dispatch

Controller Dispatcher

Dispatcher

 Fig. 5. Mapping Rule M2 Fig. 6. Mapping Rule M3

 A Gradually Proceeded Software Architecture Design Process 201

Rule M4. If there’s a connection between two components in SAS, then create a
port for each corresponding component in SAD, and replace the abstract connection
in SAS with a more concrete one, for example, replace data flow connection with
shared variables, procedure call or message passing.

This rule doesn’t work if an outer component directly connects to the subcompo-
nent of another component. In this situation, Rule M5 should be used.

Rule M5. If a component (or its subcomponent) connects to another component’s
internal subcomponent, create a port for each outer component and create binding
connection between port and subcomponent, as shown in Fig.7.

Rule M6. <<placeholderOp>> operations of SAS components are mapped to pro-
vided services of ports of corresponding SAD components.

When doing this mapping, try to give strict definition of each service’s signature.
After mapping, connections between components are substituted by connections

between ports of components. Components in SAD are defined in an encapsulated
manner and can only connect and interact with each other through ports. This primi-
tive model will be adjusted when more details exposed with further refinement. New
components, connectors, ports may be identified; Interface types are defined to con-
strain ports’ behavior; Large components may be further decomposed into smaller
ones, especially in a situation when the behavior of a certain component is still too
complex to be understood.

Step 2: Describe Component Interactions
When the outline of SAD model is obtained, next need to do is to describe the in-

teractions between components, so as to get a profound understanding about how
components collaborates with each other, and so be able to define components’ inter-
faces precisely. Components’ interactions are described through use case analysis us-
ing UML sequence diagrams. Compared with SAS Design, use case analysis in SAD
design is more rigorous, with more detail information exposed:

-- Components can only interact with each other through ports.
-- Interactions can only occur between components at the same level, an outer

component can’t interact directly with another component’s internal subcomponents.
Use separate interaction diagram to describe a component’s internal behavior.

-- Messages passed between components’ ports must be defined strictly; types of
parameters must be defined.

Interaction diagram in SAS design is shown in Fig.8.
During use case analysis, if one component need to send message to another com-

ponent, but there’s no proper port to receive this message, then refine the structure
diagram to add a new port for that component. If there’s difficulty to strictly define a
component’s interface, it may imply that the function of this component is too com-
plex to be understood, then internal structure of this component need to be analyzed
and decomposed. By decomposing a component’s internal structure, we can get pro-
found understanding of a component’s behavior, so it may be helpful to quickly stabi-
lize the interfaces between components.

Step 3: Define Interfaces and Assign Interfaces to Components
After every use case has been analyzed, messages passed through each port will

come to be clear. That is, services that a component provides or requires through each

202 L. Tian et al.

Comp1

Comp2

Comp21 Comp22

<<delegate>>

Comp2

Comp21 Comp22

Comp1

m1()

sd uc analysis

p1 p2 p3 p4

m2()

ports

m3(P p)

ref
m1 Process

<<type>>
P

ID: Integer
name:String

:Comp1 :Comp2

 Fig. 7. Mapping Rule M5 Fig. 8. Behavior Refinement

port are clear. Divide these services into coherent groups and publish them as inter-
faces. Then, as part of specifying the overall architecture of an application solution,
interfaces are allocated to components and become components’ provided and
required interfaces. See Fig.9.

To make interface definition more rigorous, pre, post conditions and invariants of
interface behavior may be specified. UML protocol state machines can be used to
constraint the order that interface operations must obey.

cd

<<interface>>
IP1

m1():void

m1()

sd usecase Ana1ysis

m2()

m3(P p)

ref
m1Process

<<interface>>
IP2

m2(){incomplete}

<<interface>>
IP3

m3(P p):void

<<port>>
p1

<<provided>>m1()

<<port>>
p2

<<required>>m2(){incomplete}
<<provided>>m3(P p):void

Comp1

p1 p3 p4p2
:Comp2:Comp1

Fig. 9. Interface Refinement

 A Gradually Proceeded Software Architecture Design Process 203

With continuous iterations of these three kinds of activities, SAD model will be-
come more detailed and rigorous. When every component and connector’s interface
and behavior is clearly defined, SAD design can be thought of being finished.

4.4 Software Architecture Middle Evaluation

Software architecture middle evaluation can be performed to ensure the consistency
between SAS and SAD, as well as the completeness of SAD.

When we say SAD is consistent with SAS, we mean SAD obeys the design princi-
ples presented in SAS. That is, information defined in SAS must be preserved or
transformed in SAD, but can’t be lost. For the time being, we assume consistency
checking is performed by human review. This needs the architects to present the main
design principles of SAS and mapping information between constructs of SAS and
SAD. Reviewers evaluate the consistency by brainstorming. More systematic and rig-
orous consistency checking methods will be discussed in future works.

Completeness of SAD means that all information included in SAD must obey the
syntactic and semantic rules of the modeling language, and there must not exist in-
consistent information between different parts of the model. Some example complete-
ness checking rules are as follows:

Rule C1. Every component must have at least one port, and components can only
interact with each other through ports.

Rule C2. A component must connect to at least one other component (to avoid dan-
gling components).

Rule C3. Every connector must connect to at least two ports.
Rule C4. No dependency relationship should exist between a provided interface

and a required interface on the same component (otherwise, it will mean the required
services are provided by itself).

Rule C5. Types of parameters included in interface operations must be defined
(otherwise, clients of this interface don’t know how to prepare parameters).

Rule C6. Every component must participate at least one interaction.
Rule C7. Messages passed between ports must be operation or signal definitions of

these ports.
Rule C8. If there’s message passing between two ports, then these two ports must

be connected by a connector.
Rule C9. Abstract components can’t be instantiated.
Rule C10. Outer component can’t interact directly with another component’s inter-

nal subcomponents.

These are some common completeness rules. Other description language specific
completeness and consistency rules may exist according to notation used in architec-
ture definition.

4.5 Transform Architecture into Implementation

The task of this design phase is to transform SAD models to platform specific models,
bridging the gap between higher-level specification and lower-level implementation.
EJB (Enterprise Java Beans), CCM (CORBA Component Model) and COM/DCOM
(Distributed Component Object Model) are examples of architectures that used to
define and implement platform specific models.

204 L. Tian et al.

Transformation from SAD to component model can be partially automatized by
tools. For example, ABCTool from Beijing University can transform platform inde-
pendent models to EJB and CORBA, and then automatically implement components
composition and deployment [16].

4.6 Software Architecture Post-deployment Evaluation

Software Architecture post-deployment evaluation occurs after the architecture has
been implemented and deployed. At this time, architecture run-time properties, such
as performance, synchronization, concurrency, can be observed and evaluated by exe-
cute the architecture prototype.

5 Conclusions and Future Works

GADesign has been used as development process standard in the project of Hard-
ware-in-Loop Simulation System for Warship taken on by SERI(System Engineering
Research Institute) of China. There’re four development groups from different or-
ganizations participated in this project. With the guidance of GADesign, the following
advantages achieved:

-- The schedule of the process was easier to be controlled because the design fol-
lowed some well-defined steps.

-- Communication between groups was easier because they knew each other’s pro-
gress.

-- Different groups could be able to exchange design strategies and ideas at early
time of the design process, which made it possible to implement similar strategies for
similar functions in different subsystems.

Now, GADesign is still in its initial stage and several steps still lack of systematic
assistance. Future work includes: 1) Research on evaluation techniques to make
evaluation for each phase more systematic; 2) Research on tools to provide automatic
transformation between models.

Acknowledgements

We would like to gratefully acknowledge the following persons for contributing ideas
and comments to improve this paper: Fan Shengyin, Gao Hui, Gao Juntao,Xu
Hongxia, Duan Fang, Zhu Guoping, Zhang Xinjia, Tang ji, Ding Yuzheng, as well as
the reviewers of SPW2005 for this paper.

References

1. Garlan, D., Allen, R., Ockerbloom, J.: Exploiting Style in Architectural Design Environ-
ments. ACM SIGSOFT Software Engineering Notes, Vol. 19, (1994) 175-188

2. Luckham, D.C.: Rapide: a Language and Toolset for Simulation of Distributed Systems by
Partial Ordering of Events. DIMACS Partial Order Methods Workshop IV, Princeton Uni-
versity (1996)

 A Gradually Proceeded Software Architecture Design Process 205

3. Shaw, M., DeLine, R., Klein, D.V.: Abstractions for Software Architecture and Tools to
Support Them. IEEE Transactions on Software Engineering, Vol. 21, (1995) 314-335

4. Allen, R.: A Formal Approach to Software Architecture. Technical Report, CMU-CS-97-
144, Carnegie Mellon University (1997)

5. Shaw, M., Clements, P.: A Field Guide to Boxology: Preliminary Classification of Archi-
tectural Styles for Software Systems. In Proceedings of 21st International Computer Soft-
ware and Applications Conference (1997) 6-13

6. Buschmann, F., Meunier, R., Rohnert, H.,Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture: a System of Patterns. Addison-Wesley (1996)

7. Kazman, R., Abowd, G., Bass, L., Clements, P.: Scenario-Based Analysis of Software
Architecture. IEEE Software, Vol. 13, (1996) 47-55

8. Kazman, R., Klein, M., Clements, P.: ATAM: Method for Architecture Evaluation
(CMU/SEI-2000-TR-004, ADA382629). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University (2000). http://www.sei.cmu.edu/publications/documents
/00.reports/00tr004.html

9. IEEE Standard 1471: IEEE Recommended Practice for Architectural Description of Soft-
ware-Intensive Systems. IEEE Computer Society (2000)

10. Clements, P., Bachmann, F., Bass, L.: Documenting Software Architectures: Views and
Beyond. MA: Addison Wesley (2002)

11. Kazman, R.: Tool Support for Architecture Analysis and Design. Proceedings of the Sec-
ond Int. Workshop on Software Architectures, ACM Press (1996) 94-97

12. Grundy, J. and Hosking, J.: Softarch: Tool Support for Integrated Software Architecture
Development. International Journal Of Software Engineering and Knowledge Engineering
(2003)

13. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley
(2003)

14. Kazman, R., Kruchten, P., Nord, R.L., Tomayko, J.E.: Integrating Software-Architecture-
Centric Methods into the Rational Unified Process. TECHNICAL REPORT,CMU/SEI-
2004-TR-011, Software Engineering Institute, Carnegie Mellon University (2004),
http://www.sei.cmu.edu/publications/documents/04.reports/04tr011.html

15. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. MA:
Addison-Wesley (1999)

16. Meihong, Chenfeng, Feng Yaodong: ABC: Architecture Based, Component Oriented Soft-
ware Development Method. Journal of Software, Vol. 14. Beijing (2003)721-732

17. Bachmann, F., Bass, L., Chastek, G.: The Architecture Based Design Method. Technical
Report CMU/SEI-2000-TR-001, Software Engineering Institute, Carnegie Mellon Univer-
sity (2000), http://www.sei.cmu.edu/publications/documents/00.reports/00tr001.html

18. Bachmann D, Bass L and Klein M. Moving from Quality Attribute Requirements to Archi-
tectural Decisions. Proceedings of Second International Software Requirements to Archi-
tectures Workshop Located at ICSE'03 (2003)122-130

19. Object Management Group. UML 2.0 Superstructure Specification: Final Adopted Speci-
fication. http://www.omg.org/docs/ptc/03-08-02.pdf (August 2003)

20. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns-Elements of Reusable
Object-Oriented Software. MA:Addison-Wesley (1995)

21. Douglass, B.P.: Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Frameworks, and Patterns. Addison-Wesley (1999)

22. Buschmann, F.: Building Software with Patterns. http://www.daimi.au.dk/~apaipi/dpf/
EuroPLoP.pdf (1998)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 206 – 221, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Patterns for COTS-Based Development

Ye Yang

Center for Software Engineering, University of Southern California,
Los Angeles, California 90089, USA

yey@cse.usc.edu

Abstract. Software development is increasingly moving away from processes
to compose pure-custom software from lines of code, toward processes for
assessment, tailoring and integration of COTS or other reusable components
with each other and with custom code. Beyond that, there are large variations
within COTS based applications (CBA) processes that make a one-size-fits-all
COTS process model unworkable. In previous work, we developed a general
CBA process framework that provides guidance covering the wide range of
possible CBA processes. Here, we provide more particular process patterns that
we have identified in analyzing the first 9 projects to use the general CBA
process framework, along with refinements of the general framework. These
include three levels of process patterns: lifecycle patterns, activity patterns, and
workflow patterns.

1 Introduction

Trends toward COTS-based applications (CBA) development include the increase in
percentage of USC e-services projects from 28% in 1996-1997 to 70% in 2001-2002
[11], and from the Standish Group’s 2000 CHAOS survey showing that 54% of the
application projects were COTS-based [9]. The underlying reason is that economic
imperatives are inexorably changing the nature of software development processes.
They are increasingly moving away from processes to compose pure-custom software
from lines of code (although these processes still apply for developing the COTS
products themselves), and toward processes for assessment, tailoring and integration of
COTS or other reusable components. The primary economic drivers of this change are:

 The increasing criticality of software capabilities to a product’s competitive
success;

 The ability of COTS or other reusable components to significantly reduce a
product’s cost and development time;

 An increasing number of COTS products available to provide needed user
functions.

Empirical studies further show that the activities conducted while developing COTS-
based applications (CBA) differ greatly from those conducted while traditional custom
development [11, 14]. The new challenges confronted by both COTS researchers and
practitioners go beyond the need to acquire new expertise, manage greater project
uncertainty and volatility, and demand an entirely new development paradigm.

 Process Patterns for COTS-Based Development 207

Traditional sequential requirements-design-code-test (waterfall) processes do not
work for CBA’s [1], simply because the COTS whole life process is not a sequential
one [15]. The volatility of COTS products [2] introduces a great deal of recursion and
concurrency into CBA processes. Meanwhile, within COTS-based development, there
is a large variation in development processes and approaches (e.g. pure selection, pure
adaptation, integration [3]) for which a single generic process model is unable to
provide adequate development guidance. Our previous CBD classification in [11]
identified three types of COTS-based applications: assessment-intensive, tailoring-
intensive, and glue code-intensive. Though the classification is based on the intensity
of certain COTS related activities, many other activities as well as the entire
development process will also be significantly affected by the CBD type. Such
process diversity has to be carefully taken into consideration when modeling CBA
development processes.

Some recent CBA process models have partially addressed these issues by adding
CBA extensions to a sequential process framework [4] or a suitably flexible and
concurrent process [5], including our previous work on the composable CBA process
decision framework [12]. However, these models only provide partial context profiles
identified for developers to select and form an effective and efficient CBA process,
which makes CBA developers often find that it is difficult to determine the relevance
of these models to their project situation. Therefore, it becomes more important to
provide CBA developers with further guidance to select from a series of effective
process solution patterns with respect to particular project circumstance.

Many disciplines have identified patterns by analyzing historical project data and
experiences [17, 18]. We believe that this approach is also valid for COTS-based
development (CBD) processes. An analysis and characterization of CBA process
patterns may serve to:

 Identify and avoid high risk development patternsï

 Aid in COTS effort planning, monitoring, and controlï
 Help explore COTS development options and rationalize COTS decision makingï

 Provide evidence to further validate the composable CBA decision frameworkï

 Help illuminate the COTS risks and risk management within COTS development
activitiesï

In this paper, we present a series of COTS process patterns identified under the
context of the COTS process decision framework established in [12]. Each COTS
process pattern captures some common characteristics of the project, process, product,
and personnel perspectives under certain circumstances. Following selected process
patterns, CBA developers can instantiate process instances from the CBA process
decision framework.

The following section will briefly examine related work on process pattern
approach and such current COTS process models. Section 3 will discuss the CBA
process decision framework and its three composable elements together to
accommodate lifecycle implications of CBD. Section 4 will categorize an initial list of
proposed process patterns based on empirical results from applying the CBA process
decision framework. Lastly, describe follow-on plans of empirical studies for
identifying and validating CBA process patterns.

208 Y. Yang

2 Related Work

2.1 Process Pattern Approach

The concept of process pattern has been proposed to address the effective reuse of
knowledge and experience during software development. The pattern concept is not
new in many other disciplines [17, 18], however, the current focus in software
engineering has been on product patterns rather than process patterns. Jim Coplien
[25] did the early work on software process patterns by introducing a family of
patterns that can be used to shape a new organization and its development processes.
Ambler [16] defined a process pattern as a description of a proven, successful
approach and/or series of actions for developing software, then a number of
researchers have further extended the approach to Requirement Engineering [19],
tool support for living software process pattern definition [20], and ProMisE
framework for process models customization [21]. Huang [22] introduced the
Hierarchical Process Patterns approach to provide a stepwise means to model
software process based on patterns. These extensions categorized process patterns at
different levels, such as activity and process level [20] and pattern-model-instance
level [22], however, none of these work can be applicable to fully address CBD life
cycle issues.

2.2 COTS Process Models

Morisio presented a modified waterfall process [4] in performing concurrent COTS
package evaluation, selection, and requirements analysis. But committing to
requirements on this basis before performing design and glueware integration analysis
is likely to run into the kind of architectural mismatch problems causing factor-of-4
schedule overruns and factor-of-5 budget overruns as discussed in [10].

Though the avoidance of premature-commitment problems was addressed by the
Spiral-based EPIC model [4], the model is too underdetermined to provide enough
planning content to enable projects to monitor progress toward completion. It is good
in identifying the important COTS considerations to address – but its lack of
intermediate milestones leaves it open to at least three major problem sources. One
problem source is the lack of guidance of what steps to take next, or for how long to
perform them. Another is the lack of status information for communicating and
controlling progress toward completion. A third problem is the likelihood of
nonconvergence, as in the “study-wait-study” syndrome.

In analyzing over 20 USC e-services projects and 17 industry COCOTS calibration
projects, we found that the CBA effort mostly happens among assessment, tailoring,
and glue code activities [11] as shown in Figures 1 (a) and (b). Our definitions of the
three primary sources of effort are:

 COTS Assessment is the activity whereby COTS products are evaluated and
selected as viable components for a user application.

 COTS Tailoring is the activity whereby COTS software products are
configured for use in a specific context.

 Process Patterns for COTS-Based Development 209

 COTS Glue Code (also called glueware) development and integration is the
activity whereby code is designed, developed, and used to ensure that COTS
products satisfactorily interoperate in support of the user application.

We furthered this
research by describing a
recursive and re-entrant
CBA process decision
framework within these
three activities [12]
based on the risk driven
spiral model [8]
abstracted from the CBA
projects. The CBA
process decision
framework consists of
dominant decisions and
activities within CBA
development to enable
developers to “compose”
a COTS development
process specifically
instantiated for their
project. Section 3 will
describe the CBA
process decision
framework and its
composable process
elements.

2.3 Motivation of Defining COTS Process Patterns

It is also clear from Figures 1 that there is no one-size-fits-all effort distribution or
development process for CBA’s. Some projects, particularly in the small e-services
area, were almost exclusively Assessment, in which there was little tailoring or glue
code required once the COTS products were selected. Some were almost exclusively
Tailoring; these were primarily applications supported by large, single COTS
Enterprise Resource Planning or Web Portal packages. Some were almost exclusively
glue code development and integration, in which the selected best-of-breed COTS
packages were not designed to interoperate with each other. And there were some
projects with a nontrivial amount of effort in all three areas.

The motivation behind this study is to exploit the pattern concept and define an
initial series of process patterns within the context of CBA process decision
framework in order to enhance its accommodation for COTS process diversity. Each
process pattern describes certain recurring CBD circumstances and a valid series of
navigation steps in the CBA process decision framework as a solution to be
performed under these circumstances. Hence, variations in the COTS processes
become different combinations of instantiations from particular process patterns.

Fig. 1. CBA Effort Distribution

(b) Large Industry Projects

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17

(a) Small e-Service Projects

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17

Assessment Tailoring Glue Code

210 Y. Yang

3 CBA Process Decision Framework

The CBA process decision framework is a recursive and reentrant decision framework
consisting of dominant decisions and activities within CBA development. It
accommodates concurrent CBA activities and frequent go-backs based on new and
evolving client needs and COTS capabilities. Its three composable process elements
are assessment, tailoring, and glue code development.

Figure 2 illustrates the overall CBA decision framework that composes the
assessment, tailoring, glue code, and custom code development process elements
within an overall development lifecycle. The CBA process is undertaken by
“walking” a path from “Start” to “Deploy” that connects (via arrows) activities as
indicated by boxes and decisions that are indicated by ovals (again, subject to COTS-
related backtraching and feedback).

The small circles with letters A, T, G, and C indicates the assessment, tailoring,
glue code, and custom code development process elements respectively. Each process
element is further defined with entry conditions, a set of sub-activities to be
performed, and exit conditions as detailed in [12]. In addition, this scheme was
developed from and is consistent with the CBA activity distributions of Figure 1.

The less obvious aspects of each process area are summarized as follows.

P1: Identify stakeholders’ desired objectives, constraints, and priorities
(OC&P’s). This is the entrance to the process framework. As the project goes on, risk
considerations, stakeholders’ priority changes, new COTS releases and other dynamic
considerations may alter the OC&P’s. In particular, if no suitable COTS packages are

Fig. 2. The CBA Process Decision Framework

P1: Identify Objective,
Constraints and

Priorities (OC&Ps)

P2: Do Relevant COTS
Products Exist?

P3: Assess COTS
Candidates

P4: Tailoring Required?

Single Full-COTS solution
satisfies all OC&Ps

Yes or Unsure

P6: Can adjust
OC&Ps?No

No acceptable
COTS-Based Solution

P5: Multiple COTS
cover all OC&Ps?Partial COTS solution best

P7: Custom Development

NoYes

P10: Develop
Glue Code

P8: Coordinate
custom code and glue

code development

P9: Develop Custom
Code

No, Custom code
Required to satisfy

all OC&Ps

Yes

P11: Tailor COTS P12: Productize,
Test and Transition

NoYes

Deploy

Deploy

A

Task/Process

Decision/Review

Assessment

Tailoring

Glue-Code

T

No

G

G

T

A

Start

Custom DevelopmentC

C

C

 Process Patterns for COTS-Based Development 211

identified (P6), the stakeholders may change the OC&P’s and the process is started
over with these new considerations.
P2: Relevant COTS products exist? In most cases, stakeholders are aware of some
available COTS packages that can provide part of all their needed functionalities.
Then a COTS assessment activity will help them to determine the best option.
However, the project will follow a custom development approach if the stakeholders
realize that there is no relevant COTS available.
P4: Tailoring Required? When a certain COTS product can satisfy all the OC&P’s,
there is no need to develop application code or glue code. The selected COTS may
need to be tailored in order to work for the specific system context.
P5: Multiple COTS cover all OC&P’s? If a combination of COTS products can
satisfy all the OC&P’s, they are integrated via glue-code. Otherwise, COTS packages
are combined to cover as much of the OC&P’s as feasible and then custom code is
developed to cover what remains.
P6: Can Adjust OC&P's? When no acceptable COTS products can be identified, the
OC&P’s are re-examined for areas that may allow more options. Are there constraints
and priorities that may be relaxed? How firm are the objectives and if adjusted
slightly will it enable consideration of more products? Are there analogous areas in
which to look for more products and alternatives?
P8: Coordinate Application Code development and Glue Code effort. Custom
developed components must eventually be integrated with the chosen COTS products.
The interfaces will need to be developed so they are compatible with the COTS
products and the particular glue code connectors used. This means that some glue
code effort will need to be coordinated with the custom development. This
coordination needs to continue through the concurrent development of custom code
and glue code (P9, P10).
P12: Productize, test, and transition. This is the last area of CBA process
framework. It involves some traditional engineering activities of productizing, testing,
and transitioning the application to the client.

The recursive and reentrant nature of this general CBA process framework enables
it to reflect such project realities as asynchronous go-backs to reflect new
developments and the ability to conduct combinations of the process elements in
parallel. However, particular CBA projects would like to have more specific
information about the relative likelihood of various process patterns, at least within a
particular CBA domain. Below, we provide some initial results on such process
patterns in the domain of small e-service CBAs, based on the results of the first 9
projects in this domain that have used the general CBA process framework. These
results also enabled us to refine the original CBA process framework presented in
[12] into the version presented above.

4 CBA Process Patterns

In this section, we will present the identification of CBA process patterns at three
levels. Throughout this section, we will be referring to the ID’s of process areas
within the CBA process decision framework as presented in Section 3.

We adopt a three-tier hierarchical structure [22] to organize the CBA process
patterns:

212 Y. Yang

 Lifecycle Pattern: which is a valid walk from “Start” to “Deploy” in the CBA
process decision framework;

 Activity Pattern: which organizes a series of activities to be frequently
performed together, either in a sequential order or concurrently. An activity
sequence pattern reflects certain project characteristics and risk
considerations.

 Workflow Pattern: which decomposes a particular CBA process element into
a workflow attributed with entry conditions, major tasks, and exit conditions.

4.1 Lifecycle Patterns (LP)

The CBA process decision framework provides a general yet sufficiently specific
mechanism to identify all the process conditions that allow CBA processes to be
specialized according to their project context factors such as number of COTS
packages, percentage of COTS delivered system functionalities, COTS tailoring
complexity, new COTS or project developments, or opportunities to execute instances
of process elements in parallel.

There are three life cycle patterns identified based on the CBA process decision
framework, with respect to the COTS assessment results (i.e. P3 in Figure 2). These
include:

 LP-1: No available COTS. If COTS assessment results conclude that there are
no available COTS packages providing desired system capabilities, and none
of the OC&P’s could be adjusted to accept more COTS candidates (i.e. P6),
then the development process will follow a custom development approach
(i.e. P7).

 LP-2: Single-Full COTS. This condition implies that a single COTS product
such as a web portal generator or an Enterprise Resource Planning (ERP)
package is finally selected to meet all desired OC&P’s, the CBA process will
then simply depend on whether tailoring the COTS product is necessary (i.e.
P3 P11 P12) or not (i.e. P3 P12). Note that in this situation, no COTS
glue code or custom code development is needed.

 LP-3: Partial COTS. This condition means that the selected COTS solution
could consist of either only one single COTS package or multiple COTS
packages. However, the available COTS products can only partially deliver
the desired OC&P’s. In this case, the emphasis of the CBA process will be on
the glue code development (i.e. P10) and custom code development (i.e. P9),
and the coordination of these two (i.e. p8).

Figure 3 depicts the process areas from the CBA process decision framework
visited in each of the three Lifecycle patterns, where boxes represent the activities and
circles represent decision points.

Again, these patterns are subject to asynchronous go backs, such as the process of
COTS glue code generation and tailoring within the Partial COTS (LP-3) process
element P10 identifying additional COTS capabilities that make a go-back to a Single
Full-COTS (LP-2) process more attractive.

 Process Patterns for COTS-Based Development 213

N

Y

Y

Y

N

N

Y

Y

LP-1: No Available
COTS

P1 P3 P7

LP-2: Single-Full
COTS

P1 P3

P11

P12

LP-3: Partial COTS P1 P3

P10 P12

P8 P9

P2 P6

P2 P4

Deploy

Deploy

P2 P5

Deploy

N

Y

Y

Y

N

N

Y

Y

LP-1: No Available
COTS

P1 P3 P7

LP-2: Single-Full
COTS

P1 P3

P11

P12

LP-3: Partial COTS P1 P3

P10 P12

P8 P9

P2 P6

P2 P4

Deploy

Deploy

P2 P5

Deploy

Fig. 3. The Three CBA Lifecycle Patterns

4.2 Activity Patterns (AP)

Table 1 summarizes the results with respect to these activity areas from applying the
process CBA decision framework within various e-services projects. We observed
that not all projects follow similar activity sequences. For example: Assessment and
tailoring were the dominant activity for project 2 in the elaboration spiral, while for
project 3 during the elaboration phase the team implemented in parallel tailoring and
glue-code activities, and on finding the COTS unsuitable for their need this team
revisited he assessment activity during the elaboration phase.

Table 1. CBA Activity Sequence Examples

Activity Sequences
No. Inception Elaboration Constructio Transition

1 A AC ATG C

2 A AT A A

3 A (TG)A G G

4 A A(TG) A(TG) G

5 AT AT T T

6 A T TG G

7 AT T T T

8 AT (AA) TG (TGC) G

9 A AT TG G

The analysis shows each of these CBA projects has a distinct pattern of sequences
in which various activities were implemented. Such differences in the activity
sequences resulted from a specific set of project characteristics and associated risks
reported by the projects. Analyzing the CBA project sequence data showed that there
are usually certain patterns that commonly exist in almost all of the CBA projects, and

214 Y. Yang

also there are some patterns that reflect the most significant project risks if not being
properly handled leading to significant loss in terms of confusion, rework, and delay
in schedule.

The observed activity patterns fall into the following two categories.

4.2.1 Anticipated Patterns
Every anticipated pattern maps to a path within the decision framework to address the
identified COTS related risks, to avoid such risks where possible, and finally to
control or transfer the remaining risks. Table 2 Lists the five identified anticipated
activity patterns, with the avoided risk shown in column 4 and probability of occurrence
in the 9 observed projects shown in the last column.

Table 2. Anticipated COTS Activity Patterns

No. Name Description Avoided Risks Prob.

AP-1 Assessment
first

After identifying OC&P’s and
collecting an initial set of COTS
candidates, COTS assessment is
usually performed.

Selecting faulty
COTS candidate;

Faulty vendor
claim

100%

AP-2 Assessment to
tailoring
(A=>T).

While assessment is on going or
once assessment is done, it becomes
clearer what can be customized in a
COTS product before being
utilized.

COTS is
developed for
general purpose,
not for any
particular system

100%

AP-3 Tailoring to
glue code (T
=>G).

When integrating COTS packages,
often tailoring can help prepare
unrelated COTS packages to “fit”
together with glue-code.

Integrated
system did not
perform as
expected.

33%

AP-4 Assessment to
tailoring and
glue code
(A=>(TG) or
A =>T=>G).

This is particularly true with
multiple COTS components that
require a thorough assessment with
tailoring and glue code
development to test COTS usability
and interoperability.

Insufficient early
assessment
without
prototyping by
tailoring and
glue coding

67%

AP-5 After
Inception, A,
T, TG as a
repeatable
pair (A=>A or
T=>T or
(TG)=>(TG)).

Due to frequent requirement
changes or new COTS insights, re-
assessing or retailoring a COTS
package is common in addition to
possibly a certain amount of rework
on glue code to accommodate the
changes.

Changes make
initial COTS no
longer satisfying

67%

4.2.2 Unanticipated Patterns
An unanticipated pattern is a pattern that is not expected to typically occur (and as a
result, not often planned for) in a project. Yet it is valid within the CBA framework,
has project rationale, and is observed within the case-study projects. Table 3 lists the
two identified unanticipated activity patterns.

 Process Patterns for COTS-Based Development 215

Table 3. Unanticipated COTS Activity Patterns

No Name Description Indicated Risk Prob.

AP-6 Tailoring to
assessment
(T A)

When tailoring COTS,
need to re-assess
selected COTS due to
project changes (e.g.
Reqt’s, COTS, and
priority changes)

1) Requirement changes make
initial COTS no longer
satisfying;
2) COTS version upgrade
during development demands
re-evaluation;
3) Tailored package didn’t
perform as expected.

33%

AP-7 Glue code to
assessment
(G A)

Integration difficulty
causes re-assessing
COTS.

1), 2) above and
3) Integrated system did not
perform as expected.
4) Lack of interoperability
standards to facilitate the
integration

20%

4.3 Workflow Patterns (WP)

Our original composable process elements in the CBA process decision framework in
[12] (assessment, tailoring, glue code integration) were overly simple. Our experience
with the initial 9 project applications of the framework has led to more realistic
workflow patterns for these process elements. Each of the three process elements
consists of entry conditions, major tasks, and exit conditions, which well fits into the
workflow pattern as discussed next.

4.3.1 Assessment Workflow
COTS assessment aims at helping to make buy-or-build choices, evaluating the
fitness of COTS candidate package(s), and selecting the most satisfactory COTS or
COTS combination based on evaluation results. Figure 4 illustrates the assessment
workflow pattern.

Entry Conditions:

- Objectives,

Constraints and

Priorities (OC&Ps)

A1: Establish

evaluation criteria,

weights; Identify

COTS candidates

A2: Initial

Filtering:

document/

literature review

A3: Prepare for

detailed

assessment

A4: Detailed

Assessment

A5: Collect data and

analyze assessment

results

Market Trend Analysis

Remaining COTS candidates

Changes of COTS Vendor/Standards

P6: Can adjust

OC&Ps?

No acceptable

COTS-Based

Solution

A6: Clear Choice?

P5: Multiple COTS

cover all OC&Ps?

No acceptable

COTS-Based

Solution

Partial COTS

solution best

Single Full-COTS solution

satisfies all OC&Ps

COTS
Assessment
Background

(CAB)

COTS
Assessment

Process
(CAP)

COTS
Assessment

Report
(CAR)

P4: Tailoring

Required?

Fig. 4. The Assessment Workflow

216 Y. Yang

Entry Conditions. The entry condition for assessment assumes stakeholder-
negotiated OC&P’s for the system are present and relevant COTS products are
available.

Major Tasks
A1: Establish evaluation requirements.
A2: Initial Filtering.
A3: Prepare for detailed assessment.
A4: Detailed assessment.
A5: Collect evaluation data and analyze evaluation results.
A6: Clear COTS choice?

Along with the steps of A3, A4, and A5, market trend analysis is a very useful and
critical technique to gather broader and up-to-date information for comparison and
analysis. For example, market-watch activity can be used to get the latest information
regarding COTS products or standards, and to collect COTS information from its
current users to gain first hand COTS experience.

Exit Conditions
The following three exit directions from step A6 have been identified:

 Single full COTS solution best: it means a single COTS product covering
all desired OC&P’s;

 Partial COTS solution best: it means that either a single COTS product or
a combination of COTS products is selected, however, the COTS products
only cover part of the OC&P’s, and custom development and/or glue code
development is needed to meet all desired OC&P’s;

 No acceptable COTS: it means that pure custom development is the
optimal solution, unless the stakeholders are willing to adjust unsatisfied
OC&P’s.

4.3.2 Tailoring Workflow
In most cases, COTS packages need to be adapted in order to work in a specific
system context. If these adaptations are directly supported within the COTS packages

Alternate

COTS selections

T1: Identify tailoring methods

available for the selected COTS

components

T3: Perform tailoring effort vs

functionality trade-off analysis

T2: Clear best tailoring method?

T5: Design and Plan

tailoring using best

available tailoring method

No

Yes

Yes

T4: Tailoring-functionality trade-

off feasible to satisfy OC&Ps?

No

Entry Conditions:

- Final Tailoring: Single COTS product that

requires tailoring to satisfy OC&Ps

- Prototyping: Single COTS product that

requires to be tailored to determine of it will

satisfy system OC&Ps

A4: Detailed

Assessment

T6: Perform Tailoring

A4: Detailed

Assessment G4: Develop glue

code and integrate

P12: Productize,

Test and Transition

Fig. 5. The Tailoring Workflow

 Process Patterns for COTS-Based Development 217

themselves, then this is considered tailoring activity. The tailoring workflow is
illustrated in Figure 5.

Entry Conditions. While several COTS products may be tailored simultaneously, the
tailoring workflow focuses on tailoring an individual COTS product. This product
may be under consideration by the assessment workflow; be adapted for use as a glue
code component; or be a fully assessed and ready to use product simply needing some
specialization.

Major Tasks
T1: Identify Tailoring Methods available.
T2: Clear Best Choice?
T3: Perform tailoring effort vs. functionality trade-off.
T4: Tailoring-functionality trade-off feasible?
T5: Design and Plan tailoring.

T6: Perform Tailoring.

Exit Conditions
COTS package is parameterized, customized, configured, or some scripts are written
to tune the COTS ready for detailed assessment, glue code development, or final
productization.

4.3.3 Glue Code Workflow
The intent of a glue code activity is to integrate COTS products as basic application
components. In some fortunate cases, the combination of COTS components and
application components being integrated or assessed will easily plug-and-play
together. If not, some glue code needs to be defined and developed to integrate the
components, and some evaluation may be necessary to converge on the best
combination of COTS, glue code, and application code for the solution. A number of
architectural approaches for using glue code or connectors to integrate COTS
products have been developed, but less has been done to work out the process for glue

G1: Architect and

Design Glueware

G2: Architecture

Feasible?
Yes

P12: Productize, Test

and Transition

Entry Conditions:

- Final Tailoring: Set of COTS

products that satisfy OC&Ps

- Prototyping: Set of COTS

products that satisfy critical

system objectives

G3: Tailoring

Required

No

Yes

T

G4: Develop glue

code and integrate
No

A4: Detailed

Assessment

Alternate

COTS combinations

Out of COTS

Combinations

P8: Coordinate Application

code and glue-code

development

Fig. 6. The Glue Code Workflow

218 Y. Yang

code development and its interactions with other CBA activities. Figure 6 illustrates
the activities and decisions during a glue code workflow.

Entry Conditions. The primary entry conditions are a combination of COTS
products that require glueware and/or custom code for successful operation.

Major Tasks
G1: Architect and Design Glueware.
G2: Architecture Feasible?
G3: Tailoring Required?
G4: Develop Glue Code and Integrate.

Exit Conditions
Glue code among selected COTS packages and/or custom components is developed
and ready for detailed productization, testing, and transition. If no COTS
combinations can be feasibly integrated via glue code, either the OC&P’s need to be
adjusted or a custom solution pursued (P6).

4.3.4 Workflow Guidance – An Example
Hierarchical definitions of CBA process patterns can help a project team identify and
apply an appropriate pattern at any given stage of the project according to the context
profile comparison, risk mitigation considerations, and need of workflow guidance.

Example of Workflow Guidance
For example, we have developed a set of three lightweight process guidelines for
developing assessment-intensive CBA projects based on the Assessment Workflow
Pattern. The three guidelines are COTS Assessment Background (CAB), COTS
Assessment Plan (CAP), and COTS Assessment Report (CAR). The CAB document
provides the minimum-essential set of objectives, constraints, priorities, and situation
background needed to perform the COTS assessment. The CAP document is
organized to cover the minimum essential “why/whereas, what/when, who/where,
how, and how much” aspects of the COTS assessment activity being planned. The
CAR document presents the major results, conclusions, and recommendations of the
COTS assessment. The CAB, CAP, and CAR remain lightweight are updated
whenever new risks, opportunities, or changes emerge. Figure 4 marks the places that
these guidelines can be applied to generate corresponding project artifacts.

Table 4. The overall mapping of artifacts defined by Assessment workflow guidelines and
ISO/IEC 14598-4 [7]. We found some specific guidance important to include in the CAB, CAP,
and CAR guidelines that were not found in ISO/IEC 14598-4. These include the Result Chain
Analysis, System OP&C’s (objectives, priorities, and constraints) identification, and process
plan for concurrent COTS assessment, tailoring and glue code activities.

CBA Assessment Process Element ISO/IEC 14598-4
COTS Assessment Background (CAB) Evaluation Requirement Specification
COTS Assessment Plan (CAP) Evaluation Plan
COTS Assessment Report (CAR) Evaluation Specification + Evaluation Records

and Results

 Process Patterns for COTS-Based Development 219

Fig. 7. Comparison of COTS Impacts

0

5

10

15

20

25

schedule
delay

hard to be
integrated

architecture
changes

requirement
changes

save dev.
effort

higher
quality

Aspects of COTS Impacts

M
ag

n
itu

d
e

o
f C

O
T
S

 Im
p
ac

ts

Group A Group B

4.3.5 Summary of the Application of the Three Levels of CBA Process Patterns
In the Fall 2004 semester, an experiment was performed on the 14 USC e-services
CBA projects, which were split into two groups. The first group A consists of 8
projects that applied the CBA process patterns in their project planning and
management; the second group B includes 6 projects that did not apply.

Table 5. To measure and compare the team performance, data on defects within team
deliverables were collected and analyzed. The team performance measurement is derived from
the overall number of defects within the LCO and LCA package [8]. The experiment has
proven that the application of the CBA process patterns helps to improve development team
performance significantly. The quantitative data shows the comparison of Group A and B on
team performance.

Team No. Defect Team No. Defect

1 41 2 57.8

6 31 3 76

7 48 4 118

8 37 10 85

14 33 11 72

18 49 12 86.7

21 50

24 30

Average 39.8 Average 82.6

Group A Group B

A paired t-test was performed on the two group’s team performance data. The two-
tailed P value equals 0.0029. By conventional criteria, this difference is considered to
be very statistically significant.

Other Results
A survey performed on these projects to collect the usage data from the CBA
developers. The results of the survey show that different COTS impact profiles exist

between projects from
the group A and projects
from group B.

Figure 7 compares the
different aspects of
COTS impacts in terms
of the magnitude of the
impact on the two
groups. In average, the
group A projects exhibit
less schedule delay, less
difficult integration
issues, and slightly less

220 Y. Yang

changes in requirements and architecture design, they also reported the use of COTS
helps to save development effort and produce higher quality system. Note that the
number of responses from group A is 44, and that from group B is 26.

Table 6. Among the responses from group A, the developers also cited various advantages
gained by applying the framework. This is summarized in the Table 6, where the last column
shows the percentage of responses for each listed advantage.

Framework can help with: Percentage

COTS assessment 81.8%

Risk identification and mitigait 68.2%

Life cycle planning 63.6%

5 Conclusions

In the past, we have tried to incorporate a generic CBS processes but with limited
success. This was evidenced by observing numerous teams succumbing to effort
allocation pitfalls. For example performing too much COTS assessment and
neglecting to allocate enough time for training, tailoring and integration resulting in
project delays, inability to implement desired functional capabilities, and so forth.

Process patterns provide an effective means for analyzing complex and often subtle
CBA processes. The identifications of the hierarchical CBA process patterns are
useful for strategic and tactical development planning as they provide an overview of
the viable lifecycle options, potential risks and appropriate mitigation actions, and
development workflows.

CBA process patterns are invaluable for validating and refining the CBA decision
framework that has already proven to be of substantial value to developers
inexperienced in COTS based system development. Additionally, CBA activity
patterns provide an empirical means of identifying and avoiding COTS risks. CBA
workflow patterns identify the common activity configurations of assessment,
tailoring, and glue code development which are significantly different from traditional
software engineering activities.

In future work we hope to develop tools that help identify and apply the CBA
process patterns and evaluate their utility through empirical experiments.

References

1. Benguria, G., Garcia, A., Sellier, D., Tay, S.: European COTS Working Group: Analysis
of the Common Problems and Current Practices of the European COTS Users. In: Dean,
J., Gravel, A. (eds.): Proceedings of 1st ICCBSS, Springer Verlag (2002) 44-53

2. Basili, V., Boehm, B.: COTS Based System Top 10 List. IEEE Computer (2001) 91-93
3. Carney, D.: Assembling large systems from COTS components: Opportunities, cautions,

and complexities. In SEI Monographs on the Use of Commercial Software in Government
Systems. Software Engineering Institute, Carnegie Mellon University (1997)

 Process Patterns for COTS-Based Development 221

4. Morisio, M., Seaman, C., Parra, A., Basili, V., Kraft, S., Condon, S.: Investigating and
Improving a COTS-Based Software Development Process. Proceedings of 22nd ICSE
(2000) 32-41

5. Albert, C., Brownsword, L.: Evolutionary Process for Integrating COTS-Based Systems
(EPIC): An Overview. CMU-SEI-2002-TR-009 (2002)

6. Abts, C.: Extending the COCOMO II Software Cost Model to Estimate Effort and
Schedule for Software Systems Using Commercial-Off-The-Shelf (COTS) Software
Components: the COCOTS Model. Ph.D. Dissertation, University of Southern California
(2001)

7. ISO/IEC 14598-4: Software engineering -- Product evaluation -- Part 4: Process for
acquirers (1999)

8. Boehm, B., Egyed, A., Kwan, J., Port, D., Shah, A., Madachy, R.: Using the WinWin
Spiral Model: A Case Study. IEEE Computer (1998)

9. CHAOS 2001, http://www.standishgroup.com
10. Garlan, D., Allen, R., Ockerbloom, J.: Architectural Mismatch, or, Why it's hard to build

systems out of existing parts. Proceedings of 17th ICSE (1995)
11. Boehm, B., Port, D., Yang, Y., Bhuta, J.: Not All CBS Are Created Equally: COTS-

Intensive Project Types. Proceedings of 2nd ICCBSS (2003) 36-50
12. Boehm, B., Port, D., Yang, Y., Bhuta, J.,: Composable Process Elements for Developing

COTS-Based Applications. Proceedings of ISESE 2003 (2003)
13. Port, D., Yang, Y.: Empirical Analysis of COTS Activity Effort Sequences. Proceedings

of 3rd ICCBSS (2004)
14. Brownsword, L., Oberndorf, T., Sledge, C.A.: Developing New Processes for COTS-

Based Systems. IEEE Software (2000)
15. Looney, M., Erdogmus, H., Allan, G., Allison, S., Dean, J.C., Sledge, C.A., Oberndorf, P.:

COTS Process Issues in Military Applications. Proceedings of ICSE 2000 Workshop on
Continuing Collaborations for Successful COTS Development (2000)

16. Ambler, S.: Process Patterns: Building Large-Scale Systems Using Object Technology,
Cambridge University Press, New York (1998)

17. Alexander, C.: A Pattern Language, New York, Oxford University Press (1977)
18. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented

Software Architecture – A system of Patterns. Wiley and Sons Ltd (1996)
19. Gaska, M.T., Gause, D.C.: An approach for Cross-Discipline Requirement Engineering

Process Patterns. Proceedings of 3rd ICRE (1998) 182-189
20. Gnatz, M., Marschall, F., Popp, G., Rausch, A., Schwerin, W.: Towards a tool support for

a Living Software Development Process. Proceedings of 35th Annual Hawaii International
Conference on System Sciences (2002) 1529–1537

21. Baldassarre, M.T., Caivano, D., Visaggio, C.A., Visaggio, G.: ProMisE: a framework for
process models customization to the operative context. Proceedings of 2002 ISESE (2002)
103-110

22. Heyuan, H., Shensheng, Z.: Hierarchical process patterns: construct software processes in
a stepwise way IEEE International Conference on Systems, Man and Cybernetics (2003)
353-1358

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 222 – 234, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Testing Process Automation Based
on UTP – A Case Study

Wei Chen1,2, Qun Ying1,2, Yunzhi Xue1,2, and Chen Zhao1

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

2 Graduate School of the Chinese Academy of Sciences, Beijing 100039, China
{chenwei, yingqun, yunzhi, zhaochen}@itechs.iscas.ac.cn

Abstract. Automation of software testing process plays an important role in
improving software quality, shortening period of development and reducing
development cost. However, most existing testing automation methods tend to
rely on various kinds of limited formal models, and make a contrived separation
between software testing and other phases in software life cycle. This
separation limits wide spread application of these methods. On the other hand,
UML, as a unified modeling language that has been widely employed to
describe and model software and software process, can provide good basis for
testing automation to close the separation. In this paper we introduce an
approach that transforms design models represented by UML to testing models
represented by UTP (UML Testing Profile), and further more transforms the
testing models to TTCN-3 (Test and Test Control Notation) test cases that can
be executed on a TTCN-3 execution engine, according to TTCN-3 mapping
interface defined in UTP. This approach integrates testing phase with other
phases tightly together, and leads to automation or semi-automation of software
testing process. Finally, the paper demonstrates the effectiveness of the
proposed approach by deriving TTCN-3 test cases for a typical C/S software
system.

1 Introduction

In typical software testing process, development and execution of test cases cover
most time and money cost. So, automation of software testing process plays a very
important role in improving software quality, shortening period of development and
reducing development cost. In the past years researchers have proposed many
techniques to derive test data or cases automatically. Generally such techniques are
based on formal specification that describes the structure and/or behavior of software
systems and do generate test cases using algorithms derived from that specification
[1]. However these methods are lack of practice in a real-world development process
due to several reasons [2]. The first one is of complexity of formal specification and
completeness of generating algorithms. Second one is selection criteria of test cases:
how to select an efficient set of test cases from commonly infinite space to fit a given
testing requirement is quite difficult. The last reason, maybe the most important one,

 Software Testing Process Automation Based on UTP – A Case Study 223

is from formal methods themselves. Most formal methods require good mathematical
background and comprehensive understanding of target system for users, so that
building a complete formal specification to generate test cases are generally too
expensive to practice.

Historically, the appearance of software “testing” activity was later than software
development and implementation; this had cause to a trend that separates
development of testing and development of implementation away. While developing
test cases, experienced tester may refer to design model, and may also introduce some
errors for misunderstanding of design models. An ideal development model should be
like this: all activities should be implemented in a unified process, these activities
should incorporate each other and affect each other, and further more all concepts and
methods employed by this process should be consistency [2]. Nowadays it seems that
UML is the best one of supporting tools to construct the ideal development model [3],
especially after official release of UML Testing Profile (UTP), which can assist
testers to build exactly description of (static) structure and (dynamic) behavior of
software systems, is released in 2004.

Though UTP can be used to construct testing model for a software system, this
kind of construction starting from scratch would be expensive. So it is naturally to try
to transform UML model to UTP model with motivation to reduce cost of developing
testing model. [5] outlined principles and advices of such transformation, and listed
elements in UTP that can be transformed from UML, including test component, test
configuration, test control, default, data pool, data partition and timer. [6] discussed
an example that applies such transformation to protocol testing. However, these works
only expressed principles and description, lack of detailed transformation algorithms.
And [7, 8] proposed a transformation method based on MOF four-tier model
framework which can be used only to generate structural elements of testing model.

In this paper we propose a transformation approach that transforms UML design
models to UTP testing models using three detailed algorithms, and further more
transforms the testing models to TTCN-3 testing cases that can be executed on a TTCN-
3 execution engine, according to TTCN-3 mapping interface defined in UTP[4,9]. This
approach integrates testing phase with other phases tightly together, and leads to
automation or semi-automation of software testing process. In order to demonstrate the
feasibility and effectiveness of the proposed transformation approach, we try to derive
TTCN-3 test cases for a typical C/S software system describe in section 3.

The paper is organized as following. The section 2 gives an introduction of UTP
and TTCN-3. The section 3 describes the design model of a C/S communicating
software, which is the target system being tested. The section 4 introduces three
detailed algorithms that transform design model to testing model, and application to
testing of the target system. The following section is execution of testing model by
transforming it from UTP model to TTCN-3 model. Section 6 gives concluding
remarks and future research directions.

2 Background

The UTP defines a visual language for designing, specifying, analyzing,
implementing and documenting test systems. All necessary conceptually elements for

224 W. Chen et al.

description of testing specification and testing model of black-box testing are
contained. Generally these elements can be categorized into test architecture, test
behavior, test data and timer. Each category describes one specific aspect of testing
model, as below:

 Test Architecture: description of test components, interfaces, connections
among test components and connections between test components and SUT.

 Test Behavior: description of behavior of test cases, trace of test execution and
evaluation of test results.

 Test Data: data used by test cases or test execution.
 Timer: description of time constraint or control of test behavior.

Though UTP can describe test system by itself, it can be integrated with UML
together so that design of system and design of testing system can be merged. Section
3 proposes a transformation approach to generate UTP testing model from UML
design model.

To generate executable test cases from UTP testing model, these models could be
translated to programs written in Java or TTCN-3, as defined in official specification
of UTP. This paper refers to the latter.

TTCN-3, the Testing and Test Control Notation, is the test specification and
implementation language defined by the European Telecommunications Standards
Institute (ETSI) for the precise definition of test procedures for black-box testing of
reactive systems. It is a modular language and has a similar look and feel to a typical
modern programming language. In addition to the typical programming features, it
contains many important features necessary to specify test behavior and campaigns
for functional, conformance, interoperability, load and scalability tests like test
verdicts, matching mechanism to compare the expected responses with the actual
ones, timer handling, distributed test components, synchronous and asynchronous
communication and tracing[4].

TTCN-3 allows the description of complicated, distributed, parallel test behavior in
terms of sequence, alternatives, loops, parallel stimuli (altsteps and interleaves) and
responses. The parallel stimuli are exchanged at the interfaces of SUT, which are
defined as a collection of ports being either message-based for asynchronous
communication or signature-based for synchronous communication. The test system
can use any number of test components, interfaces of which are described as ports
likewise to the interface of SUT, to perform test procedure in parallel[4].

3 Design Model

A typical C/S system, which employs socket-based communication to serve business
process, is selected as our experimental target system. Figure 1 shows the static
structure of the system. Package CSCom contains five classes, ClientApp, Client,
ServerApp, Server and Database. Notably, one Server object can serve many Client
objects simultaneously.

In addition, figure 2 characterizes a runtime scenario of the system, and describes
connections and communications between objects. A ClientApp instance, cApp, sends
connection request to a Client instance, client, and client forwards the request to a

 Software Testing Process Automation Based on UTP – A Case Study 225

specific server, an instance of Server. Then, client receives a message indicating that
the connection is established, which will be forwarded to cApp. As soon as the
connection is set up, cApp issues a service request to server through client, which is
processed by sApp. The result of the service is sent back in reversed direction. Finally,
cApp sends a disconnection request to server via client, and the entire communication
is terminated.

Fig. 1. Class diagram of the system

Fig. 2. Sequence diagram of the system

Fig. 3. Statechart diagram of a Client object

226 W. Chen et al.

Figure 3 shows the state transfers of a Client object during system execution. After
it is created, Client sends a connection request to the server and waits for the
connected message in init state. A connected message in 3 seconds from the moment
the Client object enters state init will trigger a state transfer, and the object comes into
state connected. Then, a message of data will trigger an action send(data) and a state
transfer to state wait, where a message of result will trigger an action of
receive(result) and a state transfer back to state connected. Note that, a message of
disconnect at any state to the object will trigger an action of send(disconnect) and
terminate the life cycle of the object. As we can see, the statechart diagram, together
with the sequence diagram, depicts the dynamic features of the system.

4 Transformation from Design Model to Testing Model

After design model is constructed, necessary information needed for modeling test
system is ready. UTP, as a complement of testing issues of UML, adopts many
concepts and elements from UML, and thus many of its elements can be transformed
from UML design model. Three transformation algorithms for automatically
transforming from UML design model to UTP testing model are proposed in this
section. By applying these algorithms, most elements of UTP testing model can be
generated from UML design model, e.g. SUT, test component, utility part, test suite,
arbiter, test configuration, test case, timer and defaults, and so on. Notably, to assure
usability of the algorithms, human involvement is an inevitable way to append some
testing information which is absent in design model. For this purpose, several
heuristic transformation rules for the convenience of specifying testing requirements
by users are introduced.

4.1 Generation of Arbiter, SUT, Test Component, Utility Part and Test Suite

Arbiter, SUT, test component, utility part and test suite are structural elements of
UTP. They merely relate to structural information of classes in design model. We can
do generation of these five kinds of elements in a single algorithm.

An arbiter is a special test component, which is a requisite in each testing model.
An arbiter object is used as a monitor that determines whether a test output is same as
expected. According to our algorithm, an arbiter object named Test-Coordinator is
automatically assigned to a testing model.

Generation of SUT is straightforward. Users simply specify classes to be tested in
design model. A rule, named sut, is in form of

in which each parameter refers to a class to be tested, and these classes finally form
the SUT in testing model. We have to import these classes into the test package in
order to access them.

In testing model, utility part elements represent external classes, which provide
some specific services. To generate this kind of element, we introduce a utility rule in
form of

 Software Testing Process Automation Based on UTP – A Case Study 227

in which each parameter refers to a class in design model. This rule indicates those
classes of utility part. One design model needs at most one utility rule. Similarly, we
have to import these classes into test package in order to make these external service
classes accessible in testing model.

Apart from classes specified in sut rule and utility rule, each other class is regarded
as a single test component in testing model. However, in case of an intricate system,
simple one-to-one mapping will leads to large numbers of test components in testing
model and aggravate implementation complexity of test system. To avoid this
situation, group rule is introduced in form of

in which the first parameter represents id of such a rule, and each rest parameter
represents a class in design model respectively. Group rule indicates that some classes
of design model are combined into an individual test component element named after
the rule. One design model may have more than one group rule.

Test suite organizes all test cases together in a UTP testing model. In our
transformation method, we just generate default skeleton for a test suite class, which
contains a verdict variable, and each of whose methods denotes one test case
corresponding to a sequence diagram of design model. Users can refine and complete
this automatically generated test suite.

Here we give generation algorithms for arbiter, SUT, test component, utility part
and test suite in detail.

ALGORITHM 1:

S1. Initialize set S, which contains all classes in design model; Initialize set GROUP, which
contains all group rules; Initialize mapping set MAP as empty;
S2. Add an Arbiter object named Test-Coordinator to testing model;
S3. For each parameter pi in sut rule, let S=S-{pi}, MAP.Add(pi, SUT);
S4. If no utility rule exists, GOTO S5; otherwise, for each parameter pi(i>0) in utility rule,
let S=S-{pi}, add an identical class pi to testing model, MAP.add(pi, pi);
S5. g = GROUP.pop_First(), if g == NULL, GOTO S7;
S6. Add a test component class named as the first parameter p1 of g to testing model; for
each rest parameter of g, i.e. pi(i>1), S=S-{pi}, MAP.add(pi, p1); GOTO S5;
S7. For each class c left in S, add a corresponding test component class in testing model;
S8. Add a test suite class to testing model, which contains a private data member of verdict;
for each sequence diagram in design model, add a test case method;
S9. Import all classes in design model that relate to utility part or SUT element into test
package.

To apply algorithm 1, firstly users should specify rules to be imported. Notably, sut
rule is absolutely necessarily for any testing model, and utility rule and group rule are
optional. Besides using textual form, users can use role assignment diagram to import
these three kinds of rules. For example, for figure 1, we import rules sut (Server),
utility (Database) and group (TCClient, ClientApp, Client), as shown in figure 4.

After specifying rules, we can get part of UTP structural elements from design
model by applying algorithm 1 to target system, i.e. package diagram of the testing
system shown in figure 5 and skeleton of the test suite class shown in figure 6. For
simplicity, we import all classes in design model into test package, rather than import

228 W. Chen et al.

those classes in design model that correspond to utility part and SUT elements. In
addition, algorithm 1 also generates a set MAP mapping each class in design model to
class in testing model, which will be utilized in next two algorithms.

Fig. 4. Role assignment diagram

Fig. 5. Package diagram of test system

Fig. 6. Class diagram of Test Suite

4.2 Generation of Test Configuration

Test configuration diagram shows connective relationship between objects in testing
model. Since there may be some objects in testing model which belong to same class,
we need to import a rule that can describe such a scenario that there are more than one
object belong to one test component or one utility part. The rule is in form of

in which par refers to a class in testing model, num is number of objects. Note that an
instance rule cannot be imported arbitrarily, and it should be validated according to
class diagrams in design model. For example, if there are two instances of ServerApp,
and only one Database instance, then instance(ServerApp, 2) is wrong because it
disobey the one-to-one relation of ServerApp and Database in design model.

An arbiter instance is used to evaluate testing result, so it needs to connect with
some test component objects and utility part objects. Firstly, all utility part objects
need to connect with arbiter objects, and all test component object or SUT object
which interacts with utility part objects need to connect with arbiter objects. These

 Software Testing Process Automation Based on UTP – A Case Study 229

two kinds of connections show that all interaction with utility part objects should be
executed via an arbiter object. In addition to interactions involved with utility part
objects, an arbiter object usually monitors some other events. We introduce monitor
rule in form of

in which every parameter refers to an event E(Tcom1,Tcom2,operation)1 which should
be monitored by arbiter object. If an event E is to be monitored, it should notify arbiter
object after its execution is finished. If Tcom1 is not SUT, it is Tcom1 object which
informs arbiter object of E, otherwise it is Tcom2 which informs arbiter object.

Here we give generation algorithm for test configuration in detail.

ALGORITHM 2:

S1. Create a SUT object in test configuration diagram; for each class C in testing system, if
there is an instance rule instance(C, k), then create k objects of class C in test configuration
diagram; otherwise create only one object of class C;
S2. Initialize set of connection relations CONNECT as empty;
S3. Set up set of events EVENT according to sequence diagram of the system;
S4. For each element E=(com1, com2, operation) in EVENT, search (com1, Tcom1) and
(com2, Tcom2) in MAP; if Tcom1== Tcom2, delete E from EVENT, otherwise, replace E
with (Tcom1, Tcom2, Operation);
S5. E= EVENT.first();
S6. If Tcom1 or Tcom2 is a utility part object, CONNECT.add(Tcom1, Test-Coordinator) ,
CONNECT.add(E.Tcom2, Test-Coordinator); GOTO S10;
S7. CONNECT .add(Tcom1, Tcom2);
S8. If E does not appear in monitor rule GOTO S10
S9. If Tcom1 is not SUT, CONNECT.add(Tcom1, Test-Coordinator); otherwise
CONNECT .add(Tcom2, Test-Coordinator);
S10. E=EVENT.next(E), if E!=NULL GOTO S6
S11. For each element (Tcom1, Tcom2) in CONNECT, connect every Tcom1 object with
every Tcom2 object in test configuration.

Fig. 7. Test configuration

1 Here a Tcom1 object sends an event of operation to a Tcom2 object.

230 W. Chen et al.

Rules to be imported should be specified at first. For target system the rules are
instance(TCClient, 2) and monitor((Client, Server, con-request), (Server, Client,
connected), (Client, Server, data), (Server, Client, result)). Now we can apply
algorithm 2 to target system, and get test configuration diagram of testing model.
Figure 7 shows all objects of testing model and connections between these objects.
Afterwards, it is easy to ascertain interfaces of these objects. For every pair of objects
connected, two relevant interfaces need to be added on the two objects respectively.

4.3 Generation of Test Case and Defaults

Test cases describe execution behaviors of testing model, and they are denoted by
UTP in a form like sequence diagram. It is obvious that test cases should be derived
from sequence diagrams in design model. Additionally, in order to validate events
triggered during execution of a test case, statechart diagram in design model should
be referred in the process of translation. For each event in sequence diagram, if there
is a corresponding statechart diagram of recipient of the event, a state transfer will be
triggered in statechart diagram. A test case will validate corresponding guard
condition when an event is received if there is a guard condition in state transfer of
the object. Notably, validation of time conditions is different from other guard
conditions. For time conditions, it should start a timer before state transfer, and
validate value of the timer when state transfer happens. If an object needs to start a
timer, it should inform an arbiter object to do.

All execution failures are processed by validating operations which are denoted as
defaults diagrams. Generally, for only state transfers of some certain objects are cared
in a design model, state rule is imported in form of

In addition, for a test case we can validate some kinds of data if its value can be
evaluated without running the test case. If there is such data in an event and recipient
of the event is not SUT, then we can add a defaults object at the point of receiving to
validate the data.

Here we give generation algorithm for test case and defaults in detail. The
algorithm should be executed for each sequence diagram in design model.

We introduce a state rule, state(TCClient), for system to be tested. One test case
diagram along with some defaults objects can be generated from design model by
employing algorithm 3. Note that the test case listed in figure 8 is not generated
directly from sequence diagram and statechart diagram in design model. Users add an
instance rule when generating test configuration diagram, and create a new TCClient
instance tcClient2. Now algorithm 3 does not deal with such object added by user
using instance rule. But user can easily add some events for tcClient2 according to
events involved with tcClient1, just like figure 8.

There are some differences between figure 8 and the sequence diagram in the
design model.

 According to group rule, Client and ClientApp class are merged into a new class
TCClient, and there are two TCClient objects according to instance rule.

 Add an Arbiter object Test-Coordinator(co), which transmits events between
Database object and Server object.

 Software Testing Process Automation Based on UTP – A Case Study 231

ALGORITHM 3:
S1. Initialize CONNECT and TIMER sets as empty; add an empty defaults object
Coord_Default at creating point of arbiter object;
S2. Set up an event queue EVENT_QUEUE according to order of events in a sequence
diagram chosen in design model;
S3. For each element E=(com1, com2, operation) in EVENT, search (com1, Tcom1) and
(com2, Tcom2) in MAP; if Tcom1== Tcom2, delete E from EVENT, otherwise, replace E
with (Tcom1, Tcom2, operation);
S4. Let E=EVENT_QUEUE.First()=(Tcom1, Tcom2, operation); add a Tcom1 object in test
case diagram; let new_flag=0;
S5. If Tcom2 has not appeared in the test case diagram, then create a Tcom2 object, let
new_flag=1;
S6. If Tcom1 or Tcom2 is a utility part object, then add events of (Tcom1, Test-
Coordinatort, operation) and (Test-Coordinator, Tcom2, operation) in the test case
diagram, GOTO S9;
S7. Add E in the test case diagram; if E is not in monitor rule, then GOTO S9;
S8. If Tcom1!=SUT, then add (Tcom1, Test-Coordinator, operation) in the test case
diagram; otherwise add (Tcom2, Test-Coordinator, operation) in it;
S9. If Tcom2 is not in state rule, GOTO S15;
S10. If new_flag==1, GOTO S12;
S11. Delete all pairs of (Tcom2, t) from the set of TIMER, and add a stop(t) action for Test-
Coordinator;
S12. If current state of Tcom2 object is s1, do the state transfer (s1, s2, operation); if there is
not a guard condition in this transfer, GOTO S14;
S13. If the guard condition is not time guard, then add a defaults object at receiving point of
Tcom2;
S14. If there is any data in operation of which the value is known, then add a Defaults
object at the accepting point of the Tcom2 object;
S15. If there is a state transfer (s2, si), in which there is a time guard condition, then Tcom2
informs Test-Coordinator to do the action of start(t), TIMER.add(Tcom2, t), and add
actions in Test-Coordinator to process t.timeout;
S16. Let new_flag=0, E=EVENT_QUEUE.NEXT(E), if E!=NULL, GOTO S5.

 Add timer T1, T2, T3 and T4 in co to validate timer guard conditions. In figure 8

events that related with timer are denoted in blue;
 Add a Defaults object Coord_Default to deal with all timeout events.

The figure 9 shows a Defaults object Coord_Default, which is appended to co in
figure 8 to deal with timeout events. If co receives a timeout event of T1, T2, T3 or
T4, it performs operation setverdict(fail), which sets testing result as fail, and
terminates execution of the test case. If co receives some message unexpected, it
performs operation setverdict(inconc), and continues to execute the test case.

It should be aware that testing model generated from design model using above
algorithms is not final one, and generally some refinement and validation could be
done by users. For a complex system, efforts of refinement and validation could be
much more than we have done above. Though, for this kind of automated
transformation from design model to testing model can provide a good start point, it is
still very helpful for constructing testing model, as we showed above.

232 W. Chen et al.

Fig. 8. Test case diagram

Fig. 9. Coord_Default state diagram

5 Execution of Testing Model

Now UTP is just a means used for denotation, but it can not be executed directly. In
order to execute test cases in testing model, UTP introduces two methods. One is to
translate testing model into test cases in java, and the other is to translate testing

 Software Testing Process Automation Based on UTP – A Case Study 233

model into test cases in TTCN-3. Although both of these two methods can be used to
execute test cases in testing model, it is simple and natural to use TTCN-3 solution
rather than java solution for UTP references many concepts and models from TTCN-
3[4]. Also, TTCN-3 solution does not require implement languages of target system.
For our system to be tested, we employ the TTCN-3 mapping defined in UTP
standard to generate executable test cases from UTP testing model. We execute such
test cases using the TTCN-3 execution engine implemented by us in C++, so that
testing tasks can be quickly implemented with high quality.

6 Conclusion

Most existing testing automation methods rely on various kinds of formal models, and
make a contrived separation between software testing and other phases in software
life cycle. This limits the wide spread application of these automation methods. In this
paper we propose an automated approach that transforms existing UML design model
to UTP testing model so as to assist construction of a testing model. And further
more, we also transform UTP testing model to TTCN-3 model to execute it on TTCN-
3 execution engine, according to TTCN-3 mapping interface defined in UTP. The
two-step transformation leads to automation or semi-automation of software testing
process, including development, execution and verify phases. Application of these
transformations to a typical C/S style communication system demonstrates efficiency
of this approach. By that, we have shortened period of development, reduced cost of
development, and improved quality of software that illustrated in section 3.

Future research will concern on flexibility and completeness of this approach.
According to the algorithms above, for a single sequence diagram, only one test case
is generated so that only part of state transfers can be covered in statechart diagram.
And, may be more important, considering there is more and more concurrency in
modern software systems, extending these transformation methods to concurrency
testing will become one of the most important research areas in the near future.

Acknowledgements

This work/paper was partially supported by the National Natural Science Foundation
of China under grant Nos. 60473060, 60273026 as well as the Hi-Tech and
Development Program (863 Program) under grant Nos.2004AA1Z2100,
2005AA113140.

References

1. B. Beizer, Software Testing Techniques. International Thomson Computer Press (1990)
2. Bertolino, "Software Testing Research and Practice", Invited presentation at 10th

International Workshop on Abstract State Machines ASM 2003, Taormina, Italy, LNCS
2589 (2003) 1-21

3. L. C. Briand and Y. Labiche, "A UML-Based Approach to System Testing", Software and
Systems Modeling, vol. 1 (1) (2002) 10-42

234 W. Chen et al.

4. OMG, UML 2.0 Testing Profile Specification (04-04-02)
5. Z. R. Dai, Model-Driven Testing with UML 2.0. Second European Workshop on Model

Driven Architecture (MDA) with an emphasis on Methodologies and Transformations,
Canterbury, England, September (2004)

6. Z. R. Dai, J. Grabowski, H. Neukirchen, From Design to Test with UML – Applied to a
Roaming Algorithm for Bluetooth Devices. TestCom 2004, LNCS 2978 (2004) 33-49

7. Schieferdecker, G. Din, A Meta-model for TTCN-3.FORTE 2004 Workshops, LNCS 3236
(2004) 366-379

8. Duddy, A. Gerber, M. Lawley, K. Raymond, J. Steel, Model Transformation: A
declarative, reusable patterns approach. (In: 7th IEEE International Enterprise Distributed
Object Computing Conference) (2003) 174-185

9. Schieferdecker, Z. R. Dai, J. Grabowski,The UML2.0 Testing Profile and its Relation to
TTCN-3. TestCom 2003, LNCS 2644 (2003) 79-94

10. OMG, UML 2.0 Superstructure Specification (ptc/03-08-02)
11. ETSI ES 201 873 – 1, v2.2.1: "The Testing and Test Control Notation TTCN-3: Core

Language " (2002)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 235 – 248, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evaluation of the Capability of Personal Software Process
Based on Data Envelopment Analysis

Liping Ding1,3, Qiusong Yang1,3, Liang Sun1,3,
Jie Tong1,3, and Yongji Wang1,2

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

{dingliping, qiusong_yang, sunliang, tongjie, ywang}
@itechs.iscas.ac.cn

2 Key Laboratory for Computer Science,
The Chinese Academy of Sciences, Beijing 100080, China

3 Graduate School, The Chinese Academy of Sciences, Beijing 100039, China

Abstract. Personal Software Process (PSP) is a defined and measured software
process designed to be used by an individual software engineer. For PSP users,
it’s important to evaluate the impact of the PSP upon their own personal
capabilities of software development. However, the evaluation of capability of
PSP is a Variable Return to Scale (VRS) and multivariate input and output
problem, which makes traditional evaluation methods useless. In this paper, an
evaluation framework for the capability of PSP based on Data Envelopment
Analysis (DEA) is proposed. This framework has the advantage of dealing with
VRS issues with multivariate input and output. In addition, the input or output
variables of the framework can have different measurement units. Therefore, a
quantitative and comprehensive result can be returned by this relative efficiency
evaluation method and it can support the continuous improvement of PSP.

1 Introduction

Due to the research of software process and its improvement, the focus of software
quality has moved from the software test to the whole software development process.
The wide adoption of the Software Engineering Institute’s Capability Maturity Model
(SEI CMM) has improved software quality, and it is also established that the
implementations of CMM can improve the performance of organizations
continuously. In order to answer the question about how to effectively implement
CMM in small organizations, Watts S. Humphrey introduced some fundamental
principles of CMM into the practices of small organizations and individuals, and
proved that those principles of process management can also be applied to the
individual work of software engineers. His research formed the basis of the Personal
Software Process (PSP).

The PSP provides an alternative, complementary approach which empirically
guides software process improvement and is "scaled down" to the level of an
individual developer. In the PSP, individuals gather measures related to the software

236 L. Ding et al.

engineers’ work products and the process by which they are developed, and use these
measures to drive changes to their development behavior. The PSP regards defect
reduction and the accuracy of process improvement estimation as the two primary
goals of personal process improvement.

Return to scale refers to increasing or decreasing, constant or variable efficiency
based on size. [1] points out that small and large software projects likely exhibit
Variable Return to Scale (VRS, i.e. the relationship between the input and the output
is non-linear), whereas medium software projects probably exhibit Constant Return to
Scale (CRS, i.e. the relationship between the input and the output is linear). Since the
size of programs developed by the PSP method ranges from 50 LOC (Line Of Code)
to 5000 LOC [2], it is reasonable to assume that the PSP projects have VRS, which is
also illustrated in Section 5. On the other hand, there may be many metrics that can be
used for the evaluation of PSP capability. For example, if we are interested in the
development schedule, we can set the accuracy of schedule estimation as a metric.
Meanwhile, we may set the defect density as a metric to pay particular attention to the
product quality. So the evaluation of PSP capability is a multivariate input/output
problem that must take all the needed metrics into account.

For the PSP users, it is important to evaluate the impact of the PSP upon their own
personal capabilities of software development. Because of the VRS and multivariate
input/output properties of the PSP, it is not appropriate to use those linear models, as
well as those non-linear models, such as COCOMO Constructive Cost Model .
Hence, we need a new framework for the evaluation of PSP capability.

Data Envelopment Analysis (DEA) developed by A. Charnes and W. W. Cooper in
1978 is a non-parametric mathematical programming approach to frontier estimation.
It can be used to evaluate the relative efficiency of a number of decision making units
or DMUs, which may have multivariate input and output. Generally speaking, DMU
can denote any entity which economically transforms some inputs into outputs. In
addition, some DEA models have VRS, which address the variable return to scale
issues. Therefore, DEA is a very appropriate tool to evaluate the PSP capability.

In this paper, a DEA-based evaluation framework for the capability of the PSP is
presented, and it is illustrated by a case study. This framework utilizes the CCR and
BCC models of DEA to analyze the project plan summary data accumulated during
the implementations of PSP, and then computes the relative efficiencies and
efficiency frontier as the basis of the evaluation result. Compared with the existing
methods, this framework has the following advantages:

1) It can deal with multivariate input/output issues even the inputs and outputs
have very different measurement units.

2) The VRS model of DEA can handle the VRS property of PSP perfectly, and it
does not assume any functional relationship between the inputs and outputs.

3) It provides an efficiency evaluation method which returns a quantitative and
comprehensive result.

4) The result of DEA can support the continuous improvement of the PSP.

The rest of this paper is organized as follows. Section 2 discusses two fundamental
properties of the evaluation of PSP capability; Section 3 presents a short introduction
to DEA, then two typical DEA models named CCR (a kind of CRS models) and BCC
(a kind of VRS models) are discussed; Section 4 focuses on the DEA-based

 Evaluation of the Capability of Personal Software Process Based on DEA 237

evaluation framework for PSP capability; Section 5 presents a case study according to
the framework in Section 4. Section 6 concludes the paper.

2 Evaluation of PSP Capability

It is stated in [1] that small and large software projects likely exhibit VRS while
medium ones exhibit CRS. This conclusion can be intuitively derived from the
following statements: software development can be divided into two parts, application
development (user functionality development) and technical infrastructure (TI)
development (software configuration, deployment and supporting environment). For a
small size project, the return to scale will increase along with the increase of scale
since the technical infrastructure holds a relative huge proportion in the whole project.
For a large project, the TI has a smaller proportion, the return to scale will decrease
when the project size increases because the complexity increases exponentially with
the increasing of project scale. The PSP is suitable for the projects ranging from 50 to
5000 LOC, while cyclical methodology is recommended for larger projects [2]. Thus
the projects, in which the PSP is applied, likely exhibit VRS since their size is
supposed to be small.

All metrics in Table 1 are derived from the Project Plan Summary of PSP [3][4][5].
Among these metrics, only “total schedule” is input. The rest are outputs used for the
calculations of the quantity or quality of the product.

Trend diagrams are frequently used to illustrate the positive influence of the
adoption of the PSP in [1], [6], and [2]. One example of trend diagram used for
depicting defects density is shown in Fig. 1. Many other types of trend diagram, such
as Process Yield, Phase Yield, A/FR, Accuracy of Size Estimation etc., are used in the
final report of the PSP training. The adoption of the PSP can surely make great
positive changes to personal capability, but no accurate quantitative and
comprehensive conclusions can be drawn from these diagrams. For example, although
programmer A has a better defect density trend diagram than programmer B,
programmer B has a better A/FR trend diagram. It’s difficult to answer the question
that which one has a higher PSP capability. This dilemma is mainly due to the fact
that the evaluation must take all the needed metrics into account. That is to say, the
evaluation of the PSP capability is a multivariate input/output issue.

The most widely applied productivity model in software engineering is the
following univariate CRS model (P = productivity, x = input, y = output) [1]:

=
y

P
x

Another sort of productivity model is the cost estimation models, e.g. COCOMO
model, which generally have the following form (P = productivity, u = effort, v=
function point (FP) or source line of code (SLOC), b > 1) [1]:

1 bu v
p

=

These models are widely used, but not suitable for the evaluation of PSP
capability. The first one does not take VRS into account and the latter can not deal

238 L. Ding et al.

with the multivariate input/output issues. The evaluation framework proposed later in
this paper can handle both the VRS and multivariate input/output issues.

Table 1. PSP recommended metrics

Metric Formula
Total Schedule The sum of planned or actual time for all phases of a project
Scale Source Line of Code
Review Rate 60 * (New and Changed Code in LOC)/Review Minutes
Time Ratios Design Time/ Coding Time

Design Review Time /Design Time
Code Review Time/ Coding Time

Defect Ratios Remove Defects in Code Review/Defects when Compiling
Removed Defects in Design Review/Defects when Unit Test

Process Yield Removed Defects before Compiling and Unit Test/Total
Defects

Phase Yield Defects at Entry/ Defects at Ending
A/FR (Design Review Time + Code Review Time)/(Compiling

time+ Unit Test Time)
LOC/Hour Total New and Changed Code in LOC / Total Schedule in

Hour
CPI Planned Time/Actual Time
Reuse Rate Reused LOC/Total LOC
Increased Reuse
Rate

The New Increased Reuse Code LOC /New and Changed
Code in LOC

Test
Defects/KLOC

1000*(Defects Removed in Test)/Actual New and Changed
LOC

Defect density 1000*(Total Defects removed)/Actual New and Changed LOC

Fig. 1. An example of defects density trend diagram

 Evaluation of the Capability of Personal Software Process Based on DEA 239

3 Data Envelopment Analysis

The usual model for the measurement of producers’ efficiencies,
output

efficiency
inupt

= , is

inadequate due to the existence of multivariate inputs and multivariate outputs with
different measurement units. One way to solve the problem is to assume that there is a
common set of weights applied to each input and output. But this leads to the problem
of how to determine the set of weights for the model in advance.

However, DEA uses a non-parametric mathematical programming approach to
evaluate the relative efficiency of the producers. A producer is usually referred to as a
decision making unit (DMU) in DEA. A typical statistical approach is characterized
as a central trend approach and it evaluates producers’ relative efficiencies through
comparing with an average producer’s efficiency. In contrast, DEA is an extremum
method and compares each producer’s efficiency with only the "best" producers’. So
DEA can only be used for the evaluation of relative efficiency, not absolute
efficiency. In order to make DEA to be automated or semi-automated, many
commercial or free software tools for DEA [8] are available now.

At present, DEA has been extensively applied in performance evaluation and
benchmarking of city bank branches, schools, hospitals, productivity plants, etc [9]. A
recent paper illustrated how to evaluate the efficiency of ERP projects using
DEA [1]. However, the applications in the field of software engineering are rare.

In this section we will discuss two classical DEA models: the CCR model by
Charnes, Cooper and Rhodes [10] and the BCC model by Banker, Charnes and
Cooper [11]. The CCR model’s assumption is CRS and the BCC model’s assumption
is VRS.

Before any further discussions, the following notations are given:
n the number of DMUs to be evaluated
DMU j the j th DMU

m the number of inputs to each DMU
s the number of outputs to each DMU

ijx amount of the i th input consumed by DMU j

kjy amount of the k th output produced by DMU j

eff abbreviation for efficiency

iv the weight assigned to the i th input

kμ the weight assigned to the k th output

3.1 CCR Model

The CCR model is probably the most widely applied and best known DEA model. It
is the DEA model used in frontier analysis when a constant return to scale
relationship is assumed between inputs and outputs.

According to

0

0

0

1

1

 DMU

s

k kj
k

j m

i ij
i

y
eff

x

μ

ν
=

=

=

240 L. Ding et al.

the ratio approach of CCR model can be written as:

(1)

where ε is a positive small constant. The solution to this model provides the weight
that maximizes the efficiency of the

0
DM U j

, and constrains that the efficiency of

other DMUs is less than 1. The problem in this form has infinite number of optimal
solutions. In fact, if (*u , *ν) is an optimal solution, then (* *,uβ βν) is also optimal for
every positive number β .

Then the corresponding dual problem is:

(2)

whereθ denotes the efficiency score of the
0

DMU j . This score is between 0 and 1. A

unit with score of 1 is relative efficient, otherwise relative inefficient.

0
1

 ()
n

i ij ij j
j

s x xθ λ+

=

− and
0

1

 ()
n

k kj j kj
j

s y yλ−

=

− are the relaxation and remaining variables

for input and output. Relaxation represents the over use of input and remaining
represents the insufficient output. It represents the available improvements that can
make an inefficient unit become efficient. jλ is called dual weight for the given

DMU j . The linear combination of the original DMUs with the coefficients of jλ is

the projection of the
0

DMU j on the efficiency frontier through the origin. The

projection is also called the virtual DMU for the given DMU.
From the dual weights of (2), a peer group of the

0
DMU j is defined as:

It should be noted that each DMU in the peer group is relative efficient. It provides
examples of good operating practice for the relatively inefficient unit to emulate. jλ

of the DMU in the peer group is also called peer weight.
We refer to (2) as the dual input oriented model since an inefficient DMU is made

efficient by reducing the proportions of its inputs but keeping the output proportions

0

0

, , , 1 1

1

1

min

s.t. 0 1, ,

0 1, ,

0 1, ,

0 1, ,

0

i k

m s

i k
s s i k

n

ij ij j i
j

n

kj j kj k
j

j

i

k

s s

x x s i m

y y s k s

j n

s i m

s

θ λ
θ ε

θ λ

λ

λ

+ −

+ −

= =

+

=

−

=

+

−

− +

− − = =

− − = =

≥ =

≥ =

≥

K

K

K

K

 1, ,k p= K

{ }
0

: 0, 1, ,j jRS j j nλ= ≠ = L

()

0 0 0

0 0 0

1 1 2 2

1 1 2 2

1 1

1 1

1 2 1 2

Maximize

subject to 1 1 ,2 , ,

, , , , , , ,

j j s sj

j j m mj

j s sj

j m mj

m s

u y u y u y

v x v x v x

u y u y
j n

v x v x

v v v u u u

θ

ε ε

+ + +
=

+ + +

+ +
≤ =

+ +

≥ ≥

L

L

L
L

L

L L

 Evaluation of the Capability of Personal Software Process Based on DEA 241

constant. From this model, we get the efficiency score of the
0

DMU j . All the

efficiency scores of the DMUs in question can be get by the similar calculation. Thus,
the efficiency frontier (envelope), including all the relatively efficient units and the
best performance representation, can be determined.

3.2 BCC Model

The BCC model is used in frontier analysis when a variable return to scale
relationship is assumed. The input oriented model is written as:

(3)

Noting the strong similarity with the CCR model, the difference between the two

models is the constraint 1
1

=
=

n

j
jλ . This constraint implies that the virtual DMU is the

convex combinations of all the original DMUs and ensures that the virtual DMU is of
similar scale to the unit being measured.

3.3 The Calculation of Scale Efficiency

The efficiency score obtained from the BCC model is also called pure technical
efficiency because the impact of scale size is ignored. The DMUs are only compared
with the units of similar scale size. However, the efficiency scores obtained from CRS
model can be decomposed into two components, one due to the technical inefficiency
and one due to the scale inefficiency. The scale efficiency may be calculated through
dividing efficiency score (from CCR model) by pure technical efficiency (from BCC
model). The efficiency score of the CCR model is also called technical efficiency in
the context without conflicts.

One shortcoming of the above approach is that it’s difficult to determine whether a
DMU is operating in an area of increasing or decreasing return to scale (IRS or
DRS). IRS (DRS) indicates that an increase in one unit’s inputs will yield a greater
(or less) proportionate increase of its outputs. The type of return to scale can be
determined by conducting a more non increasing return to scale (NIRS) DEA model

0

0

, , , 1 1

1

1

1

min

s.t. 0 1, ,

0 1, ,

 1

0 1, ,

0 1, ,

0

i k

m s

i k
s s i k

n

ij ij j i
j

n

kj j kj k
j

n

j
j

j

i

k

s s

x x s i m

y y s k s

j n

s i m

s

θ λ
θ ε

θ λ

λ

λ

λ

+ −

+ −

= =

+

=

−

=

=

+

−

− +

− − = =

− − = =

=

≥ =

≥ =

≥

K

K

K

K

 1, ,k p= K

242 L. Ding et al.

upon the same data. This can be done by altering the DEA model in 3 by

substituting the constraint
1

1
n

j
j

λ
=

= with
1

1
n

j
j

λ
=

≤ :

0

0

, , , 1 1

1

1

1

min

s.t. 0 1, ,

0 1, ,

 1

0 1, ,

0 1, ,

0

i k

m s

i k
s s i k

n

ij ij j i
j

n

kj j kj k
j

n

j
j

j

i

k

s s

x x s i m

y y s k s

j n

s i m

s

θ λ
θ ε

θ λ

λ

λ

λ

+ −

+ −

= =

+

=

−

=

=

+

−

− +

− − = =

− − = =

≤

≥ =

≥ =

≥

K

K

K

K

 1, ,k p= K

(4)

If there is difference between the results calculated by the two models, (3) and (4),
then the DMU has IRS, otherwise it has DRS.

4 The DEA-Based PSP Capability Evaluation Framework

In this section, we will briefly discuss how to perform each step in our DEA
framework for PSP capability. The task of evaluating the relative efficiency can be
divided into four steps [12]: deciding the purpose of the evaluation; selecting DMU;
establishing the input/output variables system; choosing DEA models.

4.1 Deciding the Purpose of the Evaluation

The purpose of DEA evaluation is to explain the relative efficiency of the PSP
implementation by comparing the performances and capabilities of PSP at different
phases. Obviously, the key issue here is to transform basic concepts of DEA, such as
“relative efficiency”, “efficiency frontier” and “the mapping of DMUs in the
frontier”, into corresponding attributes about the PSP.

4.2 Selecting DMUs

Selecting DMUs is to determine reference sets. Because DEA evaluates the relative
efficiency among the similar DMUs, the basic requirement of the DMU selection is
that the DMUs must be homogenous. The homogenous DMUs mean that they are
DMU sets satisfying the following three conditions: 1) they have the same purposes;
2) they are in the same environment; 3) they have the same input/output indices. Book
[2] gives the exercises of various PSP phases for PSP training. We will consider ten
excises from 1A to 10A as DMUs.

 Evaluation of the Capability of Personal Software Process Based on DEA 243

4.3 Establishing the Input/Output of DMUs

After selecting DMU, we will establish the input/output of DMUs [13]. Firstly, we
must take into account the evaluation purpose. That is to say, the selection of input
and output must be consistent with the evaluation purpose. For example, if the
evaluation purpose is “the organization efficiency of a sort of DMUs”, then we can
specify the inputs and outputs as follows. The inputs are flow capital input, fixed
capital input, manpower effort, and the outputs are return, actual / plan progress,
actual /plan cost. We haven’t selected the quality and security variables because they
don’t accord with the evaluation purpose.

Secondly, we must consider the relationship of the input and output variables.
Because the DMUs’ input and output variables are not isolated, the variables which
have been regarded as input or output can influence the cognizance of other variables.
For example, we should discard a variable if the information of it has been covered by
other several variables or has strong relationship with some other input/output
variables.

Thirdly, we can get all the input and output values for all the DMUs. Note that they
are all positive values.

Fourthly, according to the efficiency ratio principle, we prefer the smaller input
values and bigger output values.

Fifthly, different input or output variables can have different measurement units,
such as the number of individuals, the area, the cost, etc.

We have chosen the following metrics (shown in Table 2) according to the above
discussions.

4.4 Choosing DEA Models

There are various forms of DEA models. Which kind of DEA models should we
choose when we evaluate efficiencies based on DEA? We should choose the models
according to both the actual background and the evaluation purpose. In addition, in

Table 2. Input/output variables to the PSP evaluation

Metric Formula Type Meaning
Schedule Development time(minute) Input Activity Input (or

Investment)
Scale Source line of code Output Product Scale
Reciprocal of
Defect Density

10000/(Total Defects/(Scale
in KLOC))

Output Product Quality

Scale
Estimation
Accuracy

10/(|Planned Scale-Actual
Scale|/Actual Scale)

Output Ability of Scale
Estimation

Time
Estimation
Accuracy

10/(|Planned Schedule-
Actual Schedule|/Actual
Schedule)

Output Ability of Schedule
Estimation

Process Yield Number of Defects
Removed Before Compiling
and Unit Test/Total Defects

Output Process Performance

244 L. Ding et al.

order to get the different evaluation information, we should choose different forms of
DEA models as possible as we can. And then the results of the analysis should be
compared and integrated. Therefore, the result will be more complete and accurate. In
the case study of Section 5, we will use CCR and BCC models given above to
evaluate the capability of PSP.

5 Case Study

According to the approach introduced in Section 4 we use the metrics listed in Table
2 as the output and input of the DMU. The DEA models discussed in Section 3 is
used to evaluate the capability of PSP.

Table 3 is derived from the project plan summary data in [14]. The result of DEA
algorithm is presented in Table 4,5,6,7.

In Table 3, because PSP0 is used in the first and second exercises, there are not
enough data to calculate the accuracy of size estimation. So they are arbitrarily set to
30 and 35 respectively. Table 4 shows what the peer group of each exercise is. One
given exercise can emulate some good development practices from its peers. The peer
weight indicates the importance of the peer to the given exercise. In Table 5, for a

relative inefficient DMU, 1s
+ >0 shows that the DMU has an over use of the input. It

indicates that the exercise should be developed using less hours. If ks− >0, then the

exercise can make more progress in the kth metric as the relative efficient DMU. As
for Table 6, for the covexity constraint added by BCC model, there may be more
peers for each DUM than CCR model. Table 8 shows that DRS (IRS) exists when the
development efficiency drops (rises) along with the increase of software scale.

We can draw the following conclusions from the above results:

1) In Table 4, the efficiency frontier is composed of DMU 7, DMU 5, DMU 4 and
DMU 1. DMU 10’s technical efficiency is also 1.000 in Table 6, which implies that
DMU 10 is positioned on the efficiency frontier in BCC model. That is, DMU 10,
DMU 7, DMU 5, DMU 4 and DMU 1 are fully efficient. This conclusion can also be
intuitively derived from the original data directly. Exercise 7 is designed to calculate
the correlation between two data sets and the programs developed in exercise 1 can be
reused without any modifications. So exercise 7 has a moderate scale but with a
relatively shorter schedule. As for exercise 5 and exercise 4, each of them has either
high accuracy of schedule estimation or low defect density. Exercise 10 and exercise
1 have a comprehensive higher performance. From the above discussion, we can learn
that DEA algorithm can take into account all the metrics and address the multivariate
output issues properly.

2) To those inefficient DMUs, whose technical efficiency is less than 1.000,
0ks− > shows that the DMU can make further improvement on the kth metric, the

absolute value of ks− indicates that what the margin of the improvement is. So based

on the analysis result of DEA, we can select those metrics with relatively larger
ks −

and analyze the factors which can improve the metric. Thus we can learn what we
should do to make further improvement on the PSP. That is to say, the result of DEA
can help the continuous improvement of PSP.

 Evaluation of the Capability of Personal Software Process Based on DEA 245

Table 3. Measures derived from Project Plan Summaries listed in [14]

Exercise Scale
(LOC)

Reciprocal
of Defect
Density

Size
Estimation
Accuracy

Schedule
Estimation
Accuracy

Process
Yield

Schedule

1 94 78 NA(35) 48 58 114
2 233 75 NA(30) 55 71 214
3 263 109 23 15 50 310
4 236 157 63 28 87 188
5 178 93 32 455 89 182
6 568 75 45 53 67 315
7 678 43 72 66 95 198
8 458 63 49 18 87 393
9 824 74 25 60 80 342

10 1202 61 85 23 85 498

3) The DMU’s return to scale property, which indicates whether a DMU has IRS
or DRS, can be obtained by comparing the result of NIRS and BCC model. The result
is listed in table 8.

In Table 8, all the DMUs except the third one has DRS, so the PSP exercises have
decreasing return to scale. The reason is that there are few technical infrastructure
development tasks in the PSP exercises, the complexity of programs, which increases
exponentially when scale increases, lead to the decrease return to scale.

Table 4. Efficiency scores and referencing relations obtained from CCR model

DMU Efficiency
Score

Peer
1

Peer
Weight 1

Peer
2

Peer
Weight 2

1 1.000 1 1.000
2 0.664 7 0.225 1 0.856
3 0.497 4 0.650 7 0.162
4 1.000 4 1.000
5 1.000 5 1.000
6 0.630 4 0.274 7 0.742
7 1.000 7 1.000
8 0.452 7 0.605 1 0.509
9 0.757 4 0.153 7 1.162
10 0.705 7 1.773

4) In general, technical infrastructure is the indivisible part of the real world
application development. It’s reasonable that the PSP projects, whose scale ranges
from 50 to 5000 LOC, should have increasing return to scale. That is, the PSP
projects have variable return to scale. Just as noted in Section 3, CCR and BCC are
CRS and VRS model respectively. The notable difference between the results of CCR
and BCC lies in that the 10th exercise is positioned on the efficiency frontier in BCC.
When doing the 10th exercise, the student has had a comprehensive understanding
about the PSP and adopts PSP3, the maturest version of PSP, to implement PSP. So
the comprehensive performance of the 10th exercise is relatively higher. The BCC

model can get the relative efficiency without the influence of return to scale and put

246 L. Ding et al.

the 10th exercise on the efficiency frontier. As a conclusion, it should be better to
evaluate the capability of PSP using BCC model than CCR model.

Table 5. Relaxation and remaining variables of the CCR model

DMU
1s
+ 1s

− 2s− 3s− 4s− 5s−

1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.000 1.408 16.147 0.918 0.000
3 0.000 0.000 0.000 29.589 13.869 21.907
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 25.730 3.671 27.387
7 0.000 0.000 0.000 0.000 0.000 0.000
8 0.000 0.000 2.728 12.376 46.366 0.000
9 0.000 0.000 0.000 68.312 20.982 43.712

10 0.000 0.000 15.233 42.646 94.009 83.422

Table 6. The technical efficiencies and peer relations of the BCC model

DM
U

Technical
Efficiency

Peer Peer
Weight

Peer Peer
Weight

Peer Peer
Weight

Peer Peer
Weight

1 1.000 1 1.000
2 0.670 7 0.211 5 0.141 4 0.029 1 0.620
3 0.527 7 0.175 4 0.470 1 0.355
4 1.000 4 1.000
5 1.000 5 1.000
6 0.642 10 0.024 7 0.699 4 0.277
7 1.000 7 1.000
8 0.457 7 0.586 5 0.208 4 0.030 1 0.176
9 0.989 10 0.476 7 0.297 5 0.054 4 0.173

10 1.000 10 1.000

Table 7. Relaxation and remaining variables of the BCC model

DMU
1s
+ 1s

− 2s− 3s− 4s− 5s−

10 0.000 0.000 0.000 0.000 0.000 0.000
9 0.000 0.000 0.000 49.469 0.000 8.529
8 0.000 0.000 0.000 7.911 124.4 0.000
7 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 24.815 1.457 25.547
5 0.000 0.000 0.000 0.000 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
3 0.000 0.000 0.000 31.639 26.752 28.109
2 0.000 0.000 0.000 13.177 53.611 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000

 Evaluation of the Capability of Personal Software Process Based on DEA 247

Table 8. Return to scale of DMUs

DMU BCC Technical Efficiency NIRS Technical Efficiency Return to Scale
1 1.000 1.000 DRS
2 0.670 0.670 DRS
3 0.527 0.497 IRS
4 1.000 1.000 DRS
5 1.000 1.000 DRS
6 0.642 0.642 DRS
7 1.000 1.000 DRS
8 0.457 0.457 DRS
9 0.989 0.989 DRS

10 1.000 1.000 DRS

5) The same characteristics of DMUs that make DEA a powerful tool can also
create some problems. When choosing to use DEA in the evaluation of PSP, we
should keep these limitations in mind. First, DEA is an extreme point method, so
noise (even symmetrical noise with zero mean), such as measurement errors, can
cause significant problems. Secondly, DEA is good at estimating "relative" efficiency
of a DMU but it converges very slowly to "absolute" efficiency. In other words, it can
indicate how well we are doing compared to our peers but not compared to a
"theoretical maximum." Thirdly, Since DEA is a nonparametric technique, statistical
hypothesis tests are difficult and are the focus of ongoing research. At last, a standard
formulation of DEA creates a separate linear program for each DMU, problems can
be computationally intensive[15].

6 Conclusion

This paper focuses on two notable characteristics of the evaluation of the PSP:
multivariate input/output and VRS. To overcome the difficulties caused by these
characteristics, we proposed a DEA-based evaluation framework for the PSP
capability in Section 4, and Section 5 presents a case study which illustrates the
principle of our framework well. The evaluation framework can deal with VRS issues
with multivariate input and output. Another advantage of the framework is the
input/output variables can have different measurement units. So we can get accurate
quantitative and comprehensive results to evaluate the PSP capability by the proposed
framework and make the decision of how to improve the PSP.

Acknowledgements

This paper was partially supported by the National Natural Science Foundation of
China (Grant Numbers: 60373053, 60473060), 863 Program (Grant Numbers:
2004AA112080, 2005AA113140), the research collaboration between the Chinese
Academy of Sciences and the Royal Society of the United Kingdom (Grant Numbers:
20030389, 20032006), the Plan of Hundreds Scientists in the Chinese Academy of
Sciences, the key program of the National High-Tech Research and Development

248 L. Ding et al.

Program of China (Grant Number: 2004AA1Z2100), and the State Education
Ministry’s Scientific Research Foundation for the Returned Overseas Chinese
Scholars.

References

1. E. Stensrud, I. Myrtveit: Identifying High Performance ERP Projects. IEEE Transaction on
Software Engineering, 29(5) (2003) 387-416

2. W. S. Humphrey: A Discipline for Software Engineering. New York: Addison-Wesley
(1995)

3. W. S. Humphrey: The Personal Software Process. Technical Report, CMU/SEI-2000-TR-
022, (Nov 2000)

4. W. Hayes, J. W. Over: The Personal Software Process: An Empirical Study of the Impact
of PSP on Individual Engineers. Technical Report, CMU/SEI-97-TR-001 (1997)

5. W. S. Humphrey: Using a defined and measured personal software process. IEEE
Software, 13(3) (1996) 77-88

6. A. M. Disney, P. M. Johnson: Investigating Data Quality Problems in the PSP. Software
Engineering Notes, 23(6) (1998) 143-152

7. W. S. Humphrey: Introduction to the Personal Software Process. New York: Addison-
Wesley (1997)

8. R. S. Bar: DEA Software Tools and Technology: A State-of-the-Art Survey. Boston:
Kluwer Academic Publishers (2004) 539-566

9. Quanling wei: Use DEA to Evaluate the Relative Efficiency—A New Filed of Operational
Research. Beijing: China Renmin University Press (1987)

10. A. Charnes. W. Cooper and E. Rhodes: Measuring the efficiency of decision making units.
European Journal of Operation Research, 2 (1978) 429-444

11. R. D. Banker, A. Charnes and W Cooper: Some models for estimating technical and scale
inefficiencies in data envelopment analysis. Management Science, 30 (1984) 1078-1092

12. A. Charnes, W. W. Cooper, Q. L. Wei, Z. M. Huang and C. Ratio: Data Envelopment
Analysis and Multi-objective Programming, The University of Texas at Austin, Center for
Cybernetic Studies Report CCS559 (1986)

13. Liang li, CUI Jinchuan: Selection of Input-output Items and Data Disposal in DEA.
Journal of Systems Engineering, 18(6) (2003) 487-490

14. V. Putz: The Personal Software Process: an Independent Study.
http:// www.nyx.net/~vputz/psp_index/book1.html

15. A Data Envelopment Analysis (DEA) Home Page: Limitations of DEA.
http://www.emp.pdx.edu/dea/homedea.html#Limitations

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840 pp. 249 – 261, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Project Management System
Based on Work-Breakdown-Structure Process Model

Akira Harada1, Satoshi Awane1, Yuji Inoya1, Osamu Ohno1,
Makoto Matsushita2, Shinji Kusumoto2, and Katsuro Inoue2

1 Engineering Support Management Division, Solution Systems, Hitachi Ltd.,
890 Kashimada Kawasaki, Kanagawa 213-8567, Japan

{aharada, awane, yinoya, ohno}@itg.hitachi.co.jp
2 Department of Computer Science,

Graduate School of Information Science and Technology,
Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan

{matusita, kusumoto, inoue}@ist.osaka-u.ac.jp

Abstract. We have developed a “WBS(Work Breakdown Structure) process
model” for a business application software development project. We have also
developed a project management system called “PRO-NAVI” which works on
the “WBS process model.” This WBS process model” provides (1) mutual
mapping between the “software development processes”, “activities”,
“products”, “know-how,” “rules”, and “standards”, and provides (2)
comprehensive control. The role of “project management” in a business
application software development project is recognized to be of more
importance. These projects generally involve huge efforts, and cost heavy
payloads to their “project management.” Thus, an efficient project management
system is needed. We have developed “PRO-NAVI”. We have applied and
evaluated “PRO-NAVI” with a number of projects and confirmed that it is
effective for efficient project fulfillment.

1 Introduction

Digitization and networking of the society is accelerated, such as seen in diffusion
ofthe Internet and the World Wide Web, and in business application software
development, requirements for larger scale, higher function, shorter delivery schedule,
and lower cost are urged. Accordingly, role of project management is becoming more
important to carry out business application software development projects as planned:
[1],[2],[3],[4].

Generally in a project management, repetition of so called Plan-Do-Check-Action
process, make plan, execute it, check progress situation, and take action if necessary is
said to be fundamental. A project is a set of multiple works and their consequential
products, and a project management is a facilitation to make these works done with
efficiency and to manage works and products. Therefore, a system to support a project
management is required.

250 A. Harada et al.

This paper is a proposal of a management method of works and products and a
project management support method based on WBS(Work Breakdown Structure)
process model: [5],[6],[7],[8]

We also show our actual development of “PRO-NAVI”, which is a WBS-based
project management system.

As project management systems, MS-Project [9], ProcessDirector [10], and
KnowledgePLAN [11] are well known products. As Product document management
systems, DocumentBroker [12] and documentum [13] are well known products. We
thought a new point of view is required, to relate and use with efficiency, of project
process information, work information, product information, know-how information,
which both of above have. PRO-NAVI” provides [a] clear definition of software
development process, work, and products of the project at the project planning phase,
[b] grasp of project progress status, [c] standardization of software project development
process and navigation, [d] sharing of project knowledge such as project products and
“know-how.” These improve efficiency of project promotion. PRO-NAVI” is used by
more than 1,000 projects by now and will be used more.

In this paper, we will show modeling of a business application software project by
WBS in chapter 2, realization of “PRO-NAVI” in chapter 3, we will also show an
application example, evaluation and consideration in chapter 4, and we will show a
summary and address future issues in chapter 5.

2 WBS

WBS is a hierarchy chart to describe project goals in detail.

2.1 WBS Process Model

Department of Defense handbook “Work Breakdown Structure” defines WBS as
below: [5]

(1) A product-oriented family tree composed of hardware, software, services, data,
and facilities. The family tree results from systems engineering efforts during
the acquisition of a defense material item.

(2) A WBS displays and defines the product, or products, to be developed and/or
produced. It relates the elements of work to be accomplished to each other and
to the end product.

(3) A WBS can be expressed down to any level of interest. However the top three
levels are as far as any program or contract need go unless the items identified
are high cost or high risk. Then, and only then, is it important to take the work
breakdown structure to a lower level of definition.

”PMBOK” defines WBS as, “A deliverable-oriented grouping of project elements that
organizes and defines the total work scope of the project. Each descending level
represents an increasingly detailed definition of the project work,: [6]”

In this paper, we will explain according to the definition of [6]. We will also call
each element of WBS as “work”.

Project Management System Based on Work-Breakdown-Structure Process Model 251

2.2 Project Planning Based on WBS

(1) “Standard PRO-NAVI WBS”
We propose a five layer WBS process model for a software development project and
name it “Standard PRO-NAVI WBS”.

[a] first layer: project [b]second layer: sub-project [c]third layer: phase [d]fourth
layer: work step [e]fifth layer: product.

Fig. 1. Standard PRO-NAVI WBS

Figure 1 shows an example of Standard PRO-NAVI WBS”.
First layer is the project itself.
We divide the whole software to be developed by a project to several loosely related

sub systems and name each project to develop one of these sub systems as sub-project.
We define this sub-project as the second layer. For example, for a project to develop a
management administration system for an enterprise, first layer will be “management
administration system”, second layer will be sub systems of the management
administration system such as “employee management system,” “account management
system,” “merchandise management system,” and so on.

“Standard PRO-NAVI WBS” defines names of works in 3rd, 4th, and 5th layer as
shown in Figure 1.

Third layer, that is, phase, is equivalent to waterfall model development phase:
[14],[15] , and it divides the project lifecycle into 7 phases, namely, requirement
analysis, business requirement design, software design, software detailed design,
programming and unit test, combination test, and integrated or system test. These
phases proceed with time by the above order.

252 A. Harada et al.

The fourth layer, or work step, divides the work of each phase into multiple concrete
works. Software design for example, will be divided into following 7 work steps:
architecture design, test planning, business process design, database layer class design,
function layer class design, presentation layer event design, and physical database
design.

Fifth layer, or product, includes process design document, system component
definition, business flow diagram, display transition diagrams and so on.

Product entities are managed by files. One product is designed to be constituted by
one or more than one files so that more than one project members can share the works
concerning one product. For example, process design document can be made of two
following files, online process design document and batch process design document.
We call this file as product file, and this product file will not show up to standard
PRO-NAVI WBS. We simply call product file as product when it is not necessary to
make distinction. A chronological order do exist among phases as listed, however, no
peculiar relation in time exists among work steps and products. These work steps, work
items correspond to activities and tasks of SLCP-JCF98, which is a common frame for
software centric development and trades: [16]

A project member may need to refer to prerequisite products to do a work.
A project member may also be able to do works efficiently with common project

know-how and knowledge of standards, procedures, and worksheets.So, we add two
kinds of common information items to each of “Standard PRO-NAVI WBS”[17]:

1) prerequisite works prior to the current work,
2) common knowledge required, such as rules and procedures.

(2) Optimization of “Standard PRO-NAVI WBS”
A “Standard PRO-NAVI WBS” defines a standard business application software
development process, and may cause excess or deficiency of works for actual projects.
So, we made a concept of “customized PRO-NAVI WBS,” which is a derivative of
“Standard PRO-NAVI WBS”, giving more details and layers, adding necessary works,
deleting unnecessary works, renaming works, so as to optimize “Standard PRO-NAVI
WBS” for a peculiar project. However, we have given restrictions on deletion or
change of specific works in the “Standard PRO-NAVI WBS” in order to enforce a
certain “common structure” to the “customized PRO-NAVI WBSs” for various
projects. By this, we can easily promote standardization of project management method
because the “customized PRO-NAVI WBSs” for various projects have same product
names, work names, and similar basic structures. When there is no need to make
distinctions between “Standard PRO-NAVI WBS” and “customized PRO-NAVI
WBS”, we simply call them as “PRO-NAVI WBS.” We have prepared multiple, not
one, Standard PRO-NAVI WBSs”, so that the “customized PRO-NAVI WBSs” can be
made with ease.

When deriving a “customized PRO-NAVI WBS,” we also optimize prerequisite
works and common information accordingly. The common information will be added
common reference information of the project.

(3) A project Planning Based on “PRO-NAVI WBS”
A project plan can be clearly defined by deciding project start date, project finish date,
project members, work start dates, work finish dates, work member assignments.

Project Management System Based on Work-Breakdown-Structure Process Model 253

So, we add two kinds of information items to each work of “PRO-NAVI WBS”:

1) assigned members, due dates, and progress status of the work (started, not
started, completed, reviewed and approved),

2) product files that constitutes an product, assigned member, updated time,
version number and progress status.

By this, we can have following effects:

1) A project plan and its progress status are clear to its members, and project plan
and progress information can be easily accessed, because the “PRO-NAVI
WBS”structure is identical to the project’s development process.

2) Project’s common knowledge such as products, rules, procedures and
worksheets can be easily found and referred because they are not only uniformly
managed but also related to respective works, thus higher quality, higher
efficiency and standardization of works can be done.

Fig. 2. An example of attached information to PRO-NAVI WBS

Figure 2 shows an example of information added to the “PRO-NAVI WBS”. In this
example, “customized PRO-NAVI WBS” and project member information are added
to project general information of a business administration project. Additionally, plan
of work itself and prerequisite works, common references, and product files
information are also added. Figure 2 shows one member HARADA is scheduled to
finish a glossary of business terms by 2004/4/16, and manufacturer’s part of the
glossary of business terms is assigned to AWANE and was updated on 2004/4/16.

254 A. Harada et al.

3 “PRO-NAVI”

We have developed a project management system “PRO-NAVI”, based on
“PRO-NAVI WBS process model.” In this chapter, we explain the schematics,
functions and implementation of “PRO-NAVI”.

3.1 Structure and Functions of “PRO-NAVI”

(1) Structure of “PRO-NAVI”

Figure 3 shows the structure of “PRO-NAVI”.

Fig. 3. The structure of PRO-NAVI

“PRO-NAVI” is composed of “the Web server” and more than one client PCs, and
they communicate through the Internet or intranet. The “Web server” is connected with
the Project information DB and the Product DB. The Project information DB stores the
information shown in Figure 2. The Product DB stores product files, which are entities
of products. “The Web server” has project information processing part, project
information display processing part and product management part. A project plan
which is made on a manager’s client PC will be sent to “the Web server”, and then
processed by the project information processing part, and then stored in the Project
information DB. A project information which is stored in the Project information DB,
will be processed by the project information display processing part, and then sent to
the manager’s client PC or to a developer’s client PC, and then displayed.

(2) Project Information Display Function
Two kinds of project information display functions for each project member’s client PC
are provided and are called private view and project view.

Project Management System Based on Work-Breakdown-Structure Process Model 255

(a) Private View
The private view is a screen to display the works, a list of product files, and the progress
status of the project member who operates his or her client PC. Actual screen example
is shown in Figure 4. This example shows multiple projects or sub projects one member
participates in, works assigned, a list of product files made and registered. The “project
path (in Japanese)”represents first and second layers of the “PRO-NAVI WBS”, and
“work path (in Japanese)” represents the third layer or below.

The first item of Figure 4 shows he or she is assigned to a “business integration
project (in Japanese)”, is assigned a project work “definition of non-functional
requirements (system requirements) (in Japanese) ”, and the due date is “2004/12/10”,
and the progress status is “started (in Japanese)”.If one member belongs to multiple
projects, all the works assigned and a list of product files of those projects will be
displayed.

Fig. 4. An example of private view

(b) Project View
The project view is a screen to display “PRO-NAVI WBS,” product information of
each WORK, and reference information of each WORK. A screen example is shown in
Figure 5. If one selects a work on “PRO-NAVI WBS display frame” on the left of the
screen, related WORK and a list of product files, assigned members, due dates, and
progress status will be displayed as “Product information display frame” on the upper
right of the screen. If one selects a product file in addition, he or she can view a file
registered as a product.

A “reference information display frame ” on the lower right of the screen displays
products and common information of the organization to be referenced. If one selects
one item, he or she can read a relevant document. For example, in Figure 5, one has
selected “definition of non-functional requirements (system requirements) (in
Japanese) ” of “PRO-NAVI WBS display frame”, and the “Product information display
frame” displays assigned member as HARADA (in Japanese), due date (in Japanese) as
2004/12/10, and status (in Japanese) as “started” are displayed. In addition, “definition

256 A. Harada et al.

of non-functional requirements (system requirements) (in Japanese) ” is composed of
three product files and displayed with assigned member names and status, namely,
“system requirement definition document”, “use model”, “percentage of band-width
share – weekly day and time wise.”

Fig. 5. An example of project view

Also, the “reference information display frame ” displays common information to
refer when defining non-functional requirements (system requirements), namely,
“non-functional requirements setting guidance (in Japanese)”, “Division standard”, and
“system requirement examples”.

(3) Other Functions
(a) Managers’ Functions
1) Project managers are able to make project plans based on “PRO-NAVI WBS,” by

putting in necessary information through his or her client PC with ease, because
prototypes of WBS, prerequisite WORKs, and common information are provided
by “Standard PRO-NAVI WBS.” These project plans will be transmitted through
the network and then stored in the “Project information DB.”

2) Project managers refer to “Product information display frame” of the project view
and then evaluate progress status by project planning, and status of works and
product files.

3) Project managers may directly read product files and confirm progress status or
percentage of completion independent from project member’s report, if necessary.

4) Project managers choose one product file from a list which is displayed in the
“Product information display frame”, and check the contents, review, or approve,
and then reflect the result to the “status”.

Project Management System Based on Work-Breakdown-Structure Process Model 257

(b) Developers’ Functions
1) A developer refers to his or her client PC’s private view or project view and

confirms assigned works; this is called “To Do management”.
2) A developer refers to his or her project view and recognizes participating project’s

plan and progress status.
3) A developer selects product files and downloads them to the client PC from a list

displayed in his or her private view or project view, and then do assigned works,
update product files.

4) If prerequisite work products or a common reference of the organization is found to
be required while making an assigned product, a developer selects a necessary
material from “Reference information display frame”, and then downloads it to the
client PC and refers to it.

5) An updated most recent product will be sent to the server and then stored in Product
DB. At this time, version number of the product file will be also updated by 1,
hence version management of product files are also performed by version numbers.

6) On completion of the assigned product, a developer changes status of the product
and the product files to “COMPLETED.”

By 1), start priorities and due dates of the products are shown, and by 4), directions
and examples of contents and formats of the products are shown, and thus these are
“Navigator” of works. We name this as “NAVIGATION FUNCTION”.

4 Evaluation

We will state the application record and effects of “PRO-NAVI.”

4.1 Actual Application Record of “PRO-NAVI”

Figure 6 shows the cumulative number of the projects using “PRO-NAVI.” We started
the operation of “PRO-NAVI” on March, 2000. By March, 2004, approximately 1200
projects are using “PRO-NAVI.” The number of product files registered counts
approximately 310,000 by March, 2004. We think “PRO-NAVI” has become the
standard project management system of in-house use.

Fig. 6. The cumulative number of the projects using PRO-NAVI

We have added new “standard PRO-NAVI WBSs,” as the number of “PRO-NAVI”
users grows. We had just two standard WBSs at the beginning. Now we can choose
from 13 types of “standard PRO-NAVI WBSs” for each project and then optimize it.

258 A. Harada et al.

Added “standard PRO-NAVI WBSs” are developed with name-changes, check-
process-additions and unnecessary-work-deletions corresponding to our customer’s
business fields and their organizations, as shown in Figure 7.

Fig. 7. Types of standard PRO-NAVI WBSs

For example, for the financial field WBS, we have added detailed improvements
concerning systems operation. We have added detailed works such as emergency
operation manuals and tests. A project manager selects an appropriate “standard
PRO-NAVI WBS”, related with customer’s business field and customer’s role in the
company, optimizes it, and then starts a project.

We have favorable evaluations from “PRO-NAVI” users, as shown below.

(1) Getting across job of the project standard document and project development
plan to its project members has become easier.

(2) Development errors due to “version-mistakes” have disappeared, because most
recent products can be shared in a secured manner.

(3) Search job for necessary products has become much easier.
(4) Distribution job of products has become easier.
(5) Hard copy document distribution has decreased.
(6) Version management of products has become possible.
(7) A project manager can easily verify the project status report, because the project

manager can directly check the status of the product and its contents with
“PRO-NAVI”.

4.2 An Application Example of “PRO-NAVI”

A railroad company ticket system construction project: 800 Kilo source lines of code to
be developed, by 200 project members in 10 separate development locations. This large
scale project applied “PRO-NAVI” to achieve high efficiency development and
management level and to share project progress status, product files and project
common documents.

Project Management System Based on Work-Breakdown-Structure Process Model 259

(1) Optimized “standard PRO-NAVI WBS” for the project
Figure 8 shows the optimization process of “standard PRO-NAVI WBS” to the project
above.

Fig. 8. An example of customization of PRO-NAVI WBS

Optimization points are as follows:

(a) Unnecessary works or products are deleted. Here, (system planning) and (I/O
design document) are deleted.

(b) Standard names of works are renamed to that of peculiar ones in the project. In
Figure 8, the name of (business process design document) is renamed to
(function design document –comprehensive part-).
 Divided works are added as 6th layer, so that a project member can be assigned
to a divided product. In Figure 8, (function design document –comprehensive
part-) is divided to (0. top cover/outline) and (1. Purpose and positioning).

(2) Comprehensive Management of Products and Common Documents
The “PRO-NAVI” managed 391 product files as outcomes of design process, and 173
common documents.

(3) Accurate Grasp of the Project Progress Status
The “PRO-NAVI” ‘s product information display frame provides products progress
status, and a manager may directly access to each product. Thus, a project manager can
directly feel and confirm progress status of products and their quality. The project is to
have prescheduled progress meetings, and project members are to report their
progresses. The project manager compared project member’s report with “PRO-NAVI
confirmation result”, and warned the project member, whose confirmation result was
much different, and realized early detection of progress problems and suitable
countermeasures.

(4) Application Result of “PRO-NAVI”
Effects of using “PRO-NAVI” are given in Table 1.

On the other hand, product progress status gathering function is pointed out to be an
issue.

For example, to grasp project progress status, one needs to select a work in
“PRONAVI WBS display frame” of the project view, and then check its progress work

260 A. Harada et al.

Table 1. Effects of using PRO-NAVI

by work in “product information display frame”. This operation method has advantage
in grasping percentage of completion of products, however, it costs effort to grasp
project progress status, and requires a new function to sum up product progress.

4.3 Analysis and Considerations

From application results of “PRO-NAVI” until now, we have confirmed three effects as
follows: (1) Clarification and notification of project plan throughout the project. (2)
Correct grasp of project progress status. (3) Higher quality, higher efficiency,
standardization of the project due to easy access to products and common documents.
It is also recognized, with “PRO-NAVI”, one can grasp progress status with ease,
however to grasp comprehensive project progress status, one needs to select work by
work from project view displays, and this costs effort. For this issue, an automatic
collection apparatus of project progress status based on products is effective, and we
should make research.

5 Conclusions

In this paper, we have proposed a WBS process model to relate project process, project
works, project products, and project’s common knowledge such as know-how, rules,
and standards and a project management system “PRO-NAVI”. As is shown in chapter
4, “PRO-NAVI” provides (1) Clarification of software development process, work, and
products of the project at the planning phase, (2) a grasp of project progress status, (3)
standardization of software project development process and navigation, (4) sharing of
project knowledge such as project products and “know-how.” We have confirmed the
“PRO-NAVI” is an effective system to support a project management.

On the other hand, project progress status gathering is pointed out to be a
bothersome and burdensome job and requires much effort. Our next step will be the
research and development of an automatic collection and evaluation function of project
progress status based on products which are registered in “PRO-NAVI”.

Project Management System Based on Work-Breakdown-Structure Process Model 261

References

1. H. Kerzner, Project Management, John Wiley&Sons, Inc. New York (2001)
2. R. Rada, J. Craparo, " Standardizing software projects," Communications of the ACM,

vol.43, no.12 (Dec. 2000) 21-25
3. Watts S. Humphrey, Managing the Software Process, Addison-Wesley, Winthrop (1989)
4. Shunichi Fukuyama, Hideo Takagi, Ryoji Tanaka, Michihiro Watanabe, Isao Nakabayashi:

Procedures for Implementing Checklists that Provide Guidance for Continuous
Improvements in Software Processes, IPSJ Journal, vol.42, no.3 (March 2001) 529-541

5. Department of Defense handbook Work Breakdown Structure(MIL-HDBK-881),
Department of Defense, USA (1998)

6. A Guide to the Project Management Body of Knowledge 2000edition, Project Management
Institute, Newtown Square (2000) Glossary

7. Gregory T. Haugan, Effective Work Breakdown Structures, Management Concepts, Vienna
(2002)

8. Practice Standard for Work Breakdown Structures, Project Management Institute, Newtown
Square (2001)

9. Eric Uyttewaal, Dynamic scheduling with Microsoft Project2002, J. Ross Publishing and
International Institute for Learning, Boca Raton (2003)

10. KABUSHIKIKAISHA NEC, KORABOREISHON-GATA PUROJEKUTOKANRI
SISUTEM ProcessDirector (in JAPANESE), http://www.sw.nec.co.jp/cced/processdirector

11. KABUSHIKIKAISHA KOUZOUKEIKAKUKENKYUUJYO, SOFUTOUEA
MITSUMORI TUURU KnowledgePLAN (in JAPANESE),
http://www4.kke.co.jp/sec/service/o1.html

12. KABUSHIKIKAISHA HITACHI SEISAKUSHO, BUNSHOKANRIKIBAN
DocumentBroker Version2 (in JAPANESE),
http://www.hitachi.co.jp/Prod/comp/soft1/docbro/index.html

13. NIPPON DOKYUMENTAMU KABUSHIKIKAISHA documentum (in JAPANESE),
http://www.documentum.co.jp

14. C. Jones, Applied Software Measurement, The MeGraw-Hill Companies, New York (1996)
15. H. Kerzner, Applied Project Management, John Wiley&Sons, Inc., New York (2000)
16. KYOUTUUFUREIMU98–SLCP-JCF98-(1998 NENBAN), SLCP-JCF98IINKAI,

KABUSHIKIKAISHA TSUUSANSIRYOUTYOUSAKAI, TOKYO (1998) (in Japanese)
17. Y. Oka, T. Tanida, S. Konno, C. Hirai, "Operation assistance method and system and

recording medium for storing operation assistance method," U.S. Patent no.6799183,
(Sep.2004)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 262 – 276, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Spiral Pro: A Project Plan Generation Framework
and Support Tool*

Jizhe Wang1,2 and Steven Meyers3,4

1 Laboratory for Internet Software Technologies,
Institute of Software, the Chinese Academy of Sciences, Beijing 100080, China

wangjizhe@itechs.iscas.ac.cn
2 Graduate School of the Chinese Academy of Sciences,

Beijing 100039, China
3 Center for Software Engineering, University of Southern California,

Los Angeles, California 90089, USA
stevem@cse.usc.edu
4 Software Process Group,

1968 W. Adams Blvd., Suite 211, Los Angeles, California 90018, USA

Abstract. Project planning is a delicate and on-going activity that requires a
great deal of experience and knowledge. Several models and methods are
developed which explore the various aspects of planning a project. In this
paper, we propose a framework named Spiral Pro that integrates Spiral Model,
MBASE and COCOMO II to help project managers do their project planning in
a systematic way. In an empirical study, a project plan template, developed
following the framework, was provided for thirteen e-service projects and a
survey was used at the end to assess the study. Based on the survey, some
characteristics are summarized, which help point out the effectiveness of using
of Spiral Pro framework. Motivated by the findings in the study, a tool has been
developed to help both experienced and inexperienced project managers make
better use of the framework for project planning.

1 Introduction

In software development, a rational project plan with proper flexibility is one of the
most fundamental success factors. A good plan makes it possible to execute the
project efficiently and effectively by calling for the right activities at the right times.
Software project planning is also highlighted as one of the key process areas of level 2
in the SEI Capability Maturity Model [1]. However, with a seemingly infinite set of
possible combinations of activities, many of which are people-, time-, and
environment-dependent, a project plan can be very difficult to get right, and in many
ways project planning is regarded as an art rather than a scientific activity.

There is a consensus that the quality of project plan lies highly on the manager’s
experience. However, at least three problems come with this situation.

* Supported by the National Natural Science Foundation of China under grant No. 60273026,

60473060 and The Hi-Tech Research and Development Program (863 Program) of China
under grant No. 2004AA112080, 2005AA113140.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 263

 Because of the diversity of software projects, there are no clear criteria to define
one’s level of experience. The characteristics and context of software projects are
usually very complex and greatly diverse. Application domain, customers’
expectations, engineering culture, capability maturity level, project size and
available resource are some examples of the factors that could make projects
totally different from each other. Thus it becomes very difficult to judge if one is
experienced enough under certain context.

 Secondly, as a result of the above problem, there are often inexperienced project
managers who end up doing the project planning. Without sufficient knowledge
and past experience, it is highly likely that their plans will lead to project failures.

 The third problem is the high risk of relying too heavily on personal experience.
Too much reliance on experience may allow for the same errors or inefficiencies
to be repeated over and over, thus stifling improvement. And without a
framework for monitoring quantitatively the likelihoods of the project’s success,
it’s hard to make any improvement based on real execution data.

Software process technology is regarded as a solution to these problems and has
attracted considerable research focus to date. A typical approach is to define a
standard development process, develop some general guidelines, and enable the
process to be tailorable for particular projects. The waterfall model [2] and Rational
Unified Process [3] are two of the most recognized ones. Such approaches provide a
common base for continuous improvement with the feedback from usage. But
unfortunately there are still some problems remaining. Firstly, a standard process can
only cover certain types of projects and there are always emerging project types that
cannot be fit into the existing processes. The latest CHAOS Report [4] shows that
only 46% of application projects are developed from scratch, while the rest are either
purchased applications or integrated existing components. However, several research
results show that the process of COTS based development is quite different from the
traditional waterfall processes [5,6,7].

A critical success factor is that software process is just one aspect of a project plan
and it’s always interacting with other models such as product model, success models
and property models [8]. In order to resolve the potential model clashes, the models
including process model must be treated as a whole from a higher level, which is the
contribution of MBASE (Model-Based Architecting and Software Engineering) [9].
To make it useful, more specific information should be provided to give the project
managers more detailed help.

In this study, we propose a plan generation framework named Spiral Pro, which
consists of a conceptual architecture and a suggested planning process. In order to
deal with different aspects that are essential in software project planning, we
integrated the key elements in MBASE and Spiral Model. In this framework, software
process is treated inside of this context with interaction with other factors. Spiral
Model is used as a basic process generator for evolutionary improvement. COCOMO
II (Constructive Cost Model II) [10] and its empirical data are used to estimate and
assign the effort and other resource. Based on the framework and the analysis of the
data from the study, a tool is developed with the capability of guiding the project
managers to follow the process and generating project plan automatically.

264 J. Wang and S. Meyers

2 Related Work

2.1 Spiral Model

Software life-cycle process models provide guidance for staging a software
development and its evolution, and to establish the transition criteria for progressing
from one phase to another. However, if a life-cycle process is not a applicable for
some emerging development approaches and its effectiveness will be significantly
reduced. As summarized in [11,12], process models are still in a continuous evolution
process. As one of the most accepted and used software process frameworks, spiral
model provides a rational balance between flexibility and discipline.

There are six invariants of the Spiral Model including:

 Concurrent determination of key artifacts.
 Each cycle does objectives, constraints, alternatives, risks, review, and

commitment to proceed.
 Level of effort driven by risk considerations.
 Degree of detail driven by risk considerations.
 Use of anchor point milestones: LCO, LCA, IOC [9,13].
 Emphasis on system and life cycle activities and artifacts.

In the work described in this paper, these six essentials are used to define the
disciplines that are used in the Spiral Pro framework or to define specific tasks.

2.2 MBASE

MBASE provides a model integration framework and a process framework. In the
integration framework, the relationship and interaction between every two elements
are described. Based on the integration framework, the process framework provides a
specific process and guidance on how to use the relationships defined in the
integration framework.

Although MBASE is said to be a recent extension of Spiral Model, its stand-alone
ability to help projects to escape from model clashes has made it an independent
method beyond Spiral Model. In software projects, success models, process models,
product models, and property models are used to guide the progress. Unfortunately
model clashes occur when incompatible models are combined, thus causing projects
to suffer. One example is using waterfall process model in a COTS-driven project
[8]. However, few project managers are aware of the problem at this level of
abstraction.

In our work on Spiral Pro, we benefit from MBASE in two aspects. First, the
description model architecture provides a method to categorize the elements of a
project plan at proper conceptual level. Second, the interactions and dependencies
between each model imply a feasible process to generate a set of compatible models.

2.3 COCOMO II

Software development is not only a technical activity but also a social economic
process. A project is regarded as successful only when it is finished on schedule and

 Spiral Pro: A Project Plan Generation Framework and Support Tool 265

within the budget. Thus in terms of project planning, one of the keys to success is an
accurate estimate of the expected effort to complete the project.

COCOMO (Constructive Cost Model) is a software cost estimation model based
on a set of empirically derived equations, which was first published by Dr. Barry
Boehm in 1981[14]. In order to meet the demands of new approaches of software
development, a new revised model was developed which is called COCOMO II [10].

The primary use of COCOMO II is to estimate the effort, cost, and schedule of
software projects based on the size and other cost drivers, which capture the
characteristics of the project and environment. In Spiral Pro Framework, this
estimation is both a key element of property model and the basis for following project
plan generation.

COCOMO II also provides phase and activity distribution values of effort and
schedule, which are generated from empirical data of real software projects. In Spiral
Pro Framework, these values are used to allocate effort and other resource to phases
and activities.

3 The Spiral Pro Approach

3.1 Fundamental Questions for Project Planning

“Planning is deciding in advance what to do, how to do it, when to do it, and who is to
do it.”[15] As more specifically indicated in CMM, the purpose of software project
planning is to establish reasonable plans for performing the software engineering and
for managing the software project [16]. In the software project planning and control
framework [14], five major steps are described including the producing of producing
of WBS, PERT charts (activity networks), Personnel Plan, Project Work
Authorization and Summary Task Planning Sheet. The MBASE Life Cycle Plan
Guidelines [18] extend these considerations by providing sections for Purpose (why),
Assumptions (whereas), Milestones and Products (what and when), Responsibilities
(who and where), Approaches (how) and Resources (how much).

Additionally, since the estimation could not be 100% accurate and the context of
the project always tends to be volatile, continuous revising based on the feedback data
from the project execution is necessary to reduce risks. Thus we added a further
question for project planning:

 How to revise the plan on a regular basis?

3.2 The Spiral Pro Framework

In order to resolve the problems mentioned above, we developed the Spiral Pro
Framework, which integrates the essential elements and mechanisms from the Spiral
Model and MBASE. COCOMO II is also used to estimate specific resources needed
for each project activity.

Conceptual Architecture
Figure 1 illustrates the conceptual architecture of the Spiral Pro framework. It’s built
up with two elements, which are the concept models and the project plan. COCOMO

266 J. Wang and S. Meyers

Fig. 1. Spiral Pro Framework: Conceptual Architecture

II is used to revise the cycles based on the feedback from project execution. The use
of MBASE, COCOMOII and Spiral Model are also illustrated on the left of the
figure 1 (feedback cycles exist but are not included for simplicity).

Concept Models
The concept models in Spiral Pro Framework are simplified and revised from the
MBASE Integration Framework. Since the success model is the dominant model, the
users’ choice on a success model will determine the available optional product and
process models. The model clash between a process model and a product model
should also be avoided but there are no necessary constraints on the sequence of their
selection since no one of them is more important than any other. Process and product
models are used to estimate effort, schedule, and other resources needed in the project
so that resource allocation can be done in the following process.

Project Plan
In the Spiral Pro Framework, a project plan is defined as a set of tasks with resource
allocated, and the order of their execution. Thus, there are four major elements
including task, process, activity and resource. The major benefit of using such a
structure is that the information from the concept models can be transformed into a
project plan in a straightforward way. The elements and their relationship with the
concept models are informally defined as follows:

 Task: a set of activities with one or more specific objectives to produce a
product, which could be a physical artifact or a logical decision.

 Activity: a set of actions with actors assigned, resources allocated and entry
and exit criteria defined.

 Process: a sequential or parallel set of Tasks with entry/exit criteria well
defined.

 Resource: effort and cost needed to perform an activity.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 267

COCOMO II and its empirical data
COCOMO II are used to capture and estimate the data in Property Models.
COCOMO II also provides the effort and schedule distribution data among the phase
and activity categories. The empirical data can be used to calculate the effort and
schedule that should be distributed across the project phases and activities.

Continuous revisions of the project plan
According to the essentials of Spiral Model, the level of effort and degree of details
all should be driven by risk considerations. Usually such kind of risk assessment
should be held in each spiral. In terms of project planning, a thorough and accurate
plan for the whole project lifecycle is preferred; actually the plan for future spirals or
phases can always be improved based on the data from past phases and current
context. Thus in Spiral Pro Framework we suggest and provide guidance on revising
the plan in between two spirals.

Planning Process
In [9], an overall process framework is provided for the MBASE approach. Based on
this framework, we developed a general process for project planning. As described in
figure 2, the planning process can be decomposed into three phases with each
composed of some specific activities. During the process, additional fundamental data
is provided to help the project managers to follow the whole activity flow. The
activity flow and data flow are all illustrated in figure 2.

Phase 1: Model Set Selection
In this phase, a project manager or several critical stakeholders work out a set of
models including the success models, product models, process models that are
compatible with each other. Since the success model is the dominant one, success

Select Success
Model

Select Process
Model

Select Product
Model

Generate
Tasks

Generate
Process

Estimate Effort
and Schedule

Allocate
Resources

Yes

Is there any
model clash?

Yes

No

Is the effort and
schedule acceptable?

No

Start

Success
Model Options

Product Models
Options

Process Models
Options

Selected
Success Models

Selected
Product Models

Selected
Process Models

Effort and
Schedule

Project Plan

Activity

Data

Data flow

Control flow

Project
Execution

Feedback

Fig. 2. Spiral Pro Framework: Planning Process

268 J. Wang and S. Meyers

models will drive the choices on other models. And as a support framework, what the
framework will be able to do automatically are also described here.

Step 1.1 Select Success Model
There are many success models in software development, such as stakeholder win-
win [17], IKIWISI (I know it when I see it), lowest cost, and shortest duration. Once
the stakeholders choose one set of success models, the framework will give guidance
or tool support on finding the potential conflicts between success models.

Step 1.2 Select Process Model/Product Model
The selection of a success model will determine the available options for process and
product models. Thus the users will be provided with lists of process models and
product models. An additional manual or automated check on the model clashes is
provided at the end of this step [19].

Step 1.3 Estimate Effort and Cost
Effort and Schedule can be estimated based on product and process model chosen
along with other context information from the users. Sometimes the users will re-
consider the previous three kinds of models when they have a better understanding on
the cost and schedule factors. So Step 1.1, 1.2 and 1.3 may be executed for several
cycles till the stakeholders get common agreement on them.

Phase 2: Plan Generation
Once a set of compatible models is selected, the project plan can be generated based
on the relationships between concept models and project plan that are described in
Figure 1. Ideally this process could be automated with the support of some specific
knowledge. However, since there might be multiple options, it may be more effective
to query the users for a decision.

Step 2.1 Generate Tasks
Since the objective of the Tasks is to produce products, it’s possible to pre-build the
potential relationships between product model and tasks. These relationships can be
part of the knowledge saved in the Spiral Pro Framework. Thus product models are
used to generate tasks in this step.

Step 2.2 Generate Process
In this step, the process model is used to build the relationships between tasks so that
the processes in the project plan can be defined.

Step 2.3 Allocate Resources
According to COCOMO II data, the efforts between different activity categories are
relative. Effort that should be assigned to a certain activity can be calculated based on
the ratios provided in [10].

Phase 3: Feedback and Improvement
Because software projects tend to go through significant changes over their lifecycle
the estimation of software cost becomes more accurate with the progress of the
project [14]. Although the success model is the dominant model, the four kinds of
models mentioned in MBASE could interact since stakeholders may negotiate and
find the new tradeoffs when the cost, effort or other elements change.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 269

As mentioned above, during the process of project execution, especially in between
two spirals, feedback and additional context information will be obtained. Depending
on the result of risk assessment, it might be necessary to re-assess the environment
and other factors at risk. Based on the assessment and feedback information, the
planning process of Spiral Pro should probably be performed again so that the project
planning accuracy can be improved.

3.3 Summary

With the Spiral Pro Framework, the eight fundamental questions for project planning,
which are mentioned in section 3.1, can now be answered. The set of tasks to be
performed in a project is determined by the product models that are chosen based on
the success models selected by stakeholders. The sequence of the activities (the
process) is defined by the process models that are required to satisfy the success
models. However, the selection of these models might be iterative in order to avoid
model clashes. COCOMO II and its empirical data are used to record assumptions
about some of the fundamental questions (why, who, where, whereas, how), and to
allocate the effort to activities (what, when, how much). Between spirals, feedback
data from the previous execution of the plan and new risk assessment results are used
to improve the plan for following spirals.

4 Implementing Spiral Pro: Empirical Study and a Support Tool

When the initial version of the Spiral Pro Framework was accomplished, we carried
out an empirical study on 13 e-services projects in CSCI 577a, a graduate software
engineering course taught at the University of Southern California. At the end of the
semester, we made a survey on these projects using a questionnaire and analyzed the
results.

The main objective of the study is to find opportunities for improvement and to test
if the template-centered method is a good way of using the framework. Although we
are not using a quantitative method, it still provided abundant firsthand valueable
information. From the analysis of the results, we found some characteristics that
might reduce the effectiveness of the framework when it is used solely or only with
some simple support such as templates, especially when used by inexperienced
project managers. Motivated by these findings, a support tool is developed to help
them use the framework in an effective and efficient way.

4.1 The Empirical Study

Description of the Study and Its Environment
These projects are all real projects with fixed deadline, limited or no budget, and real
clients from such customers as ISD (Information Services Division) or Libraries of
USC. The teams are comprised of graduate students who typically have minimal
experience in software development. There were totally 18 projects in the class. We
chose these 13 projects because they are indicated as COTS (Commercial-Off-The-
Shelf) Based Application (CBA) development projects in the pre-assessment.

270 J. Wang and S. Meyers

In this study, we developed a project plan template for CBA projects (using MS
Project) based on the Spiral Pro Framework and gave it to the teams. There are
several reasons we gave the teams the template rather than just providing the
framework description. First, most of the team members lacked prior knowledge of
the concepts used in the framework. Even though the COTS concept was taught
during the course there would not be enough time for the students to learn and use the
framework by themselves. Hence a well-defined template is much easier to use.
Second, the Spiral Pro framework was also in the evolution from an initial version to
a complete one, and there was not sufficient time for referencing it to MBASE.

The template was not developed from scratch. Instead, it was developed following
the Spiral Pro process with the help of MBASE Guideline [18] and CBA Process [5],
which consists of a set of process patterns drawn out from the analysis of previous
COTS Based Application development projects.

The Results from the Survey
In the 13 projects, 7 teams made use of the template while 6 said they did not use it in
the whole process though they might have used it as a reference. For the 6 projects
that did not use it, we asked the team members to give their explanation on why they
chose to not use it. For the first 7 projects, we asked them to write down their
comments for improvement of the template. The results are listed in table 1 and 2.

Table 1. Reasons of not using the template

Project ID The Reason of Not Using the Template
2 Unaware of its existence; Project type not match
6 Improper schedule; Project type not match
7 Unaware of its existence

10 Project type not match
11 Project type not match
12 Project type not match

Table 2. Feedback from the use of the template

Project ID Comments for Improvement
1 Over detailed; inaccurate estimation; Lack of certain task
3 Lack of some tasks; lack of further information on tasks
4 Lack of further information on tasks;

14
Lack of detailed information; Lack of certain tasks; To be
extended for 577b*

18 To be extended for 577b*
21 Lack of help and detailed example
24 Lack of flexibility for projects with different size

 * 577b is a following course of 577a, in which the projects will continue.

Analysis of the Survey Results
The results from the survey are illustrated in figure 3 and figure 4. Although we
summarized the answers from the two groups separately, actually together they
display aspects that should be noticed when using the template.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 271

 Fig. 3. Reasons of not using the template Fig. 4. Comments for Improvement

There are seven issues mentioned by the teams. However ‘unaware of its
existence’ and ‘to be extended for 577b’ are excluded from further analysis since they
are not relevant to the framework directly. The other five are analyzed in more detail:

 Project type not match
In the six projects where the template was not used, five teams indicated that
their projects were not typical CBA projects. This is the entire or partial
reason of why they did not make use of the template. For example, in project
6, where a bar-code reading system was developed for Maternal-Child
Virology Research Laboratory, no functionality was be provided by the
COTS alternatives for avoiding hidden detrimental functionality. Thus
custom development has to be involved.

 Lack of help information
In the seven projects that the template was used, four of them mentioned that
they needed more detailed help information on the tasks in the plan and how
to tailor it. This is quite reasonable since the inexperienced students were not
involved in the process of generating the project plan following Spiral Pro
Framework. Hence, it’s hard for them to have comprehensive understanding.

 Improper pre-set schedule
In one of the projects, improper schedule is listed as an issue that prevented
them from using the template. It’s quite interesting since we didn’t put any
constraints on the adjusting of the schedule. However, since no relevant help
information was provided, the team was not able to take advantage of such
flexibility.

 Lack of certain optional tasks
Three of the seven projects encountered the problem of not being able to find
particular tasks in the template. Creation of test plans (in project 14) and
periodical meeting with clients (in project 3) were mentioned as absent.
There are two reasons. First, the tasks are all based on the documents of the
CBA projects that were performed in the CSCI577 course in the past 3-4
years. Hence the knowledge base is relatively limited.

 Improper detail level
Another interesting phenomenon is the teams’ opinion on the detail level of
the template. Some of them said the template was over detailed, which made
it hard to use. For example, ‘Identify the number of issues and defects in the
current week’ and ‘Weekly risk assessment and control’ could be omitted

272 J. Wang and S. Meyers

since the template for their super-task ‘Weekly Project Tracking and
Monitoring’ already includes corresponding sections. On the other hand,
some suggested more detailed tasks or related information. We also found
that the teams’ requirements on the detail level tend to change with the
phases of the development. According to the Spiral Model, this also comes
from projects having different risk-driven levels of detail.

4.2 The Spiral Pro Tool

The issues coming from the study are interwoven with each other. For example, the
lack of training or help information may prevent the teams from understanding how to
modify the template effectively. In project 11, the COTS products were pre-
determined by the clients thus COTS assessment was not necessary. Finally they
didn’t use it for ‘project type not match’. In such situations, the team would be able to
make use of the template simply by omitting the COTS assessment task if they had
got enough help information on tailoring the template. Although they look quite
perplexing, there are some characteristics in common. Furthermore, most of them can
be solved or improved with a tool which could:

 Provide a systematic and flexible guide on the process
In the cases of unsuitable project type, improper schedule, insufficient
optional tasks and improper detail level, the root reason is that no systematic
guide was provided to make use of the template in a flexible way. Further
more, due to the nature of templates, although some options and tailor
mechanism are provided, the flexibility is still very limited. Also, the model
set selection was not incorporated thus the users didn’t have the opportunity
to change the underlying models. If a tool could guide them follow the whole
Spiral Pro process, even inexperienced project managers will be able to get a
better plan more easily.

 Provide knowledge support on optional models and tasks
Another typical comment from the projects was regarding the lack of certain
optional tasks and related information. One reason is that the template-
centered method is not powerful enough to support an effective knowledge
service mechanism for project planning. Another reason is the template is
made from a relatively limited set of experience. A tool with well-designed
knowledge support mechanism will be very helpful to make much more
effective use of the framework.

As described above, the objectives of the tool are to help the users in flexing the
Spiral Pro Framework to suit their needs and provide a corresponding mechanism for
sharing the experiences of past projects. Inspired by the advantages that may be
achieved, we have begun developing the Spiral Pro tool.

Basic Capabilities
The tool will not only benefit the inexperienced project managers by providing a user-
friendly interface that is easy to understand and follow, but also help experienced
project managers find relative information from the experience database and in
automating some of the planning work.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 273

In order to achieve the objectives indicated above, we defined the following basic
capabilities for the tool:

 The tool should provide friendly user interface that can help the users follow
the Spiral Pro Planning Process, especially in the phase of model selection.

 The tool should be able to help the users to avoid model clashes among the
models mentioned in MBASE.

 The tool should provide an interface to interact with a Knowledge Base,
either internal or external. And additional help information for detailed tasks
is preferred for assisting the users.

 With the support of the knowledge base, the tool should be able to automate
the project plan generating process to some extent.

Architecture
Based on the Spiral Pro Framework, a tool is being developed by the Software
Process Group, Inc., with the cooperation of the USC Center for Software
Engineering. The conceptual architecture of the tool is illustrated in figure 5.

Knowledge
Base

User

Spiral Pro Tool

Model Clash
Checking

Model-Plan
Mapping

Schedule
Generating

User
Wizard

Project Type

Deadline/overall duration

Estimated Effort

Task Sensitive
Online Help

Concept Models

Spiral Pro
Process

Plan in Microsoft
Project Format

Fig. 5. Spiral Pro Tool

 A user wizard is used to guide the users in following the Spiral Pro Process,
which is especially helpful when integrated with the model clash checking
mechanism.

 Model clash checking capability is supported by using the pre-defined
consistency relationship between each other of the models, which are stored
in the knowledge base and will be provided as options for users.

 The knowledge base is used to provide options for different models as well
as their relationship including dependency and conflict. Project plan
elements and their relationship with the concept models are also stored there.
For example, if the ‘IKIWISI’ (I’ll Know It When I See It) is selected as a
success model, the ‘prototypes’ will become one of the recommended
product models. In automatic plan generating, prototyping related tasks such
as the determination of objectives, development and feedback obtaining
would be added in the project plan.

 Task sensitive online help is provided for users to find more information on
the tasks in their plans, including explanation, guidelines, document

274 J. Wang and S. Meyers

templates, and worked examples of good usage. The help information can be
accessed via Internet by through the hyperlinks in the task information.

 Following the Spiral Pro Process, part of the work of the plan generating is
automated, which is implemented in the Model-Plan mapping and Schedule
Generating module with the information from the Knowledge Base.

Tool Use Example
In project 24, the team is working on a CSE website to ”make sections that students
use more user-friendly, such as the courses section, define an XML and develop an
attractive front-end”. Though they have some rough idea of the capabilities as ”the
ability to search by course, by semester”, the requirements are quite unclear and
unstable. When using the tool to generate its project plan, the user is guided by the
tool to follow these steps:

1) In the list of success models, we select IKIWISI as one of the success
models. Since the website will be used by quite a wide range of
stakeholders, ‘stakeholders win-win’ is also chosen.

2) Product models and process models are displayed but both are categorized
into two groups, one consistent with the success models and one
inconsistent. For example, ‘Prototype’ is in the consistent list of product
models, and ‘Waterfall model’ is in the inconsistent list of process models.
This checking mechanism is based on the use of a knowledge base.

3) Once a consistent set of models is determined, a list of tasks will be
generated automatically, including generic tasks as risk management, and
specific ones as ‘win-win negotiation’, ’prototype development’. User can
tailor this list according to their special needs. Estimated effort and deadline
(or overall duration) are also prompted to input here.

4) When the task list is set, the tool will automatically generate a complete
project plan (in MS Project format) with effort and schedule assigned.

5) In the project plan, there is a column in front of the column of Task Name,
in which a hyperlink is provided for each task. By clicking the hyperlinks,
the users will be directed to an online help system where corresponding help
information and required artifacts for this task are provided.

5 Conclusions and Future Work

Software project planning is regarded as an art because of the great diversity of the
projects and complexity of the context. In order to reduce the risks coming with this
highly experience dependent way of project planning, some models and methods have
been invented and are being introduced to improve the quality and efficiency of
project planning. However, they usually focus on some specific aspect of software
development, so from a project manager’s viewpoint they are hard to follow.

In this paper, our general focus is on developing an integrated software project-
planning framework based on Spiral Model, MBASE and COCOMO II. In the
framework, we developed a conceptual architecture to present the elements and
relationships, and a planning process following which the users can create and modify
a project plan in a systematic yet straightforward way.

 Spiral Pro: A Project Plan Generation Framework and Support Tool 275

Concurrently with the Spiral Pro Framework, we carried out an empirical study.
This study is not quantitative, yet it provided valueable information for the
improvement of Spiral Pro. By summarizing and analyzing the data from a survey at
the end of these projects, some characteristics of the framework and this template-
centered usage are found. Based on these findings, some new features were added for
enhancement. Also the emerging requirements motivated us to develop the Spiral Pro
tool to help users make better use of the framework.

Both the framework and the tool are still in the process of improvement. In the
current framework, the relationship among models are simplified, however, other
interactions and constraints should also be included for more comprehensive
discussion especially on more flexible methodologis such as extreme programming
[20]. In order to facilitate the reuse of software process assets within the organization,
process element [7] will also be incorporated into the framework. We will also try to
introduce some solutions using expertise or Delphi method to improve the effort
calculation for certain kinds of projects.

References

1. Paulk, M. C., et al. Capability Maturity Model for Software. In: Thayer, R.H., Christensen,
M. J. (eds.): Software Engineering, vol.2: The Supporting Processes. John Wiley & Sons,
Hoboken, New Jersey, USA (2002) 375-386

2. Royce, W.W.: Managing the Development of Large Software Systems: Concepts and
Techniques. In: Proceedings of the 9th ICSE. IEEE Computer Society Press, Los Alamitos,
CA, USA (1970) 328-338

3. Jacobson, I., et al.: The Unified Software Development Process. Addison-Wesley
Longman, Massachusetts, USA (1999)

4. Standish CHAOS Report 2001, http://www.standishgroup.com
5. Boehm, B., Abts, C.: COTS Integration: Plug and Pray? Computer, Vol.37, No.1 (1999)

135-138
6. Brownsword, L., Oberndorf, T., Sledge, C.: Developing New Processes for COTS-Based

Systems. IEEE Software, Vol.17, No.4 (2000) 48-55
7. Boehm, B., Port, D., Yang, Y., Bhuta, J.: Composable Process Elements for Developing

COTS-Based Applications. In: Proceedings of ISESE 2003. IEEE Presss, Los Alamitos,
CA, USA (2003) 8-17

8. Boehm, B., Port, D., Alsaid, M.: Avoiding the Software Model Clash Spider Web. IEEE
Software. Vol.17, No.6 (2000) 120-122.

9. Boehm, B., Port, D.: Balancing Discipline and Flexibility with the Spiral Model and
MBASE. Crosstalk. Vol.11, No.12 (2001) 23-28

10. Boehm, B., et al.: Software Cost Estimation with COCOMO II. Prentice Hall, Upper
Saddle River, New Jersey, USA (2000)

11. Boehm, B.: A Spiral Model of Software Development and Enhancement. IEEE Computer.
Vol.21, No.5 (1988) 61-72

12. Fugetta, A.: Software Process: A Roadmap. In: Finkelstein, A. (eds.): Proceedings of the
Conference on The Future of Software Engineering, ACM Press, New York (2000) 25-34

13. Boehm, B.: Anchoring the Software Process. IEEE Software, Vol.13, No.4 (1996) 73-82
14. Boehm, B.: Software Engineering Economics. Prentice Hall, Upper Saddle River, New

Jersey, USA (1981)

276 J. Wang and S. Meyers

15. Koontz, H. and O’Donnell, C.: Principles of Management: An Analysis of Managerial
Functions (5th ed.). McGraw-Hill, New York, USA (1972)

16. Paulk, M.C., et al.: Key Practices of the Capability Maturity Model. Technical Report,
CMU/SEI-93-TR-025. Software Engineering Institute, Carnegie Mellon University (1993)

17. Boehm, B.: Theory-W Software Project Management Principles and Examples. IEEE
Transactions on Software Engineering. Vol.15, No.7 (1989) 902-916

18. MBASE Guidelines and MBASE Electronic Process Guide. Center for Software
Engineering, University of Southern California, USA. http://sunset.usc.edu/research/
MBASE.

19. Al-Said, M.: Identifying, Analyzing, and Avoiding Software Model Clashes. Ph. D.
Dissertation. University of Southern California, USA (2003)

20. Beck,K., Andres, C.: Extreme Programming Explained: Embrace Change (2nd ed.).
Addison-Wesley, Massachusetts, USA (2004)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 277 – 286, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Process Improvement Framework and a Supporting
Software Oriented to Chinese Small Organizations

Bo Gong1,3, Xingui He2, and Weihong Liu3

1 School of Computer Science and Technology,
BeiHang University, Beijing 100830, China

gongbo@vip.sina.com
2 School of Electronics Engineering and Computer Science,

Peking University, Beijing 100871, China
hexingui@ns.cetin.net.cn

3 Institute of Command and Technology of Equipment, Beijing 101416, China

Abstract. Applying the widely accepted process improvement models, such as
CMM and ISO 9001, to small software organizations is a challenge for Chinese
software industry. Resistance comes from organization structure, software
process improvement model, and the market. Small organizations have many
characteristics suitable for process improvement, such as rapid communication.
How to maximize advantages and minimize shortcomings is a long-term practi-
cal task that Chinese software organizations and academe must face. This paper
analyzes difficulties that block small organizations, and provides suggestions to
resolve these difficulties. And then this paper puts forwards a framework ori-
ented to Chinese small organizations, consisting of three phases. To assist in
implementing upper framework, supporting software Project Man was devel-
oped, which provides a convenient integrated environment for project manage-
ment and process improvement. Experiments and practices have proved that the
framework and supporting software can largely reduce the difficulties of proc-
ess improvement in small organizations.

1 Introduction

It has been recognized that software industry is valuable to Chinese economy and that
it continues to grow and should contribute more to the economy in the future. How-
ever, due to the nature of software products and the growth of the Internet, country
markets are faced with increasing global competition. Comparing with India, the
number of our overseas contracts is too small. How to earn this kind of contracts and
ensure that software products are of higher quality than other countries, the key is to
improve software processes.

CMM and ISO 9001 are the most important software process improvement efforts.
In recent years, many companies in China tried to apply CMM, but experiences have
shown that many small software organizations have been frustrated. In China, 70 per-
cent software companies have 20 or less employees [1]. CMM largely reflects soft-
ware process practices of large software organizations, and many practices are inap-
propriate to small projects.

278 B. Gong, X. He, and W. Liu

On the other hand, both ISO 9001 and CMM fail to benefit from the “smallness”
which usually means flexibility, fast reaction time, and enhanced communication. As
a result, small software organizations or small projects have not progressed very high
on software process maturity scale. To satisfy needs of such organizations, different
studies addressing “smallness” issues have been launched.

Based on our research on the topic, we summarize related problems surrounding
the use of the CMM in Chinese organizations and projects, and define a basic frame-
work for process improvement in such environments. The framework is based SW-
CMM and IDEAL, covers all key process areas of CMM Level 2 and 3, and consists
of three phases: Process Definition, Process Control, and Process Stability. In every
phase, detailed instructions about how to do are provided.

To assist in performing the framework, we have developed a computerized process
improvement environment Project Man. The software is developed in Lotus Notes
R5, utilizing its workflow mechanism and knowledge management. The improvement
framework and its supporting software have been applied in many military organiza-
tions and some civil companies, including Beijing International Switch System Corp.
and ZhongXin Network Technology Corp.

The remainder of this paper is organized as follows. Section 2 discusses the diffi-
culties of process improvement in small organizations, and introduces other notable
research work. Section 3 defines a process improvement framework for small organi-
zations. Section 4 introduces the architecture and characteristics of Project Man, and
compares with other well-known systems. A summary of this work and conclusions
are thereof in Section 5.

2 Difficulties and Related Work

In the section, we simply summarize the difficulities that small organizations encoun-
ter, and related work in the area.

2.1 Difficulties of Process Improvement in Small Organizations

Difficulties can be classified into three related kinds: organization structure, software
process improvement model, and the market that small organizations operate in [4].

(1) Organization structure
Organization structure is the most important determinant of any process initiative,
prominent difficulties include:
− Lacking of quality conscious personnel. It is very common that the majority of em-

ployees lack an understanding of underlying principles, related concepts and tech-
niques in order to participate in process improvement.

− Limited number of personnel. In small organizations, it is often not possible to
form a dedicated process improvement group.

− Limited funds. Many small organizations have no money to prepare process im-
provement, such as assessment and training, and can’t reserve resources for a long-
term process improvement project.

 A Process Improvement Framework and a Supporting Software Oriented 279

− States of current processes. Small organizations, in general, rank Level 1; experi-
ences show that it takes 4 to 6 years for a Level 1 company to reach Level 3 matur-
ity. Small organizations can’t endure so long.

− Problems of non-software process. Small organizations often lack required matur-
ity of organizational processes not directly related to software development.

− Hacker culture. Small software organizations are generally extremely dependent on
a couple of very talented programmers.

− Lacking quantitative data. Lacking quantitative data poses a problem for software
process initiatives since the state of the organization before the initiative is un-
known, and it is even very difficult to quantify early results of the initiative.

− Lacking suitable approaches to promote communication of ideas and organiza-
tional knowledge. The personality of Chinese goes against communication.

(2) Process Improvement Models
Widely applied software process improvement models (such as CMM) have many in-
herent problems for small organizations:
− Lacking guidance. CMM provides many key process areas, but don’t state how to

do. Small organizations lack expertise, often need detailed instructions on how to
apply such models within their own company [2, 3].

− Failing to benefit from smallness. Existing models fail to benefit from “smallness”,
which means flexibility, fast reaction time, and enhanced communication.

− Assumption of expertise in diverse fields. Existing models implicitly assume the
organization can form different teams working in parallel on different issues. Small
organizations with limited personnel fail to adapt the models to their own reality.

(3) Market
Generally, small organizations are in close contact with customers, and are more vul-
nerable to market economy. The difficulties related to the market include:
− Changeability assumption. In small organizations, the ability of managing re-

quirements and changes is very week, and closing to customers will bring more re-
quirement changes.

− Low RIO. Small software organizations operate in a small market with limited
number of customers, the RIO typically is below expectations.

− Treating CMM or ISO 9001 as a measure for contracts. Managers don’t attach im-
portance to process improvement, just go in for certificates of CMM or ISO 9001.

2.2 Related Work

Small organizations are the majority of software industry. How to improve the proc-
ess capability of small organizations has been studied in past several years.

SPIRE (Software Process Improvement in Region of European) project was spon-
sored by the European Commission under contract ESPRIT/ESSI 23873 and managed
by the Center for Software Engineering (CSE). SPIRE aimed at helping small organi-
zations improve their abilities to develop and/or maintain software. Hunter [6] out-
lined the progress of SPIRE.

Demirrors [4] and [7] introduced a composite model based on CMM, ISO 9001
and ISO 9000-3. Kautz [5] stated how to apply and adjust IDEAL model in small

280 B. Gong, X. He, and W. Liu

organizations, and provided tailoring guidance. Richard [8] discussed the characteris-
tics that should include in SPI models, and put forward a SPI model. Johnson [9] de-
fined LOGOS Tailored CMM, stating how to tailor CMM and addressing the prob-
lems in small organizations.

3 An Improvement Framework Oriented to Small Organizations

Based on the research on process improvement in Chinese small organizations, we
summarize a process improvement framework oriented to small organizations [2, 4,
7]. The framework is based on SW-CMM and IDEAL, includes all the key process
areas of CMM Level 2 and 3, and consists of three phases. The activities to be carried
out in these phases are briefly described below.

(1) Process Definition phase
The phase corresponds to Initiating and Diagnosing phases of IDEAL model. In this
phase, senior management first understands the needs of software process improve-
ment (SPI), commits to a SPI program, and defines the context for SPI. At the same
time, initial improvement infrastructure is established, the roles and responsibilities
for the infrastructure are initially defined, and initial resources are assigned. Key ac-
tivities to be performed include: obtaining commitment of senior management; as-
sessing current states of organizations and processes, and establishing organization
and process baseline; preparing initial improvement infrastructure, providing needed
resources and personnel.

(2) Process Control phase
The phase is tailored from Acting and Establishing phases of IDEAL model. In the
phase, improvements are developed and deployed across the organization.

Key activities to be performed include: refining a SPI strategic action plan that will
provide the guidance and direction to SPI program; developing or refining the soft-
ware development processes; integrating the process improvements with new or exist-
ing project development plans; monitoring and supporting the organization in the
process of using the new or modified processes.

In the phase, we tailor three main key process areas: project monitoring and track-
ing, configuration management, and product engineering.

(3) Process Stability phase
The phase is similar to Leveraging phase of IDEAL model. Product engineering is
widely applied throughout the organization. Formal review and testing, quality assur-
ance, and requirement management should be established. Another key task to be per-
formed is to establish measurement program. In our framework and subsequent soft-
ware, GQM (Goal-Question-Metric) measurement method is applied.

Key activities include: establishing requirement management process, formal test-
ing and review process, quality assurance process, product engineering process, and
complete measurement program to monitor software processes; reviewing and analyz-

 A Process Improvement Framework and a Supporting Software Oriented 281

ing lessons learned from prior phases; developing plan to provide continuous guid-
ance to SPI program.

4 The Supporting Software Based on GQM

During the process of deploying CMM or ISO9001, supporting tools are indispens-
ably. In 2004, a survey on lessons of process improvement in Chinese small organiza-
tions is conducted, 30 percent informants deem that failure rests with insufficient and
unsuitable tools. And, the most required tools in organizations are configuration man-
agement, project management, product engineering, and change management.

To cooperate with upper process improvement framework, we develop an inte-
grated computerized software engineering environment Project Man. Lotus Notes R5
is the development tool. The system consists of two major parts: Organization-Level
Management Platform and Project-Level Management Platform, corresponding to
characteristics and the model of organization management and project management.

Project Man provides upper four types of tools, covers all key process areas of
CMM Level 2 and 3, and supports quantitative management requirements described
in CMM Level 4. Figure 1 is the architecture of Project Man.

By virtual of the system, fussy paperwork and management activities will be
largely simplified. The system provides a strong mechanism to collect and analyze
various quality data, and finally all related data will be stored in history database to
guide future projects.

Fig. 1. The architecture of Project Man. The system establishes four main workflows: devel-
opment process management, review management, configuration management, and quality
management.

282 B. Gong, X. He, and W. Liu

4.1 System Characteristics

The system has four characteristics.
(1) Quality assurance program based on GQM. The system establishes a quality as-

surance system based on review and GQM to achieve quantitative management.
For any ongoing project, firstly project goals are defined according to business

goals, and customers’ expectations. In order to fulfill every business goal, project
questions are defined, and each project question is a task. Tasks can be split or incor-
porated. Projects goals and all tasks compose a to-do network. Every task has some
distinguished quantitative properties, which is called metrics.

(2) Integrating an efficient process improvement framework. The system fulfills
the basic ideas and requirements of the improvement framework described in Section
3; tailors and realizes all key process areas of CMM Level 2 and 3, and quantitative
process managements of CMM Level 4.

(3) Efficient tools and environment support for implementing CMM Level 2 and 3.
The system simplifies fussy process management activities and paperwork, improves
communication and work efficiency, and finally efficiently addresses the “smallness”
problems of small organizations.

(4) A collaborated software development and management environment. The sys-
tem constructs a safe and reliable collaborated software development and manage-
ment environment using many advanced technologies, such as Web technology,
workflow technology, email technology, and multimedia database.

4.2 Application of GQM

GQM is a proven measurement approach first introduced by Dr. Victor Basili (Uni-
versity of Maryland) and endorsed by the Department of Defense and the Software
Engineering Institute (SEI) in their Practical Software and Systems Measurement
workshop. GQM presents a systematic approach for integrating goals to models of the
software processes, products and quality perspectives of interest based upon the spe-
cific needs of the project and the organization.

GQM defines a measurement model on three levels. (1) Conceptual level (goal): A
goal is defined for an object, for a variety of reasons, with respect to various models
of quality, from various points of view, and relative to a particular environment. (2)
Operational level (question): A set of questions is used to define models of the object
of study and then focuses on that object to characterize the assessment or achievement
of a specific goal. (3) Quantitative level (metric): A set of metrics, based on the mod-
els, is associated with every question in order to answer it in a measurable way.

In the following section, we explain how GQM is used for requirement manage-
ment. In requirement management, there are three main activities: reviewing and vali-
dating correctness and rationality of requirements; decomposing requirements and de-
ploying requirements into software development plan, artifacts, and activities;
reviewing requirement changes, and combining into projects.

During the process of bringing forward, reviewing, designing, coding, and testing a
requirement, the requirement’s status will change. In Project Man, we use require-
ment status library to manage the status of any requirement: Defined, Approved, De-
signed, Implemented, and Completed.

 A Process Improvement Framework and a Supporting Software Oriented 283

Table 1 lists goals and corresponding questions of requirement management.
Table 2 is the first goal’s questions and corresponding metrics. Limiting to the space,
other goal’s metrics are omitted.

Table 1. goals and corresponding questions of requirement management

 goals questions
How many requirements are in every status?
What is the result of requirement review?

1 Tracking the
status and qual-
ity of any re-
quirement

Are iffy requirements have been modified?

How many requirement changes are put forward?
When are requirement changes put forward?
What types of requirement changes are?

2 Controlling re-
quirement
changes

What effect do requirement changes pose?
How fast are requirement processed?
Has the speed of processing requirement been improved?
Does the proceeding speed of requirements meet expecta-
tion?
How fast are requirement changes processed?
Has the speed of processing requirement changes been
improved?

3 Tacking the
speed of proc-
essing require-
ments

Does the proceeding speed of requirement changes meet
expectation?

Table 2. the questions and corresponding metrics of goal 1

questions metrics
Number of requirements in “Defined” status
Number of requirements in “Approved” status
Number of requirements in “Designed” status
Number of requirements in “Implemented” status

How many require-
ments are in every
status?

Number of requirements in “Completed” status
Number of requirements that are reviewed
Number of requirements that are considered impractical
by reviewers
Number of requirements that are considered improper by
reviewers
Number of requirements that conflict with other
requirements

What is the result of
requirement review?

Number of requirements that canot be testted
Number of iffy requirements Are iffy requirements

have been modified? Number of requirements that have been modified and
accepted

284 B. Gong, X. He, and W. Liu

4.3 Other Related Systems

There are some other well-known software products that can be used by small organi-
zations to manage and improve projects and processes.

(1) Project Assistant
Project Assistant is developed by DingXin Corp., a joint-stock company of TsingHua
University and IBM Corp. It is a software process management system based on Lo-
tus Domino/Notes, supporting requirement management, project planning, project
monitoring and tracking, quality management, and configuration management. There
are many differences between Project Assistant and Project Man:
− Project Man covers 13 KPAs of CMM Level 2 and 3, and provides quantitative

management of CMM Level 4. Whereas, Project Assistant covers CMM Level 2,
mainly designed for project management.

− Project Man uses GQM to collect and analyze process data, such as schedules,
cost, resources, and risks. These process data will be stored in organization or pro-
ject baseline, guiding future projects. Project Assistant collects few data; process
data and experiences cannot be inherited.

− In Project Man, process management, review management, quality management,
and configuration management are interrelated. While in Project Assistant, differ-
ent modules are isolated, data sharing and transfer is a little difficult.
In summary, Project Man is a compound platform, providing more functions, clear

workflows, and simple operations.

(2)Software Quality Assurance Platform based on CMM (SQAP)
SQAP is developed by Institute of Software of CAS (Chinese Academy of Sciences),
integrating three tools: process asset management, project management, and software
measurement. The platform is a C/S system, meets CMM Level 3 specifications.
There are following differences between SQAP and Project Man:
− Project Man implements all KPAs of CMM Level 2 and 3, whereas SQAP only

covers partial KPAs of CMM Level 3, including organization process definition,
and organization process focus.

− Project Man is a compound system, integrating project management and organiza-
tion management, and modules are closely coupled. While SQAP consists of three
isolated tools, the interrelations between them are loose.

− Project Man collects daily-reports, while SQAP collects week-reports. The granu-
larity of process data is different, Project Man provides finer granularity, and can
more quickly find abnormal situations and take correct actions.

− Project Man collects diversiform process data, such as workload, cost, review re-
sults, configuration items, sub-contracts, realizing quantitative management of
CMM Level 4. SQAP are mainly concerned about workload and cost.
As a whole, two systems all support project management and quality measurement.

SQAP provides better graphical representations.

(3) JadeBird Configuration Management system (JBCM)
JBCM is a component-based software configuration tool developed by Beijing Beida
Jadebird Software Engineering Co., which uses new software configuration manage-

 A Process Improvement Framework and a Supporting Software Oriented 285

ment model, and meets related configuration specifications of ISO9000-3 and CMM.
There are following differences between JBCM and Project Man:
− JBCM is a dedicated tool for configuration management, while Project Man is a

compound platform, covering all phases of software development.
− JBCM implements software configuration management of CMM Level 2; while

Project Man implements all KPAs of CMM Level 2 and 3.
− JBCM isn’t directly related with a specific project, cannot collect quality data re-

lated to configuration items; while in Project Man, as one of core modules, every
configuration item is related with specific tasks, and configuration status of every
task is displayed real time.
As a whole, JBCM is a powerful and isolated configuration management tool. Pro-

ject Man is a comprehensive solution for software development management, can bet-
ter promote all-sided improvement of software processes.

4.4 Feedback from Users

The process improvement framework and related software have been deployed in
more than 20 military and civil organizations. Beijing International Switch System
Corp. is our first customer. It is a subsidiary company of Siemens Corp., whose
development section has about 100 engineers, responsible for localizing switch
software.

Before implementing software process improvement, the manager of the section
often complained that projects seldom completed before deadline, and the status of
every project, workload and related process data are hard to collect. He was busy with
solving unforeseen situations, often acted as a fire fighter. He expects to rely on our
service and software to standardize software development and project management,
improve the efficiency of project development, and finally keep harvests and lessons
of past projects.

The project began from Jan. of 2004, lasted three months, and terminated in Apr.
of 2004. The process is divided into three phases: (1) Introducing the idea of process
improvement, training related personnel, establishing required workgroups; (2) Im-
plementing process improvement framework described in Section 3, standardizing
software process, establishing workflows and related specifications, identifying roles
and responsibilities; (3) Deploying Project Man, and training every stakeholder.

In Oct 2004, we dispensed a questionnaire to all employees, expecting them to
evaluate the process improvement framework, workflows, documents, specifications,
and the performance, usability, and functions of Project Man.

We received 88 valid questionnaires, 90 percent of informants deem that the proc-
ess improvement project largely improves the efficiency and visibility of projects;
risks can be forecasted; communication is more convenient; and workload can be
quantitatively measured.

5 Conclusions

Through our research, we find following points are very important: (1) According to
organization’s characteristics, business goals and resources, selecting and tailoring

286 B. Gong, X. He, and W. Liu

suitable process improvement model. (2) Implementing process improvement as a
project, obtaining commitment of senior management. (3) Using suitable tools to as-
sist in process improvement, simplify paperwork and specifications, enhance commu-
nication, and automate routines.

The future goals of our research include: (1) Using a formal schema to represent
process improvement framework and validate it. (2) Perfecting Project Man to sup-
port mobile users, integrate with OAs and other related commercial tools, and so on.

References

1. Xingui He: Capability Maturity Model for Software. TsingHua Press, BeiJing, China (2001)
2. Bo Gong: The Theory and Practices of CMMI. WaterPower Press, BeiJing, China (2003)
3. Bo Gong and Weihong Liu: Software Process Management. WaterPower Press, BeiJing,

China (2003)
4. Onur Demirrors and Elif Demirors: Software Process Improvement in a Small Organization:

Difficulties and Suggestions. Proceedings 6th European Workshop on Software Process
Technology, Paris (1998) 1-26

5. Karlheinz Kautz, Herik Westergaad Hansen, and Kim Thaysen: Applying and Adjusting a
Software Process Improvement Model in Practice: The Use of the IDEAL Model in a Small
Software Enterprise. Proceedings of ICSE, London (2000) 626-663

6. R.B.Hunter and H.W.Jung: Some Experiences and Results from the SPICE Trails. SPICE
2000, Dublin (2000) 102-234

7. Elif Demirors, Onur Demirors, Oguz Dikenelli, and Billur Keskin: Process Improvement
Towards ISO 9001 Certification in a Small Software Organization. Proceedings of ICSE,
London (2000) 471-474

8. ITA Richard: SPI Models: What Characteristics are Required for Small Software Develop-
ment Companies? Software Quality Journal, Vol 10 (2002) 101-114

9. Donna L. Johnson and Judith G. Brodman: Tailoring the CMM for Small Businesses, Small
Organizations, and Small Projects. Proceedings of ICSE, New York (2003) 239-257

Incremental Workflow Mining Based
on Document Versioning Information

Ekkart Kindler, Vladimir Rubin, and Wilhelm Schäfer

Software Engineering Group, University of Paderborn,
Warburger Str. 100, D-33098 Paderborn, Germany

{kindler, vroubine, wilhelm}@uni-paderborn.de

Abstract. Current enterprises spend much effort to obtain precise mod-
els of their system engineering processes in order to improve the process
capability of the organization. The manual design of workflow models
is complicated, time-consuming and error-prone; capabilities of human
beings in detecting discrepancies between the actual process and the
process model are rather limited. Therefore, automatic techniques for
deriving these models are becoming more and more important.

In this paper, we present an idea that exploits the user interaction
with a version management system for the incremental automatic deriva-
tion, refinement and analysis of process models. Though this idea is not
fully worked out yet, we sketch the architecture of the solution and the
algorithms for the main steps of incremental automatic derivation of
process models.

1 Introduction

This paper deals with automatically increasing the process maturity of organi-
zations by means of discovering the process from information about versions of
documents and assignments of these documents to different users. This infor-
mation can be derived from data stored in document or version management
systems.

The Capability Maturity ModelSM (CMM) [1] and the Capability Maturity
Model� Integration (CMMISM) [2] specifications of SEI define several levels of
maturity as a foundation for process improvement. The CMM refers to software
development processes only; the CMMI is more general and applies to system
engineering, which can consist of software and hardware as well, i.e. mechatronic
system. In this paper, we present our idea by the help of examples from Software
Engineering only, which means that we restrict ourselves to the CMM. But, the
ideas should apply to CMMI in general.

Achieving the next level of the maturity framework results in increasing the
process capability of the organization. The first level of the CMM model (initial)
is characterized by ad-hoc and occasionally chaotic processes; the second (repeat-
able) implies the existence of the process discipline to repeat earlier successes;
the third level (defined) means that the processes are documented, standard-
ized and integrated to the organizational structure; the fourth (managed) level

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 287–301, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

288 E. Kindler, V. Rubin, and W. Schäfer

Fig. 1. Time to increase the CMM level

is achieved when the software process and products are quantitatively under-
stood and controlled; the fifth (optimizing) level enables a continuous process
improvement from innovative ideas and technologies.

The CMM was introduced for incrementally improving the maturity from the
first (initial) level to the higher levels. The statistics published in the ”Process
Maturity Profile of the Software Community” of August 2004, where about 1543
organizations of different size and from different areas were analysed [3], shows
that transitions between levels in the CMM are time-consuming. This statistics is
based on the information from such appraisals as: CMM-Based Appraisals for In-
ternal Process Improvement (CBA IPIs), Software Process Assessments (SPAs)
and Standard CMMI Appraisal Method for Process Improvement (SCAMPI).
The most interesting statistics in our context is ”Organizational Trends”, where
the time, needed by the organization to improve the process capability is shown.
The average time needed to reach the repeatable level is 24 months and from
repeatable to the defined level is another 20 months (see Fig. 1). So, automatic
process discovery can speed up increasing the CMM level. We call it “incremental
workflow mining” and it is discussed in this paper.

“Workflow mining” is ongoing research in the area of Business Process Man-
agement [4]. Existing results can be used for generating the System Engineer-
ing Processes and for supporting them by a Workflow Management System.
Therefore, a brief look into the concepts of Business Process Modeling helps
us identifying the information needed for discovering software processes. Busi-
ness Process Models cover such aspects as Informational, Organizational, and
Behavioural [5, 6, 7] as shown in Fig. 2. When considering different aspects for
workflow mining, Wil van der Aalst calls this “Workflow Mining from different
perspectives” [8]. To make things even worse, in many enterprises the infor-
mation is distributed over different subsystems, such as Document Management
and Resource Management systems, which is called “Mining from heterogeneous
sources”.

Incremental Workflow Mining Based on Document Versioning Information 289

Document

Management

Organizational

Structure

Development

Process

Fig. 2. Aspects of BPM of the Enterprise

Usually the information distributed on the different systems is integrated by
using ERP or CRM systems. In software development processes, documents are
usually maintained by a Version Management System. The logs of the Version
Management Systems contain information about the control flow, the documents
and the resources of the underlying processes. In this paper, we present an ap-
proach for incrementally and automatically generating software process models
from these logs. We believe that similar logs can be obtained from ERP or CRM
systems, so that our approach carries over to these systems either.

Altogether our approach helps to incrementally obtain a better model of the
development process by exploring the real work on this process. Later, this model
can be used to enforce the specific style of work in the organization and supply
missing information about the actual process. The generated model can be also
compared to the predefined process model and the discrepancy report between
the prescriptive and the discovered process model can be used to improve the
process capability. Automatic generation of the process can also trigger Business
Process Reengineering of the Organization, which is necessary for configuration
and maintenance of “Process-Aware Information Systems”.

The remainder of this paper is organized as follows. First, we discuss the
related work and show the state of the art in this field. In Sect. 3, we present the
architecture of the process discovering infrastructure and background ideas in
the area. Section 5 concludes the paper; and Sect. 4 shows important problems
in the related research domains to be treated in future.

2 Related Work

The seminal research in the area of process mining started in the mid 90ties with
new approaches to the grammar inference problem proposed by Cook and Wolf
in their first articles, which was improved later [9]. This research considers events
to be tokens and event streams to be strings of the grammar and, thus, solves
the grammar inference problem from event logs. Their research deals with the
software engineering process only and proposes three approaches to discovering
the process: the RNet, the KTail and the Markov approach. The RNet approach

290 E. Kindler, V. Rubin, and W. Schäfer

uses neural networks. The KTail is a pure algorithmic approach, building finite
state machines, depending on the future behaviour. The Markov approach uses
a combination of the statistical and the algorithmic method for constructing the
event graph from probability tables. In their work, Mannila and Rusakov [10]
present also the Markovian approach, but in a different domain.

The first application of “process mining” to workflow models from workflow
logs was presented by Agrawal in 1998 [11]. This approach models business
processes as annotated activity graphs and presents an algorithm for finding a
“conformal” process graph, assuming absence of cycles in the log. This algorithm
is restricted to sequential patterns.

The inductive approach to workflow mining was presented by Herbst and
Karagiannis [12]. Their approach uses machine learning techniques for acqui-
sition and adaptation of workflow models. The work of the same authors on
integration of machine learning and workflow management [13] is a foundation
of the work on “incremental workflow mining”, presenting three phases of the
workflow acquisition and adaptation cycle: inductive learning, workflow analysis,
and adaptation.

Another foundational approach to our work was presented by van der Aalst et
al. [14, 4, 15]. Within this approach, workflow logs and classes of sound Workflow
Nets are defined. Formal causality relations between events in logs are defined
and the “rediscovery problem” is introduced. The α-mining algorithm for dis-
covering workflow models is described in the work.

The work of Schimm [16] presents a mining tool for discovering hierarchi-
cally structured workflow processes. The area of workflow mining can also be
productively integrated with the research in the area of workflow-based process
monitoring and controlling as presented in the work of zur Muehlen and Rose-
mann [17].

Like Aalst, we use Workflow Nets for modeling workflows and we combine
and extend ideas of Herbst et al. and of Aalst et al. for a new “incremental
workflow mining” algorithm. We extend existing approaches considering not ac-
tivity logs, but document versioning information. Thus, we derive information
about activities from document logs. Additionally, we derive also informational
and organizational aspects of the process. Hence, we create our models using ex-
tended workflow nets to represent not only behavioural but also these additional
aspects. Altogether, incremental workflow mining, in our understanding, means
providing the models as soon as we get the first log information and improving
these models as soon as additional log information is available.

3 Solution

In this section, we present our main ideas. We start with the architecture of the
system, where incremental workflow mining can be applied. Then, we describe
our approach and show the example. The methods used for our approach are
concluding this section.

Incremental Workflow Mining Based on Document Versioning Information 291

System Architecture

The coarse architecture of our system for incremental workflow mining is pre-
sented on Fig. 3. It consists of a Document and Version Management System,
Resource Management and Workflow Management System with its User Inter-
face. The Resource Management System contains information about the user’s
interactions with documents. The Workflow Management System stores infor-
mation about all the generated processes. We assume, that the processes are not
defined manually, hence the information about the processes is not present in
the system at the very beginning. The User Interface is used for representing the
processes to the user in a comprehensive manner.

Document and Version

Management System
Resource Management

1. Discovering the

Workflow Process

Interaction with the System

User Interface

Agents

2. Merging new and

existing processes

3. Model

transformation

Workflow Management System

Fig. 3. Mining Architecture Schema

The users work with the Document and Version Management System com-
mitting the new versions of documents and entering the versioning log messages.
The versioning log consists of records. Each log record contains information about
the committed document, the user who committed it, the timestamp and a com-
ment. The versioning log contains many logs related to different processes. The
execution log is a part of the versioning log that consists of records related to
the process that has to be discovered.

Following the incremental workflow mining approach, the processes are discov-
ered and inserted to the Workflow Management System, where they are main-
tained. The processes are then transformed and presented to the user in an
understandable format. The user, considering the presented process, continues
working with documents. This cycle actually describes the work of the user and
the roles of the systems involved in the incremental workflow mining.

Incremental Mining Approach

This section presents the basic idea of incremental workflow mining. Figure 4
shows the Mining Architecture Schema in detail. The Document and Version

292 E. Kindler, V. Rubin, and W. Schäfer

Merged

Model n-1

Document and Version

Management System
Resource Management

Execution 1
Process Model 1

.
.

.

Process Model n-1

Process Model n

.
.

.

Merging
Merged

Model n

Merged

Model n-1
Merging

.
.

.

Interaction

Mining

Execution n-1

Execution n

Transformation

Transformation

User

Model n

User

Model n-1

Fig. 4. Incremental Mining Approach Schema

Management and the Resource Management Systems are shown here. The Work-
flow Management System maintains the process models, which are derived during
the steps of the approach. In rounded rectangles, the algorithms for deriving the
process models are shown: Mining, Merging and Transformation. The Process
Models are derived after the execution of the Mining algorithm, the Merged
Models – after Merging and the User Models – after Transformation. The steps
of the approach are enumerated in the left part of the schema.

The incremental workflow mining approach consists of the following steps:

Step 0. Let <Process Model>, <Merged Model> and
<new Merged Model> be equal to null;

Step 1. Discover process model from
versioning log ("Mining") -
get <Process Model>;

Step 2. If <Merged Model> exists,
then execute Merging algorithm ("Merging")

and get <new Merged Model>,
else let

<Merged Model> be <Process Model>;
Step 3. If <new Merged Model> is not null

then
if <new Merged Model> is not equal

to <Merged Model>
then let <Merged Model> be

<new Merged Model>
and go to Step 1,

else Stop:
else go to Step 1.

It is possible that the versioning log contains either one or several execution
logs. In case of several execution logs, incremental worklfow mining can be used
immediately in batch mode.

The precondition(Step 0) is: there exist no generated models.

Incremental Workflow Mining Based on Document Versioning Information 293

The first step is necessary for getting the first structure of the process. The
Mining algorithm of the process model generation from an execution log has
to be performed here. The main idea of this algorithm is represented in the
example in Sect. 3. Since we get the input information from the Document and
Version Management System, we can derive dependencies among activities from
the accessed documents. Thus, for each record in the execution log, we have the
context of activity: preconditions, output document and user. The preconditions
are the documents already committed to the system. The output document is the
document committed by the activity. The user is the agent who committed the
document. From the timestamps of the commit, we can also get the information
on the order of activities and, consequently, model the process.

The second step is the execution of the Merging algorithm, which refines
the existing model by merging it with the process model, produced in the first
step. This algorithm is the central point of the research in incremental workflow
mining. It can be used for stepwise refinement of the existing process after getting
a new process model by means of discovering new possible relations between
versioned documents.

With the aid of the Mining and the Merging algorithms, the process is im-
proved incrementally, thus, an initial ad-hoc process is becoming structured. This
is the way, how ad-hoc or collaborative workflow can become structured [5].

The third step includes checking of the conditions of the loop of the approach
and checking, whether an execution can be stopped. The execution has to be
stopped as soon as the new merged model and the old merged model are equal.
The implementation of this algorithm must contain additional guard conditions,
which exclude the situation of stopping of the execution on early steps, because
of the coincidence of execution logs.

As soon as any merged model is generated, the user has to be advised to work
with the documents according to the discovered process. The idea is to present
the existing process model in an appropriate comprehensive format to the user.
This comprehensive format can be derived from the merged model using the
Transformation algorithm.

The future research in the area must also deal with the incremental user sup-
port and the user behaviour. Thus, the work of the user should be supported
the following way: during the first executions, the process model should be just
shown to the user; later, the user should be advised about the further steps;
at last, when the process model is stable, the user could be enforced to follow
the model. From the point of view of the user behaviour, incremental workflow
mining can be either interactive or non-interactive. In case of interactive incre-
mental workflow mining, the process refinement is executed immediately after
every user change in the execution log. In case of non-interactive incremental
workflow mining, the process refinement is executed only after finishing the log.
Non-interactive workflow mining can be used during the first executions, when
the process is not clean and is supposed to be significantly changed by every ex-
ecution; interactive workflow mining can be used for the ultimate improvement
of the process.

294 E. Kindler, V. Rubin, and W. Schäfer

Example

The following example presents the information that was taken from the CVS
logs [18]. These logs are a simple version of the logs that could come from
a software company changing the design and the code, testing the code and
reviewing the design.

The log presented in Table 1 contains information about the documents, their
versions (revisions), timestamps, authors committed the documents, and com-
ments (CVS logging information).

Table 1. CVS log 1

Document Revision Date Author Comment
Design 1.1 01.01.04 14:30 Design Eng. Modify
Code 1.1 01.01.04 14:30 Design Eng. Modify
Test Results 1.1 10.01.04 18:45 QA Eng. Test Unit
Design Review 1.1 15.01.04 10:00 System Eng. Review Design

Fig. 5. Process Model generated from CVS Log 1

From the information presented in the log, the process model representing the
sequence of activities, information about documents, produced by activities, and
users, involved in executing them, can be generated. The current process model
is specified using High-Level Petri Nets [19] as shown in Fig. 5. This model will
be generated using the Mining algorithm.

As it was already described in this section, the Mining algorithm supports
the generation of the process model using one execution. The current High-Level
Petri Net model consists of the following nodes: transitions, places of type User,
and places of type State. Transitions represent the derived activities; the names
of the transitions are derived from the user comments in the CVS log 1, see Ta-
ble 1. The places of type User represent the user information; for our example,
it is the name of the user who executed the commit. The places of type State

Incremental Workflow Mining Based on Document Versioning Information 295

QA Eng. System Eng.Design Eng.

Modify Test Unit Review Design

Design : Doc

Code : Doc

Test Results : Doc Design Review : Doc

Fig. 6. User-Oriented Model generated from Process Model

Table 2. CVS log 2

Document Revision Date Author Comment
Design 1.1 01.02.04 14:30 Design Eng. Modify Design
Code 1.1 05.02.04 12:15 Design Eng. Modify Code
Design Review 1.1 11.02.04 11:00 System Eng. Review Design
Test Results 1.1 15.02.04 19:30 Developer Test Unit

represent the current state of the system. A state is a set of records of type
User × Document; when the place is marked, this set contains the documents
checked into the Document Versioning System and the users who executed the
commit. For example, in Fig. 5 the transition “Modify” is derived from first two
rows in Table 1, it contains two preset places: “User1” of type User with token
“Design Eng.” and “Start” of type State with token “[]” (empty list) and two
postset places: “User1” and “s1” of type State. The arcs between transitions
and places of type User go in both directions and contain the variable of type
User as inscription. For example, there are two arcs from transition “Modify”
to place “User1”, both are inscripted with the variable “u”. It means that “De-
sign Eng.” can execute the activity “Modify”. The arcs between transitions and
places of type State contain list variables and operations on them. For example,
the arc from the place “Start” to the transition “Modify” contains the variable
“list1” and the arc from “Modify” to “s1” contains the variable “list1”, concate-
nation “∧∧” and the list “[aut = u, doc = ”Design”, aut = u, doc = ”Code”]”,
which contains the information about two documents committed to the system
and the user who did it. It means that after executing “Modify” the documents
“Design” and “Code” were committed to the system by “Design Eng.”. The
order of the activities is generated according to the “Date” information of the
log.

As soon as such a model is generated, it can be transformed to the user-
oriented format using the Transformation algorithm; then it will be presented
to the user for analysis. The corresponding model, represented as a UML Activity
Diagram [20], is shown on Fig. 6.

To show the refinement of the existing model, we present the second CVS
Log, see Table 2.

From this log, the process model can be derived, using the Mining algorithm,
see Fig. 7.

296 E. Kindler, V. Rubin, and W. Schäfer

Fig. 7. Process Model generated from CVS Log 2

Fig. 8. Merged Process Model

The generated process presents additional details about the documents: in the
first process, documents “Design” and “Code” were committed simultaneously,
now we can discover the order; in the first process the document “Test Results”
was committed by user “QA Eng.”, now it is committed by “Developer”; in the
first process “Test Results” was committed earlier then “Design Review”, in the
second log – in the reverse order.

Thus, now we have a second process model that contains additional informa-
tion about the process. By means of the Merging algorithm, we can refine the
first process using the second one. Merging of the processes gives the following
information, see Fig. 8.

This model is transformed to the user-oriented format to be presented to the
end user again1, see Fig. 9.

1 Here we use Activity Diagram syntax used in UML2.0.

Incremental Workflow Mining Based on Document Versioning Information 297

System Eng.

Developer

QA Eng.Design Eng.

Modify Design Modify Code

Review Design

Design : Doc Code : Doc

Design Review : Doc

Test Results : Doc

Test Unit

Modify

Fig. 9. User-Oriented Model generated from Merged Model

By means of the merging algorithm, we discovered the alternative: the Design
Eng. executes either the “Modify” activity or “Modify Design” and “Modify
Code” activities, and the concurrency: “Review Design” and “Test Unit” activ-
ities can be parallel, additionally “Test Unit” can be executed either by “QA
Eng.” or by “Developer”.

Methodology

This section presents the methods of getting an appropriate input information
and realization of the incremental workflow mining algorithms.

Methods of working with input data must deal with execution log informa-
tion and representation of it. The main question in this context is: which kind
of methods should be used to detect document dependencies, to discover, what
documents belong to the same activity. This problem is tightly connected with
the problem of deriving the exact preconditions of the activities, described al-
ready in this section. The existence of the predefined informational model and
the policy of using the Document Versioning System in company is a prerequisite
for solving these problems.

We assume that the execution log is structured in the following way: each
record of the log refers to a document and document status, each record refers
to a person and each record has its own timestamp. Transaction-based systems,
like ERP, CRM and others, that either integrate or incorporate Document and
Version Management, usually provide such information in a form, that could be
converted to the desired one, according to the structure, defined above. Prod-
uct Data Management (PDM) Systems [21], like Teamcenter by UGS, Windchill
by PTC, SAP PDM and others, can also provide an appropriate input informa-
tion. Software Configuration Management (SCM) Systems [21], like CVS, Visual
SourceSafe by Microsoft, IBM Rational ClearCase and others, also contain the
information, sufficient for input to the incremental workflow mining algorithms.

298 E. Kindler, V. Rubin, and W. Schäfer

The timestamp in the log is used for extracting the order information. From
the information about the user either user assignment or user availability or other
useful resource information can be derived. The document status information is
necessary for understanding the object flow, changes in the states of particular
documents.

There are several types of methods, that have to be used for incremental
workflow mining, such as methods of defining the process specification, ontology
modeling of business process management concepts, model transformations and
verification of defined models.

The process specification methods include such formalisms as workflow nets
and high-level Petri Nets, which is suitable for the integration of control flow
and object flow in one specification. Some subclasses of workflow nets could be
defined for specifying the type of nets, closer related to the problem area.

For checking the soundness of the generated process and/or verification of
some rational properties appropriate techniques of analysis of Petri Nets and
verification of Petri Net systems should be used.

Ontology modeling has to define the relations between entities, used for de-
scribing the workflow process, and must incorporate different aspects of business
process management, such as Informational, Organizational and Behavioural.
Meta-modeling techniques, which could be put to the MOF/UML [22] frame-
work for more precise definitions and possibility of future implementation, can
be used here.

4 Future Work

The focus of this paper is on the motivation and some first ideas on incremental
and interactive workflow mining. The examples show that the use of information
on different aspects of the processes helps solving this problem. We are currently
working on the details and on the prototype implementation of this approach.

In future, we have to deal with such problems as deriving the preconditions
of the activities and inferring the names of the activities. Deriving the exact
preconditions of the activities is an open problem, because this information is
not available in the versioning log. By default, all the documents committed to
the system before the execution of the activity can be a precondition. Thus, for
improving the mining and getting real preconditions, we need the informational
model - the model of document dependencies. This informational model must
be given by the user as the input data for the Mining algorithm.

The other open problem is inferring the names of the activities, this informa-
tion is also not available in the versioning log. The only details about the names
can be taken from the user commit comments. Thus, for improving the mining
and getting real names of the activities, we need the conventions on the commit
comments. The comment must contain information about the real activity that
was executed, e.g. add, modify, remove. This conventions should be also given
as the input for the Mining algorithm.

If the informational model and the conventions were not given to the Mining
algorithm, we can not be sure that the Merging algorithm works correctly, since

Incremental Workflow Mining Based on Document Versioning Information 299

the processes to be merged can differ significantly. Thus, using the Document
Versioning System is not sufficient, the company must have a predefined policy.
Having this document management policy is a prerequisite for successful Mining
and Merging.

In this paper, we have used information from CVS for mining the processes.
Other systems in the area of PDM and ERP basically provide the same infor-
mation. Thus, the approach should be applicable to these areas too. In order to
ease the applicability of our implementation to the other areas, it will work on
a system-independent log format.

We are well aware of the fact that the mining algorithms need to be improved
and we think that the improvements strongly depend on the application area.
These improvements need more careful investigations, which can only be ob-
tained by case studies. Since we are interested in software engineering processes
and in particular in improving the CMM, our case studies will be in this area.

5 Conclusion

In this paper, we have presented ideas for algorithms supporting interactive work-
flow mining from different perspectives. These algorithms use data on the main
aspects of business process management: Informational, Organizational and Be-
havioural. Since the required information about the activities of the software
process is usually not available, we start with deriving this information from the
logs of the Software Configuration Management system. The example of Sect. 3
illustrates the idea of the algorithm and the benefits of this approach:

– Our approach does not need information on the existing activities; rather, we
can mine the information about activities from the versioning logs. We call
this part of our approach “activity mining”. Activity mining is not consid-
ered by classical approaches [23] since they work on logs of activities, which
requires that the activities are defined already at this stage. Our approach
works without explicitly defining activities.

– The use of the information from different aspects helps us to come up with
process models very early without having seen many logs of many process
instances. In contrast to classical approaches, which derive the dependen-
cies among activities from the order in the logs, we derive the dependencies
among the activities from the accessed documents. This allows us to imme-
diately mine a model for an activity having its context. Therefore, a model
of the process can be derived even after the first execution and we can have
a model right from the beginning. Of course, these models are incomplete
initially, but they can be interactively improved while the versioning logs are
being produced. We call this “interactive workflow mining”.

– Another mode of operation is to mine a process from the log once the exe-
cution has finished and to merge it with process models mined earlier. We
call this “incremental workflow mining”.

Altogether, this approach supports mining process models from ad-hoc ex-
ecutions without having any predefined information on them. This way, our

300 E. Kindler, V. Rubin, and W. Schäfer

approach supports increasing the repeatability of the processes, in terms of work-
flow terminology the ad-hoc processes become administrative.

In terms of the CMM, this means lifting the maturity level of some enterprise
to defined.

References

1. Paulk, M.C., Curtis, B., Beth, M., Chrissis, Weber, C.V.: Capability Maturity
Model for Software (SW-CMM). Technical Report CMU/SEI-93-TR-024, Carnegie
Mellon University, Software Engineering Institute (1993)

2. SEI Carnegie Mellon: Capability Maturity Model Integration (CMMISM), Version
1.1. Technical Report CMU/SEI-2002-TR-012, Carnegie Mellon, Software Engi-
neering Institute (2002)

3. SEI Carnegie Mellon: Process Maturity Profile. Software CMM 2004 Mid-Year Up-
date. Technical report, Carnegie Mellon University, Software Engineering Institute.
(2004)

4. Weijters, A., van der Aalst, W.: Workflow Mining: Discovering Workflow Models
from Event-Based Data. In Dousson, C., Höppner, F., Quiniou, R., eds.: Proceed-
ings of the ECAI Workshop on Knowledge Discovery and Spatial Data. (2002)
78–84

5. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice-
Hall PTR, Upper Saddle River, New Jersey, USA (1999)

6. van der Aalst, W., van Hee, K.: Workflow Management: Models, Methods, and
System. Cooperative Information Systems. The MIT Press (2002)

7. Kindler, E.: Using the Petri Net Markup Language for Exchanging Busi-
ness Processes? Potential and Limitations. In Nüttgens, M., Mendling, J.,
eds.: XML4BPM 2004, Proceedings of the 1st GI Workshop XML4BPM
– XML Interchange Formats for Business Process Management at 7th GI
Conference Modellierung 2004, Marburg Germany, March 2004, http://wi.wu-
wien.ac.at/˜mendling/XML4BPM/xml4bpm-2004-proceedings-pnml.pdf (2004)
43–60

8. van der Aalst, W., Weijters, A.: Process mining: a research agenda. Comput. Ind.
53 (2004) 231–244

9. Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based
Data. ACM Trans. Softw. Eng. Methodol. 7 (1998) 215–249

10. Mannila, H., Rusakov, D.: Decomposing event sequences into independent compo-
nents. In: V. Kumar, R. Grossman (Eds.), Proceedings of the First SIAM Confer-
ence on Data Mining, SIAM. (2001) 1–17

11. Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow
Logs. In: Proceedings of the 6th International Conference on Extending Database
Technology, Springer-Verlag (1998) 469–483

12. Herbst, J., Karagiannis, D.: An Inductive approach to the Acquisition and Adap-
tation of Workflow Models. citeseer.ist.psu.edu/herbst99inductive.html (1999)

13. Herbst, J., Karagiannis, D.: Integrating Machine Learning and Workflow Manage-
ment to Support Acquisition and Adaptation of Workflow Models. In: Proceedings
of the 9th International Workshop on Database and Expert Systems Applications,
IEEE Computer Society (1998) 745

14. Weijters, A., van der Aalst, W.: Process mining: discovering workflow models from
event-based data. In: Proceedings of the 13th Belgium-Netherlands Conference on
Artificial Intelligence (BNAIC 2001). (2001) 283–290

Incremental Workflow Mining Based on Document Versioning Information 301

15. Weijters, T., van der Aalst, W.: Rediscovering Workflow Models from Event-
Based Data. In Hoste, V., Pauw, G., eds.: Proceedings of the 11th Dutch-Belgian
Conference on Machine Learning (Benelearn 2001). (2001) 93–100

16. Schimm, G.: Process Miner - A Tool for Mining Process Schemes from Event-
Based Data. In: Proceedings of the European Conference on Logics in Artificial
Intelligence, Springer-Verlag (2002) 525–528

17. zur Muehlen, M., Rosemann, M.: Workflow-Based Process Monitoring and Con-
trolling Technical and Organizational Issues. In: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volume 6, IEEE Computer Society
(2000)

18. Fogel, K.F.: Open Source Development with CVS. Coriolis Group Books (1999)
19. van der Aalst, W.: High level Petri nets Extending classical Petri nets with

color, time and hierarchy. (http://tmitwww.tm.tue.nl/staff/wvdaalst/courses/
pm/pm.html)

20. OMG: UML 2.0 Superstructure Specification. Version 2.0 ptc/03-08-02, Object
Management Group (2003) Final Adopted Specification.

21. Dahlqvist, A.P., Asklund, U., Crnkovic, I., Hedin, A., Larsson, M., Ranby, J.,
Svensson, D.: Product Data Management and Software Configuration Management
- Similarities and Differences. (URL: citeseer.ist.psu.edu/dahlqvist01product.html)

22. OMG: Meta Object Facility (MOF) specification. Technical report, Object Man-
agement Group (2002)

23. van der Aalst, W., van Dongena, B.F., Herbst, J., Marustera, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data &
Knowledge Engineering 47 (2003) 237–267

24. Murata, T.: Petri Nets: Properties, Analysis and Applications. In: Proceedings of
the IEEE, 77(4). (1989) 541–580

25. Reisig, W., Rozenberg, G., eds. In: Lectures on Petri Nets I: Basic Models. Volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin (1998)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 302 – 316, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Framework for
Coping with Process Evolution

Brian A. Nejmeh1,2 and William E. Riddle3,4

1 Senior Partner

INSTEP Inc., Lancaster, Pennsylvania, USA
2 Associate Professor of Information Systems and Entrepreneurship,

Messiah College, Grantham, Pennsylvania, USA
nejmeh@instep.com

3 Senior Solution Architect
Solution Deployment Affiliates, Santa Fe, New Mexico, USA

4 Senior Scientist,
Fraunhofer IESE, Kaiserslautern, Germany

riddle@WmERiddle.com

Abstract. To survive, companies must rationally, rapidly and incrementally
evolve their processes in response to changes in customer desires, market pres-
sures, personnel availability and capability, business goals, and available tech-
nology as well as many other business-context factors. A Process Evolution
Dynamics Framework allows process change agents to address this critical need
by rationally describing, understanding, learning from, planning and managing
process evolution efforts in a manner that addresses rapid, unpredictable
changes to their company’s business context. The framework may be based on
an experience-based categorization of process evolution-related activities high-
lighting their collaborative maturation of a company’s process knowledge base.
In addition to clarifying and facilitating a company’s process evolution efforts,
the framework suggests several topics which should be addressed by the proc-
ess research and empirical-study communities.

1 Introduction

A company’s business, engineering and operational processes are major determiners
of the company’s success. It is through these processes that the company identifies
customer needs, develops and delivers quality products, applies leading edge tools
and techniques, competes within its market segments, demonstrates conformance to
regulatory and contractual constraints, manages its out-sourcing and sub-contracting
arrangements, and keeps its workforce up-to-date professionally. Process deficiencies
in any of these areas can lead to serious failures, including: reduced market-share, de-
creased profitability, increased time-to-market, insufficient workforce capability and
productivity, and non-effective, inefficient business performance.

To prevent problems and their potentially disastrous results, companies look to
standards to understand why their processes should have various properties, maturity
frameworks to understand what activities should be included in their processes, and
best practices to understand how the activities might best be carried out. Successfully

 A Framework for Coping with Process Evolution 303

addressing all three of these concerns assures that a company’s processes continu-
ously match the company’s needs and objectives.

Work-to-date on these why, what and how concerns has addressed several aspects
of evolving a company’s processes over time. Taken collectively, the results support
the definition of improvement game plans: carefully defined, organized and managed
sequences of process change activities. Standards – for example, ISO 9001 [1] and the
Business Standards Institute’s information integrity standard [2] – help identify goals
and requirements for an improvement game plan. Maturity models – for example, the
Carnegie Mellon Software Engineering Institute (SEISM) Capability Maturity
Model (CMM) [3] and Control Objectives for Information and related Technology
(COBIT) [4] – identify and organize key practices and, as such, support the develop-
ment of process designs and plans for process evolution via a series of staged exer-
cises. Finally, best practice definitions – for example, as provided by the work on ag-
ile methods ([5], [6]) or as collected and promoted by the IEEE Computer Society [7]
and the Project Management Institute [8] – support process improvement efforts by
facilitating the specification of detailed, concrete activities and tasks within the
processes.

As a result of a collective five decades helping companies – of many sizes and in
many industry sectors – successfully evolve their processes, the authors have found
that addressing the why, what and how concerns generally leads to “point solutions”
which, while certainly very beneficial, are quickly over-taken by events. We have
found it critical to additionally consider achieving major, long-term process evolution
through narrowly focused, overlapping process change cycles addressing changes to
business needs, constraints, requirements, and opportunities. We call this additional
concern process evolution dynamics.

Our experiences lead us to conclude that properly addressing process evolution
dynamics is the key process-related factor in assuring a company’s success. Further,
we have come to feel that: 1) the company’s context (its customer requirements, mar-
ketplace positioning, workforce capabilities, profitability targets, etc.) is the major in-
fluence on the definition and sequencing of process change cycles, and 2) this context
changes so rapidly, and often so radically, that the process evolution approach a com-
pany uses must be very flexible and adaptive. In sum: there is no “one size fits all”
process evolution approach suitable for all the contexts that a company must cope
with over time; and whatever approach is used to address a specific context must ad-
mit rapid adjustment to cope with changes to that context.

We have developed a Process Evolution Dynamics Framework to help companies
effectively, efficiently and accurately manage the dynamics of their process evolution
efforts. In this paper we focus on the framework itself, first discussing the problems it
addresses (Section 2), then describing the framework itself (Section 3), and finally
providing a case study illustrating its use to describe a process evolution effort (Sec-
tion 4). At the end of the paper, and in the context of a summary of this paper’s
content, we identify several issues and topics that require empirical study and research
(Section 5).

 Carnegie Mellon, Capability Maturity Model, CMM, and CMMI are registered in the U.S.

Patent and Trademark Office by Carnegie Mellon University.
SM SEI is a service mark of Carnegie Mellon University.

304 B.A. Nejmeh and W.E. Riddle

2 Process Evolution Problems

Many companies have found that improvement game plans lead to significant, valu-
able results. In many cases, the improvement game plans are based on the CMM ma-
turity model and move the company, step-by-step, from a primitive, ad hoc level of
capability to a superior, optimizing level. The details of a variety of these efforts, and
data demonstrating their cost-effectiveness and value, may be found in the SEI’s
Software Engineering Information Repository [http://seir.sei.cmu.edu]. Increasingly,
improvement game plan-based efforts have changed from being a strict “march” from
the ad hoc to the superior level to being more flexible and expansive by simultane-
ously addressing several levels [9], by interleaving a concern for other standards such
as BS 7799 [2] and the People Capability Maturity Model [10] [11], and by skipping
levels and shifting among maturity models [12].

Improvement game plans lead to significant process improvements, but the result-
ing processes are frequently “over-taken by events” by the time they are deployed
throughout a company. Partially, this is because deployment – production and distri-
bution of process documentation – and training can require a great deal of time. More
importantly, it is because the company’s business context can change quite rapidly
and in totally unanticipated ways. Improvement game plan approaches tend to focus
primarily upon project management and product engineering concerns. Some of the
business-context influences that they fail to address are:

− real (as opposed to perceived) customer needs,
− positioning with respect to competition in the marketplace,
− profitability and operational objectives,
− out-sourcing and sub-contracting agreement negotiations,
− available technology opportunities, and
− workforce capabilities.

A failure to attend to these contextual influences diminishes, and sometimes totally
erases, the positive effects of improvement game plans. First, improvement game
plan-based efforts tend to focus on improvement rather than maintaining the status
quo in the face of change. In industry sectors not subject to regulatory constraints or
sectors or in which companies are not required to demonstrate specific levels of capa-
bility, maintaining the status quo is often much more of a driver than is improvement.
Secondly, negative impacts frequently follow from a failure to consciously and di-
rectly address the business context and coordinate the many different, but inter-
related, streams of process evolution activities that individually address different parts
of the context. Visible symptoms of this lack of coordination include:

− redundant, duplicative, and inconsistent process descriptions; for example, process
documentation and training materials that do not reflect the introduction of new
engineering support technology,

− conflicting improvement plans; for example, training material update plans that are
“out of synch” with the company’s plans to demonstrate some desired level of
process maturity,

 A Framework for Coping with Process Evolution 305

− incomplete, inconsistent statements of requirements, needs, objectives, and con-
straints; for example, a process evolution activity specification that does not reflect
the need to effectively compete in some new market segment,

− inappropriate resource allocation decisions; for example, a failure to fund and staff
the development of workflow management support that would considerably reduce
the cost of (re-)training the company’s workforce, and

− deficient process documentation deployment; for example, the deployment of
documentation which is out-of-date or fails to address all of a process performer’s
“What should I do now?” questions.

These symptoms stem from a failure to recognize two fundamental facts about
process evolution. First, process evolution involves a variety of concurrent, inter-
related, activity streams, each focused on some theme – process definition, process
training, process appraisal, etc. – within some organizational unit – engineering, mar-
keting/sales, finance, etc. Second, these streams are complimentary and mutually
supportive.

As a result, process evolution efforts frequently fail to assure a company’s long-
term viability because the concurrent streams of activity are not coordinated, their re-
sults are inconsistent, and the streams do not effectively support each other. Exacer-
bating the situation is the fact that a noticeable lack of positive results frequently leads
to a reduced resource allocation which, of course, only further diminishes the effect
and value of the process evolution efforts.

To summarize:

− improvement game plans do provide valuable, cost-effective results,
− the impact of these results is often diminished because the business context

changes before the results can be fully implemented,
− effective process evolution requires concentrated, broad-scope attention to the

company’s business context, and
− effective process evolution requires well-coordinated attention to several conceptu-

ally different, but highly inter-related, themes each of which is attempting to cope
with changes to some part of the context.

3 Process Evolution Framework

We have developed a Process Evolution Dynamics Framework that allows a com-
pany’s process change agents to describe, understand, learn from, plan and manage
process evolution efforts. The basis for the framework is to recognize that each theme
is addressed by a focused stream of activities and that there is extensive, complex in-
ter-stream interaction. The framework’s basic intent is to allow the activity streams,
as well as the interactions among them, to be separately and concretely specified.

3.1 Framework Objectives

After actively participating in more than a dozen process evolution efforts, and
reviewing reports and detailed records from more than a dozen others, we have found

306 B.A. Nejmeh and W.E. Riddle

that: 1) most efforts – including the best planned ones – appear to be somewhat cha-
otic in nature, 2) there is always an order underlying the apparent chaos, and 3) this
underlying order may be articulated in terms of interacting streams of activities be-
longing to one of twelve activity categories (described in the next Section)..

We have found that these activity categories are pertinent to both long-term efforts,
lasting one or more years, and short-term ones, lasting only a few weeks or months.
We have also found they are not only pertinent to process evolution efforts guided by
well-defined plans but also to efforts that are relatively unplanned and unmanaged.
Finally, we have found that the activity categories are pertinent to processes that gov-
ern a company’s large-scale, engineering efforts – for example, its software develop-
ment and maintenance processes – as well as to its more narrowly-focused, opera-
tional procedures – for example, its travel-reimbursement and report-production
processes. We feel these activities form a “basis set” for process evolution – all proc-
ess evolution efforts are comprised of a (perhaps complex) combination of activities,
each belonging to one of the activity categories; no process evolution efforts involve
activities which do not belong to one of the categories.

The purpose of the framework is to allow the “orderly chaos” underlying process
evolution efforts to be clearly and succinctly articulated in terms of the twelve activity
categories. One objective is to allow process change agents to discover and unambi-
guously describe complex, apparently chaotic, process evolution efforts. A second is
to allow the change agents to transcend the details and gain a “higher level” under-
standing of “What happened?” A third objective is to allow the change agents to iden-
tify lessons learned and guidance that may positively affect the company’s future
process evolution efforts. The fourth and final objective is to allow the change agents
to successfully plan and manage future process evolution efforts.

3.2 Process Evolution Dynamics Framework

The framework is depicted in Figure 1 using a “flower-petal” notation – first sug-
gested by Kouichi Kishida [13] – to connote that the activities may be carried out in
an arbitrary order but are sequenced according to how they use and produce process-
related information. Twelve activity categories comprise the core of the Process Evo-
lution Dynamics Framework. Each category has specific objectives which contribute
to meeting the goals of four process evolution stages. Each also involves the accumu-
lation and maturation of three categorically different kinds of process-related informa-
tion. In the following, we first discuss the stages, then the three kinds of process-
related information, and finally the activity categories themselves.

Process Evolution Stages. Several models have been developed to characterize
improvement efforts. One is Shewhart’s Plan-Do-Study-Act (PDSA) statistical qual-
ity-control model [14] underlying Deming’s work on quality improvement [15]. An-
other is the QIP software engineering-oriented improvement model [16]. A third is the
IDEAL software development process-improvement model [17]. The Process Evolu-
tion Dynamics Framework is based on an improvement model that mirrors She

 A Framework for Coping with Process Evolution 307

Fig. 1. Process Evolution Dynamics Framework

whart’s model, simplifies the QIP and IDEAL models, and focuses on the activities
occurring during process evolution. It has four stages:

scope. The goal during this stage is to establish a process evolution effort’s context,
requirements, progress-related metrics and plan.

define. During this stage, the goal is to develop descriptions of the processes that
should be used and assure that they, and their descriptions, are complete, consistent
and accurate.

perform. During this stage, the goal is to gather use-based qualitative and quantitative
information about the quality of the processes and their descriptions.

review. The goal during this stage is to demonstrate process suitability and prepare for
any future process evolution required to correct any failings that are discovered.

Process Evolution Repository. During a process evolution effort, the activities each
use, modify and produce information relevant to some aspect of the processes being
evolved or their performance. Over time, this information becomes a repository of all
that is known about the company’s processes and their effective, efficient, accurate
performance. Also over time, the repository accumulates and organizes information

308 B.A. Nejmeh and W.E. Riddle

about all of the versions and variants of the processes that have been used in actual
projects1. The repository is, in essence, a corporate process knowledge base.

Conceptually, the repository is composed of three (logically distinct) databases,
each holding a categorically different kind of information:

− a Process Information database holding process descriptions expressed, rigorously,
in terms of process elements (activities, roles, conditions, etc.) and their inter-
relationships,

− a Resource Information database holding assets (templates, checklists, policies,
etc.) supporting process performance, and

− a Project Information database holding specific work products (designs, meeting
minutes, white papers, etc.) produced during the course of a specific project.

The repository contains one Process Information database holding information about
all of its process sets, several Resource Information databases each pertaining to col-
lection of highly inter-related process sets, and many Project Information databases,
one for each of the projects being conducted by the company.

Process Evolution Activity Categories. The twelve activity categories are depicted
in Figure 1. Collectively, activities falling into these categories serve to complete and
mature the information held in the repository. Individually, the activities use, modify
and produce information held in the repository in order to satisfy specific objectives.

Gather. Activities in this category establish requirements for a process evolution ef-
fort – and the processes it will address – and collect information facilitating process
performance. The objective is to find, filter and organize information that impacts the
company’s processes (e.g., regulatory constraints or budget/personnel-availability
constraints) and their evolution (e.g., maturation frameworks), or can be used to sup-
port performance of the processes resulting from the process evolution effort (e.g.,
templates, checklist or best-practice specifications).

Plan. These activities develop plans for a process evolution effort and define the crite-
ria used to measure progress and success. The objective is to define process require-
ments, measurable evolution objectives, and a manageable plan for the process evolu-
tion effort.

Capture. These activities gather and organize information about the company’s
should-be processes — the processes as they are currently specified. The objective is
to establish a process architecture2 and use it to organize and record the definition of
the company’s processes.

1 By project we do not mean merely the projects a company uses to organize and track its

work, the productivity of its workforce, its profitability, etc. A project may be formally
commissioned and actively managed, for example, a project commissioned to develop a new
version of a product. Alternatively, it may be neither formally commissioned – for example
the “project” by which employees trade information about their experiences in carrying out
their work – nor fully, actively managed – for example, the “project” by which a team col-
laboratively produces the company’s Annual Financial Report.

2 A process architecture specifies a set of process element types (for example, a role process
element type) as well as formalisms for rigorously specifying process elements and relation-
ships among them [18].

 A Framework for Coping with Process Evolution 309

Elicit. These activities gather and organize information about the company’s as-is
processes, the processes actually being performed. The objective is to understand how
process performers carry out the processes in practice, how the processes have been
tailored and customized, and the workforce’s individual and collective thoughts about
possible changes.

Design. These activities specify the company’s to-be processes — the processes the
company wishes to use in the future. The objective is to define processes that conform
to constraints, utilize the identified process performance resources, and reflect the
workforces' experiences and expertise.

Analyze. These activities focus on the completeness, consistency and suitability of the
processes and their descriptions. The objective is to analyze the processes and process
descriptions to identify errors or anomalies (i.e., aspects of the processes or their de-
scriptions that might be errors) and make appropriate change requests or suggestions.

Deploy. These activities disseminate descriptions of the processes throughout the
company. The objective is to deliver new or revised process descriptions, help on-
going projects migrate to the processes as required and feasible, and gather informa-
tion regarding the ease or difficulty of introducing the processes within the company.

Train. These activities provide on-the-job and course-based process education and
training to new hires and the current work force. The objective is to establish the
workforce's ability to accurately, effectively and efficiently carry out the processes.

Perform. These activities concern accurately, effectively and efficiently performing
the processes during a project. Support for assuring process performance accuracy, ef-
fectiveness and efficiency may be provided by dedicated personnel ("process men-
tors") or electronically (i.e., via process enactment support). With respect to process
evolution, the objective is to adapt the company’s generic processes to a project's spe-
cific needs, gather qualitative process performance-related information, and reveal,
through actual use, any problems with the processes and their documentation.

Monitor. These activities track process performance. With respect to process evolu-
tion, the objective is to obtain quantitative, longitudinal data about the performance of
the process over many projects.

Audit. These activities involve reviewing the processes, and their performance, with
respect to requirements levied by standards and maturity frameworks. The objective is
to assess conformance to regulatory or contractual constraints.

Examine. These activities analyze and organize feedback from the other activities.
The objective is to develop a prioritized list of potential process changes with an indi-
cation of their criticality, update current resources, and gather new resources resulting
from use of the processes.

4 Example Framework Application

To illustrate how the Process Evolution Dynamics Framework may be used to de-
scribe the order underlying the (apparent) chaos of a process evolution effort, we

310 B.A. Nejmeh and W.E. Riddle

provide a case study followed by a brief discussion of what it reveals about using the
framework for describing process evolution efforts.

4.1 Case Study

A multi-national manufacturer has developed a set of processes governing the “birth-
to-death” design, marketing, development, delivery and maintenance of their prod-
ucts’ software components. Their products are subject to regulatory constraints levied
by a Governmental organization. To date, they have been appraised at CMM Level II
and wish to move to Level III. Prior to a Level III-oriented appraisal, they will be au-
dited with respect to the regulatory constraints. Their processes are described in sev-
eral Word documents, one per set of highly inter-related processes, for example, one
document for their three different kinds of Peer Review processes and one for their
Requirements Management processes. They are aware of many problems in their
process documentation, ranging from simple inconsistencies (e.g., different role
names in different documents) to process-logic errors (e.g., work products not
produced before they are needed) to incompatibilities across their process sets (e.g.,
inconsistent definitions of the interfaces between processes in different sets). In addi-
tion, they are finding that manual maintenance of the documents is not only increas-
ingly error prone but also starting to consume so much time that deployment of new
versions can not be accomplished in a timely manner. Finally, they have received sev-
eral requests for views better satisfying process performer needs (e.g., a table that re-
flects document production/usage by activities) and have recognized the need to pro-
vide views that support non-performance needs (e.g., views supporting workforce
training, conformance audits and capability appraisals).

Evolution Effort Scope. The company’s Software Engineering Process Group
(SEPG) decides to focus on their software development processes and simultaneously
prepare for their regulatory-constraint audit and Level III appraisal, correct the noted
inconsistencies and errors, move from their Word-based documentation to Web-
Guides3, and include new process performance-related views as much as possible.
They consciously decide to delay work on related processes, for example, process
training and process documentation-deployment processes; before evolving these
other processes, they plan to gain experience through performing them in the context
of evolving the software development processes. Additionally, they consciously
decide to delay producing audit- or appraisal-oriented views; again, they plan to use
experience during the upcoming audit and appraisal to guide development of these
views.

Evolution Effort Goals. The SEPG launches a process evolution effort having the
following goals:

• G1: Update all of the company’s software development processes in preparation
for the upcoming audit and appraisal.

3 By Web-Guide we mean process documentation web-sites developed using applications such

as Dreamweaver [19], iNotion [20], Spearmint/PMC [21], and IRIS [22].

 A Framework for Coping with Process Evolution 311

• G2: Correct errors and inconsistencies noted to date as well as problems and incon-
sistencies uncovered by several levels of review (by the SEPG itself, by personnel
from various divisions invited to review the new processes, and by the workforce
in general).

• G3: Convert the company’s software process documentation to WebGuides to be
deployed via the company’s intra-net.

Evolution Effort Strategy. The SEPG decides to initially focus on just two of its
software process sets – Peer Review and Requirements Management. By initially
addressing more than one process set, the SEPG intends to develop a process
architecture appropriate for all of its software development processes. By
simultaneously addressing two process sets, it intends to define a reasonable approach
to evolving a process set as well as an understanding of the inter-play among the
evolution of different process sets.

After some, but perhaps not all, of the work on these two process sets has been
completed, the SEPG plans to move on to its other software development process sets
– Quality Assurance, Design and Implementation, Testing, etc. Be-
cause of time pressures, the SEPG plans to move on to addressing other process sets
as soon as they feel that their approach to working on a process set is reasonably well-
defined and stable. They are willing, in other words, to forego achieving a perfect
process set evolution process in favor of achieving a reasonable process that may have
to, itself, evolve over time.

Process Set Evolution Cycle. With respect to a process set, the SEPG plans to evolve
its processes using a highly iterative steam of activities. This activity stream is
described in the following and depicted, in terms of the framework’s activity
categories, in Figure 2.

Fig. 2. Process Set Evolution Cycle

312 B.A. Nejmeh and W.E. Riddle

1. Define a process architecture pertinent to the process set’s processes.
2. Capture the information in existing Word documentation.
3. Generate an example Web-Guide and review it to validate the process architecture

and the Web-Guide look-and-feel.

Iterate activities 1-through-3 as necessary.

4. Improve the process definitions and correct errors and inconsistencies noted to
date.

5. Generate Web-Guides and have the SEPG use them to identify errors and incon-
sistencies in the processes and process descriptions.

Iterate activities 4-through-5 as necessary.
Iterate activities 1, 3-through-5 as necessary.

6. Deploy a test version of the Web-Guides for review by a select group of personnel
with respect to the suitability of the processes in the process set.

7. Analyze the feedback from the review and identify issues that need to be ad-
dressed

Iterate activities 4-through-7 as necessary.
Iterate activities 1, 3-through-7 as necessary.

8. Assure that the processes, and their Web-Guides, are ready for deployment
throughout the company.

9. Deploy Web-Guides throughout the company.
10. Tailor the processes to meet the needs of specific projects and the abilities and ex-

periences of project personnel, noting not only the changes needed to tailor the
processes but also any errors and inconsistencies in the processes or the Web-
Guides.

Iterate activities 4-through-10 as necessary.
Iterate activities 1, 3-through-10 as necessary.

Cycle-to-cycle Influences. The SEPG recognizes that changes to the processes within
one process set will influence the changes needed to the processes in another process
set. It plans to use changes to Requirements Management processes to understand
the changes that might be needed to the Peer Review processes, and vice versa. It
plans to address this cross-cycle influence by developing and evolving, through ex-
perience, a process for managing inter-process interfaces. The SEPG recognizes that
this introduces a “broader scope” activity stream that coordinates changes across mul-
tiple process set evolution cycles.

Completion. The SEPG plans to incrementally increase the scope of its attention to
all of the software development processes. At the beginning of its work, it has little to
no knowledge of when it can start to “move on” to other process sets. It plans to con-
tinuously reflect on the results achieved to date to decide whether or not the process
architecture and Process Set Evolution Cycle are ready to be used for addressing addi-
tional process sets. It recognizes that work on additional process sets may lead to
changes to the processes addressed to date. It plans to address this by gradually ex-
panding the scope of the process-to-process interface definition process. It recognizes
that this introduces yet another activity stream.

 A Framework for Coping with Process Evolution 313

4.2 Case Study Discussion

The case study indicates that the evolution of a process set may be described as a
stream of activities, each falling into one of the activity categories. Mapping the ac-
tivities to the categories highlights the activities’ objectives by indicating the informa-
tion they may use and should produce. It also highlights the information flow con-
straints that order activity performance; while the activity stream is defined as if the
activities are performed sequentially, they may, in actuality, proceed concurrently
with the flow of information introducing any necessary ordering. Finally, it highlights
the kinds of activities which have not been included thereby helping the SEPG under-
stand potential failings in its Process Set Evolution Cycle.

The case study indicates that additional activity streams will be needed to handle
the evolution of non software development-related process sets (e.g., the Interface
Definition process set). The Process Set Evolution Cycle defined above could be
used to evolve these other process sets. In all likelihood, however, these activity
streams would be different, if only because they are carried out by other personnel
and are conducted in other timeframes. These activity streams could be described and
mapped to the Process Evolution Dynamics Framework’s activity categories; because
of length restrictions, these descriptions and mappings are not included in this paper.

As explained in the case study, the process evolution effort appears to be rather or-
derly. This, in part, demonstrates that the framework allows the “order underlying the
chaos” to be described. Further demonstration comes from considering that:

− in every Process Evolution Cycle, ten activities are iteratively and concurrently
performed with synchronization being effected by information flow,

− the company that is the subject of this case study has 14 software development-
related process sets and many other process sets (for example, their Conformance
Audit, Capability Appraisal, and Process Training process sets), and

− there will be a process governing the interactions among the Process Set Evolution
Cycles for the software development-related process sets as well as other process
sets to address the interactions between these cycles and cycles for other, non soft-
ware development-related, processes.

In short, there will be hundreds of activities all proceeding concurrently but ordered
by well-defined rules for information flow. The overall effort will, without a doubt,
appear to be chaotic; but there is an underlying order and this can be exposed by using
the Process Evolution Dynamics Framework.

5 Summary and Future Work

We have defined a Process Evolution Dynamics Framework we believe facilitates ra-
tional, rapid, incremental process evolution in response to changes to customer de-
sires, marketplace structure, personnel availability and capability, business goals, and
available technology as well as many other business-context factors. We believe that
the framework fosters the business context-oriented co-evolution of a company’s
processes – by achieving major, long-term process evolution through narrowly fo-
cused, overlapping process change cycles – and that this has several key advantages:

314 B.A. Nejmeh and W.E. Riddle

− maintain management attention and support in times of resource restrictions,
− provide the value and pertinence demonstrations needed to gain personnel support,
− match the pace of current-day marketplace, business-need, workforce and technol-

ogy changes, and
− gather the lessons-learned experience and process-performer insights needed to

make valuable additional changes.

The framework is based on a categorization of process evolution-related activities
that we have found, through experience, to be critical and fundamental. The frame-
work identifies the activity categories and highlights their inter-dependencies in terms
of their collective, collaborative maturation of a company’s process knowledge base.

In this paper, we have rationalized and defined the framework and provided a case
study illustrating its use to describe process evolution efforts. We have also alluded to
additional work [23] in which we have found that the framework may also be used to
help process change agents understand, learn from, plan and manage process evolu-
tion efforts. This additional work addresses several topics we feel warrant the atten-
tion of the process research and empirical study communities. These topics include:

− Empirical Studies: Develop empirical evidence that the framework reflects a broad
spectrum of actual situations and leads to process evolution issue resolutions that
are better than those achieved through improvement game plans.

− Process Evolution Understanding: Develop visualizations allowing process change
agents to transcend the detailed descriptions such as depicted in Figure 2 and ar-
ticulate lessons-learned, experience reports and guidance that may be considered
for incorporation into the company’s processes during future process evolution ef-
forts.

− Process Evolution Planning: Define a process evolution planning process providing
guidelines and scenarios based on various process evolution contextual parameters
and drivers suggested by the framework.

− Process Evolution Process Evaluation: Use the framework to identify factors and
measures useful in evaluating alternative process evolution approaches with re-
spect to efficiency, effectiveness and value.

− Process Evolution Tool Suite Selection: Use the framework to identify factors and
measures useful in comparatively evaluating commercial and research-prototype
tools suites supporting process evolution.

Acknowledgements

This work has been influenced – directly and indirectly – through the authors’ col-
laborations with many people in many organizations including: University of Michi-
gan, Software Design & Analysis Inc., Fraunhofer Institute for Experimental Software
Engineering, Software Engineering Institute, and TeraQuest Metrics Inc. People at
these organizations who have had a major impact include: Dave Barstow, Fabio Bella,
Marc Kellner, Beth Layman, Jürgen Münch, Alexis Ocampo, Don Oxley, Dick Phil-
lips, John Sayler, Henry Schneider, Joyce Statz, Ian Thomas and Lyn Uzzle.

 A Framework for Coping with Process Evolution 315

References

1. International Standards Organization (ISO), Quality Management Systems: Requirements,
ISO 9001 (International Standards Organization, Geneva, Switzerland).

2. Information Security Management – Specification for Information Security Management
Systems, BS 7799-2 (Business Standards Institution (BSI) Group, London, United King-
dom, 2002).

3. Capability Maturity Model for Software, Version.1.1, CMU/SEI-93-TR-024, ADA 263403
(Carnegie Mellon University, Software Engineering Institute, Pittsburgh, Pennsylvania,
1993).

4. Control Objectives for Information and related Technology (COBIT) – Release 3.1 (Infor-
mation Systems Audit and Control Association, Rolling Meadows, Illinois, 2004).

5. P. Abrahamsson, O. Salo, J. Ronkainen and J. Warsta, Agile Software Development
Methods: Review and Analysis, VTT Publications 478 (VTT Technical Research Centre
of Finland, Vuorimiehentie, Finland, 2002).

6. J. Highsmith and A. Cockburn, Agile Software Development: The Business of Innovation,
IEEE Computer (September, 2001), pp. 120-122 (IEEE Computer Society Press, Los
Alamitos, California).

7. IEEE Software Engineering Standards Collection, CD-ROM (IEEE Computer Society
Press, Los Alamitos, California, 2003).

8. A Guide to the Project Management Body of Knowledge (PMBOK® Guide) (Project Man-
agement Institute (PMI), Newtown Square, Pennsylvania, 2000).

9. P. Ferguson, G. Leman, P. Perini, S. Renner and G. Seshagiri, Software Process Improve-
ment Works!, CMU/SEI-99-TR-027, ESC-TR-99-026 (Carnegie Mellon University, Soft-
ware Engineering Institute, Pittsburgh, Pennsylvania, 2002, November 1999).

10. B. Curtis, B. Hefley and S. Miller, People Capability Maturity Model (Addison-Wesley
Publishing Co., Boston, Massachusetts, 2001).

11. V. Subramanyam, S. Deb, P. Krishnaswamy and R. Ghosh, An Integrated Approach to
Software Process Improvement at Wipro Technologies: veloci-Q, CMU/SEI-2004-TR-006
(Carnegie Mellon University, Software Engineering Institute, Pittsburgh, Pennsylvania,
2004).

12. R. Nichols and C. Connaughton, Software Process Improvement Journey: IBM Australia
Application Management Services, CMU/SEI-2005-TE-002 (Carnegie Mellon Univer-
sity, Software Engineering Institute, Pittsburgh, Pennsylvania, March 2005).

13. K. Kishida, Informal Remarks during the Second International Software Process Work-
shop, Coto de Caza, California, March 1985, Software Engineering Notes (August 1986),
(ACM, New York, New York).

14. Walter A. Shewhart. Economic Control of Quality of Manufactured Product (Original
Publication: 1931) (Re-issue Edition: American Society for Quality, Milwaukee, Wiscon-
sin, December 1980).

15. E. Deming, Out of the Crisis (MIT Center for Advanced Engineering Study, Cambridge,
Massachusetts, 1986).

16. V. Basili, G. Caldiera, and D. Rombach. The Experience Factory. Encyclopedia of Soft-
ware Engineering Vol. 1, J. Marciniak (ed), pp. 469-476 (John Wiley & Sons Inc., Hobo-
ken, New Jersey, 1994).

17. R. McFeeley, IDEAL: A User’s Guide for Software Process Improvement, CMU/SEI-
1996-HB-001 (Carnegie Mellon University, Software Engineering Institute, Pittsburgh,
Pennsylvania, 1996).

18. W. Riddle. Coping with Process Specification. Proceedings 2003 Integrated Design and
Process Technology Conference, IDPT-2003, Austin, Texas, December 2003 (Society for
Design and Process Technology, Austin, Texas).

19. Dreamweaver. macromedia, San Francisco, California.

316 B.A. Nejmeh and W.E. Riddle

20. iNotion. I-Logix, Andover, Massachusetts.
21. Spearmint/PMC Tool Suites. Fraunhofer Institut Experimentelles Software Engineering,

Kaiserslautern, Germany.
22. IRIS. Osellus, Toronto, Canada.
23. B. Nejmeh and W. Riddle. Coping with Process Evolution, Technical Report 2005-01 (So-

lution Deployment Affiliates, Santa Fe, New Mexico, in progress).

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 317 – 331, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Software Process Management: Practices in China*

Qing Wang1 and Mingshu Li1,2

1 Lab for Internet Software Technologies,
Institute of Software, Chinese Academy of Sciences,

No 4, South Fourth Street, Zhong Guan Cun, P.O. Box 8718, Beijing 10 00 80, China
2 State Key Lab of Computer Science,

Institute of Software at Chinese Academy of Sciences,
No 4, South Fourth Street, Zhong Guan Cun, P.O. Box 8718, Beijing 10 00 80, China

wq@itechs.iscas.ac.cn, lms@admin.iscas.ac.cn

Abstract. Software process management has been proven a useful means to
help software organizations improve their development processes and produce
high quality products. It focuses on providing process-related products and ser-
vices to software developer. Chinese software industry is developing rapidly.
Effective software process methods, technology and tools that help them pro-
duce quality products while reducing the costs are in desperate need. This paper
discusses the current state of project management in Chinese software compa-
nies and presents a solution and practices meeting this need.

1 Introduction

Software engineering is an engineering discipline with goal of ensuring the software
development and production under the cost control, schedule prediction and quality
achievement [1].

Software engineering concerned with all aspects of software life cycle from the
early stages of requirement analysis to system maintenance. Since the concept of
software crises was first defined in 1970’s, software engineering has been evolved
and extended into a variety of directions and areas by researchers and practitioners,
trying to eventually solve the problem. Though numerous achievements have been
made, the expected objective is far away from coming true. From 1980s, the software
process technology began to attract people’s attention. It tries to use well defined
processes to plan and control the development activities of software, the necessary
visibility out of development team is provided and the shared vision of project in
organization is established and maintained, to ensure the software relative products
are delivered under budget, on schedule and satisfying the custom’s need [2].

Software process technology adopts many successful process methods and tech-
nologies from manufacturing industry. It also follows the commonly principle of
modern quality management concepts [3], such as customer focus, decision making

* Supported by the National Natural Science Foundation of China under grant Nos. 60473060,

60273026 as well as the Hi-Tech Research and Development Program (863 Program) of
China under grant Nos. 2004AA112080, 2005AA113140.

318 Q. Wang and M. Li

based on actual project situation data and reasonable analysis, and continual process
improvement.

The objective of software process management is institutionalizing the activities of
software development with process method [4], performing these activities under
plan, with clearly identified objectives and shared vision, and finally delivering cus-
tom satisfactory products. The essential problems that the software process manage-
ment must solve are software estimate, project and process planning, project monitor-
ing and control, performance evaluating [5], and continual process improvement.

Chinese Academy of Science (ISCAS) has been focusing its research on the area of
software process methods and technology since late 1990’s. According to practices,
it’s appeared that the elements that affect products quality are people, technique and
management. The three dimension’s elements should be integrated to provide service
for software processes. And then lead to improve process and promote technique
compliantly. Based on these ideas, ISCAS provide a solution for software process
management. This solution abstract the primary problem of software quality man-
agement, software development technique and people services supporting, address to
help software organization develop and manage their software projects more effec-
tively. The solution around software lifecycle, support primary software development
activities from requirement elicit, implementation to testing and delivery, as well as
the quality management activities, such as process definition, project planning and
tracking, quality review and audit, process data and asset assembling, measurement
and analyzing. Some supporting activities, such as training, knowledge information
service, agreement review and monitor are included too. A powerful framework was
constructed to integrate these research methods and a toolkit called SoftPM was de-
veloped. SoftPM provide a integrative system to help software organizations develop
and manage their projects under a well defined software process discipline.

2 Process Issues Within Chinese Software Industry

Nowadays, Software industry becomes the sunrising industry with the rapid develop-
ment in China. According to the statistics of Chinese Software Industry Association
(CSIA) [6], in 2003, the annual sale of information products in China is 1880 billion,
ranked the third in the world. The sale of software products among them is 160 billion
with an increase by 45.45% than 2002, among which 2.5% is from globe software
products sale. By the end of 2003, there are more 8700 software companies and more
than 620 thousands software practitioners in China. All data shows a dramatic in-
crease.

Chinese government has enacted several supportive policies and established vari-
ous funds to accelerate the development of software industry. To enhance the devel-
opment and deployment of software industry, from 2001, the national software indus-
try bases and software export bases was planed based on the excellent software parks
which have been developed from 1995. By 2004, there are 11 national software indus-
try bases, 6 national software export bases that have got assessed and approved. The
863 software incubators are sponsored by Chinese Ministry of Science and technol-
ogy with the goal of promoting software industry through technical incubation. There

 Software Process Management: Practices in China 319

 are fifteen 863 software incubators have been approved by 2004. All this provides a
very advantageous environment for the rapid development of software industry.

However, software industry in China is yet in the beginning stage. Most software
companies have their management and technique in an ad hoc style. Many companies
haven’t established the formal and appropriate process management system. To ad-
dress it, the advanced software process model must be introduced and applied compli-
ant with the Chinese situation. There are more than 100 software organizations de-
ployed CMM or CMMI by 2004, but not all of them get benefit from it in deed. Actu-
ally, the CMM/CMMI is a descriptive model in the sense that it describes essential
attributes of a software process would normally be expected to be. It does not con-
strain how the software process is implemented by an organization. The CMM/CMMI
is not prescriptive, and it does not tell an organization how to improve. In any context
in which the CMM/CMMI is applied, a reasonable interpretation of the practices
should be used. Software process improvement occurs within the context of the or-
ganization's strategic plans and business objectives, its organizational structure, the
technologies in use, its social culture, and its management system [7]. CMM/CMMI
must be appropriately interpreted when applied, solutions and tools supporting when
applied will be more helpful. In fact, the lack of method and technology for support-
ing the application of CMM/CMMI and similar standards is the bottleneck of process
improvement efforts in China.

As we said before, although some related standards and software process model,
such as CMM, ISO 9001, provide the methodology guidance to establish and main-
tain the software process, they just solve the problem of what need to do. How to do it
also needs the practices of application method and technology.

Moreover, process management is also costly. How to involve the related thing
work together, provide the way to incorporate knowledge to perform better, leverage
the resource and examine business trend? Some powerful and effective supporting
tools are required. Actually, especially in China, many software companies can not
apply ISO9000, CMM and CMMI effectively. The difficulties are: 1) software proc-
ess is also a discipline, the theory concept and primary principle should be taught and
spread, 2) the technical solution to develop software is also very important, the proc-
ess improvement must be concurrent with the appropriate technology enhancement,
otherwise they will fall in discomfiture resulted in disjoint of management and tech-
nique. The absolute and inherent essence is serious lack of the support tools and re-
lated practices. There is an urgent need of some effective tools and application prac-
tices that are compliant with Chinese nature.

In its initial phase, the software quality engineers in China are very insufficient.
Most project managers and software quality assurance people only have a rough un-
derstanding about software process technology. The lower level of applications results
in the ineffective use of the advanced methods, technologies and tools. The consulting
and practices guidance must be required to help understand and use them.

3 A Solution for Software Process Management

Research on software process technology is across a broad spectrum. The primary gen-
res are 1) addressed by the overall architecture, behavioral characteristics of processes

320 Q. Wang and M. Li

and higher level capability to fit the business and mission goals of organization,
(called macroprocess); 2) focused on precise, complete, detailed and unambiguous
definition of software processes to help human-machine synergies inherent in soft-
ware processes, (called microprocess). The trend of unifying the two ways is also
emerged. Actually, the latter provides a rigor granularity and strength of the macro
process management in the former.
And the ideology of macro man-
agement promotes the definition to
practice and effect.

Based on these, ISCAS presents a
solution for software process man-
agement that
integrates the management, tech-
nique and people which the key
elements affect the process, from
precise process modeling to macro
process control. The framework
obeys the concept of Total Quality
Management (TQM), conforms the
inherent of software process, ex-
plore a total solution for software
process management.

Our Solution has three levels, as
shown in Figure 1. The bottom level
is research work, such as the process modeling methods, measurement model, re-
quirements elicitation, knowledge management and so on. The middle level is the
integrated framework with three platform, they are:

 Platform for Quality Management – PQM
 Platform for Product Engineering – PPE
 Platform for Service Supporting – PSS

The top level is tools which are integrated in the three platforms.
The solution provides a collaborative working environment for senior managers,

project managers, developers, SQAs, customers, suppliers and so on.

The features of the solution are as follows:

 Serving for Lifecycle
 Depending on measurement
 Supporting continual process improvement
 Having an open integrated framework

3.1 Serving for Lifecycle

Our solution implemented and provided basic activities to establish and evolve the
quality of software [8] that is around whole software lifecycle, as shown in Figure 2.

As the evolving of quality in the whole lifecycle, the different technique and proc-
ess services are needed.

Fig. 1. The concept of solution

 Software Process Management: Practices in China 321

Fig. 3. Process management based on measurement

At the first, eliciting
customer’s requirement is
important. The method and
technique to support
requirement development and
management is expected. After
requirement is confirmed, the
internal quality is monitored
and controlled under the
appropriate technique solution
and process management.
Before delivering, meas-
urement and evaluation are
applied to verify and validate
the external quality and quality
in use of software products. In
addition, some services such as
training, customer, supplier and
general information are asked through the lifecycle. All above method and technique
are included and supported by our solution.

3.2 Depending on Measurement

Measurement is one of the
essential elements of
software processes. Without
measurement, it’s hard to
well understand software
process and produce high
quality product. When you
can measure and describe the
thing use numbers, you can
understand what is actually
going on.

Effective measurement can
be used to help identifying, analyzing, and solving the problems arising during the
development process, to evaluate and improve the capability maturity of processes,
and to predict the quality of process products [9], [10].

In our solution, measurement is the basis of any kind of process management, not
only for higher maturity level organizations, but for organizations at lower level.
Actually in CMMI, measurement and analysis is a basic process area was categorized
in maturity level 2. This solution presents a active measurement model for process
control and improvement [11].

In our solution, Based on appropriate measurement, software organizations can es-
tablish their standard processes and process assets reasonably and consistently, guid-
ing the development through various engineering stages such as estimate, planning,
tracking, evaluate and improvement, as shown in Figure 3.

Fig. 2. Serving for lifecycle

322 Q. Wang and M. Li

3.3 Supporting Continual Process Improvement

1930s, W. A. Shewhart presented the famous PDCA cycle for quality improvement.
By the end of 1950s, some experts in quality management like W. Ewards Deming,
Joseph Juran contributed the concept of TQC (Total Quality Control). TQC provides a
framework for the improvement of process and system, based on PDCA. Nowadays,

Table 1. The activities categorize by PDCA and mapping to CMMI

PDCA Task Basic Activities CMMI PA
1.estimate and requirement management
2.define project processes
3.project development plan

PP,
REQM,
PPQA,MA

9.define organization standard processes
10.quality assurance plan

OPF,OPD,
OPP, MA
PPQA,

Plan
P

Diagnose,
estimate
and plan-
ning

17.determine the objective of project quality
18.measurement plan
19.process performance baseline
20.indicator system for product evaluation

MA, OPP

4.task report, 5.project report
6.supplier service

PMC,
SAM,CM

Do—
D

Perform
and
monitor
the plans 11.quality report, 12.trainning service

26.customer service
27.test
28.requirement elicit

ISM, IPM
OT,PI, TS,
RD,IT,
VER,VAL

7.project data analysis MA,PPQA
QPM

13.quality data analysis
14.risk management

PPQA,RS
KM

Check
—C

Check and
evaluate
the result

21.quantitatively process control
22. process status analysis
23.quality evaluation

QPM

8.process improvement plan

15.process documents management
16.process assets management
24.process evaluation and improvement

DAR
OID,OEI

Act—
A

Analysis
and
 improve
the process
assets

25.root causal analysis and resolution CAR

Deploy the next
cycle for continual
improvement

8.process improvement plan
9.define organization standard process
19.process performance baseline
20.indicator system for product evaluation

CAR,OID,
OPF,OPD,
OPP

 Software Process Management: Practices in China 323

ISO9000, CMM/CMMI serials and ISO/IEC 15504, all are derived from the concept
from these [12].

Our solution is based on TQM and compliant with ISO9000/CMM/CMMI. We
categorize all the activities by PDCA cycle as shown in Table 1.

In table 1, each activity has a number, they are not ordered top down, but ordered
by PDCA cycle from lower level improvement to higher level’s.

When an organization sets up its process management system, each activity can be
mapped to the reference process model compliant with PDCA, such as CMM, CMMI
and ISO9000.

For example in our solution, if an organization establishes a quality system that re-
fer to CMMI, he can select the related activities depend on level of CMMI and the
mapping of CMMI and PDCA to generate the appropriate tools-support system, as
illustrated in Figure 4.

 Notes: the numbers of activities refer to Table 1.

Fig. 4. The solution mapping to CMM/CMMI

3.4 Having an Open Integrated Framework

Our solution also provides an open infrastructure. It follows the three-tier architecture
and based on J2EE, therefore it is platform-independent.

Customers can select different system software and configure the run time environ-
ment. The basic configurable system items it can be deployed on as listed in Table 2.

The solution supports software organizations establish their management system
compliant different standards and models, such as ISO 9000, CMM, CMMI and so on.

Internationalization support allows the generation of Chinese, English, Japanese
and other language version automatically with respective resource file.

324 Q. Wang and M. Li

Table 2. The system software environment for the solution

Class
Chinese Commerce

Software
International

Commerce Software
Open Source

Software

OS
Redflag Linux
Co-Create linux,
CS&S Linux

Windows XP,
Windows NT
Solaris

Redhat Linux

DBMS KingBase ES
SQL Server
Oracle Sybase

Mysql, MaxDB
PostgreSQL

Application
Servers

OnceAS,
Apusic

WebSphere
WebLogic

Tomcat

Another important feature in our solution is that it can integrate other tools
developed by the third parties. As figure 1 illustrate, the solution includes three
platforms, each platform integrated some tools, and the third party’s tools also can
be integrated here. For example, the COCOMO tools can be integrated into PQM.
These tools provide the basic activities for software process management. While
adopting the solution, customer can select different tools and configure to appropri-
ate support system compliant their capability level and/or continual improvement
objective.

4 SoftPM: A Toolkit for Software Process Management

Based on our solution, ISCAS develop a toolkit to help software organization manage
their software process which is called SoftPM.

SoftPM is a integrated system to support project managers, higher level managers,
engineers, tester, quality assurance people and other supporting people work together,
share the collected data and respective vision, understand the schedule, effort and
quality of project and communicate effectively.

Fig. 5. The three levels of SoftPM

 Software Process Management: Practices in China 325

4.1 Platform for Quality Management – PQM

PQM is the most important platform in SoftPM. It covers most process activities list
in table 1. PQM includes four tools to supports primary project and process manage-
ment activities. The four tools can be combined according to increasing process im-
provement requirement. There are three product levels with the combination of four
tools and compliant with the CMM/CMMI. Stage representation, i.e.:

 Basic project process management (compliant CMM/CMMI level 2)
 Defined process management (compliant CMM/CMMI level 3)
 Quantitatively process management

The four tools are:

 Project Management – PM
The goal of project
management is to pro-
vide a shared vision to
make the projects be-
ing developed under
appropriate visibility
and controllability,
produce quality prod-
ucts while productivity
is enhanced and cost is
reduced.

PM focuses on pro-
ject planning (such as
estimating the sched-
ule, size and risk of
project), project moni-
toring and control, improving
the efficiency of commitment
and communication, collecting
data for measurement, managing
risks and analyzing project per-
formance. PM uses Gantt view
to establish and maintain the
project plan and track the pro-
ject development progress, as
seen in Figure 6.

PM supports top-down task
decompose and resource assign.
The managers in each level just
focus on what they need to do.
He can allocate the sub-task to
lower manager and assign the related responsibility and authority. The lower man-
ager continual breaks down the task until the basic task unit, such as activities. The

Fig. 6. Project plan made by Gantte

Fig. 7. Earn value of project cost

326 Q. Wang and M. Li

basic task units execute it and collect the related actual data. These data was assem-
bled bottom-up to higher level manager and provide appropriate view.

For a given project, its process and development plan can be derived from standard
process, imported from MS-Project or dynamically defined with the graphical com-
ponent provided by PAL. PM also support multi-level project controls and facilitate
large/outsourcing project management. Some necessary measure such as effort,
schedule and earn value, is also applied in PM. Figure 7 presents the earn value meas-
ure for project cost.

 Process Asset Library - PAL

PAL defines, main-
tains the organizational
standard processes and
process asset, such as
templates, historical
data, assessment data
and so on. PAL sup-
ports user define their
processes visually even
thought organization
haven’t established the
standard process yet.
All the activities of
processes could be
exported to Project
Management with
appropriate tailoring. Templates and guidelines are associated to each activity and
make developers could perform their tasks easily.

Figure 8 illustrates the graphic interface of process definition.

 Software Quality Assurance - SQA
The major function of
software quality assur-
ance is to make quality
planning (such as re-
view/audit plan, test
plan etc.), audit process
and product, analyze
quality data, issue
problem and defect,
track until them are
closed. Figure 9 illus-
trates that SoftPM was
applied to make quality
plan and deliver quality
report.

Fig. 8. Process definition

Fig. 9. Quality plan and assurance

 Software Process Management: Practices in China 327

 Measurement and Analysis - MA
Measurement and Analysis provides an open infrastructure to support organization to
binding the measurement activities with the expect process quantitative management
objectives. In MA a well–defined structure will be integrated into PM to enable data
collection from project management activities easily. When an organization achieves
high level maturity or
capability, statistical
process control (SPC)
[13], [14] can be used
to measure and control
the performance of
selected processes or
sub-processes stability.
Figure 10 illustrates
how to select the sub-
processes and projects
under the quantitative
management and then
establish the quantita-
tive objective.

4.2 Platform for Product Engineering - PPE

The second platform in SoftPM is PPE. PPE is focused on solving the technical prob-
lems of product development, such as requirement eliciting, test, knowledge man-
agement to support the product development.

Currently, PPE includes four tools to support some engineering activities in soft-
ware process. They are UDCORE (User-driven Domain-specific Component-based
Requirements Elicitation), KnowM (Knowledge Management), TFrame(Test Frame-
work) and SPE(Software Product Evaluation).

4.3 Platform for Service Supporting - PSS

The third platform in SoftPM is PSS, which is focused on provide customer service,
supplier service, training service and general information service.

5 Application of SoftPM in China

From 2000, the variety versions of SoftPM were released in succession. They are
SoftPM version1.0, SoftPM version 1.5, SoftPM version 2.0, SoftPM version 2.5 and
SoftPM version 2.6. All of these versions have been applied in about 100 software
relative companies. These companies provided many valuable feedback and practical
experiments. Some of them use SoftPM many years. They contribute to and get bene-
fit from each version upgrading.

Fig. 10. Establish the quantitative objective

328 Q. Wang and M. Li

Fig. 11. Measurement for effort distribution

Fig. 12. The X-chart for schedule deviation

5.1 Guidelines the Process Management and Improvement

In China, there are many software organizations applied SoftPM to establish and
improve their software process management system. SoftPM helps them define the
standard and project’s processes, establish and maintain the process assets library,
perform project management and quality assurance activities, collect the data for
measurement, measure and evaluate the status of process performing and so on.

Use SoftPM, software organizations which are rated in CMMI ML2 can define
their projects software process visually, estimate the size of software product, plan
and track the project resource, schedule, work products and quality check list with
Gantt graph, audit
and review the proc-
esses and products
quality, manage
work products con-
figuration, collect
data and measure
them for project
management and
software process
improvement. The
organizations which
are rated in CMMI
ML3 can define their
organization stan-
dard processes and
tailor to projects
software process visually, elicit, implement and manage their customer requirement and
deliver a customer satisfied products depend on our PPE and PQM platform, as well as
execute the quality management activities the CMMI ML2’s organizations executed.
The organizations which are rated in and above CMMI ML4 can establish their process
performance gradually and manage
their processes and products quan-
titatively. Figure 11 is applied
SoftPM to measure the efforts
distribution for each software de-
velopment activities.

SoftPM is not only applied to
general process management, but
also very useful to process im-
provement. Actually, quantitative
management is the foundation of
continual improvement. The key
problem of quantitative process management is to establish the baseline of process
performance. Process improvement is continually refined. The baseline is established
and optimized gradually too. We usually apply SPC for process control. But the SPC
applied must compliant the status of process. It’s obvious that only the appropriate

 Software Process Management: Practices in China 329

measurement will contribute to the organization. Unfortunately, many organizations
collect many data but hardly use it correctly. In the case, the work for data collection
is just a waste. Measurement should provide the useful information to help process
control and improvement. We ever investigate many software companies in China,
most of them don’t know how to setup the effective measurement. For example, one
of these companies wants to measure and control the schedule deviation. They used a
normal baseline and use X-chart. They get the chart as figure 12.

As the figure 12 illustrates, almost all of the data exceeds the limit. They just know
the schedule executed has some problem, but what is the reason remains unclearly. So
they don’t know how to correct and improve it.

After applied SoftPM, in this case, the process is not stable and the performance
baseline hasn’t been setup. Some other measurement algorithm such as deviation
chart is suggested. Deviation chart uses μ± to measure the deviation of sample data.
Figure 13 illustrates the schedule deviation of two teams. It can provide some valu-
able information to analyzing the causal of resulting in the deviation.

For figure 13(a), the average of schedule deviation is 0.71, which means the sched-
ule executing conform the plan in the mass. But the standard deviation is 7.97, it
means the capability of the team varies largely. The corrective action should be taken
to improve the personal process capability and team process capability. For figure
13(b), the average of deviation is 10.58, it means the schedule is always delayed about
10.58%. But the standard deviation is 0.76, it means the capability of the team is sta-
ble, and the corrective action should be taken to improve the estimate and planning.

Some companies, with the application of SoftPM, got the CMM assessment or
CMMI appraise more effectively. Hangzhou Sunyard system engineering Co. Ltd
applied SoftPM since 2002 to improve their software process. Sunyard got the as-
sessment of CMM level in Aug. 2002 and CMM level 3 in Aug. 2003. Until 2004, the
annual sale exceeds 25millions US dollars. As its report, the application of SoftPM
increases the productivity effectively, the quality of products achieved the equivalent
level of international high quality products, but the cost is reduced much more. The
benefit result from applying SoftPM is more than 1 million US dollars.

Anyway, SoftPM provide a powerful support toolkit for software organizations to
manage their process effectively. The toolkit covers CMM/CMMI Level 2-5. Ac-
cording to the feedback of customers, use SoftPM can save 35% effort of SEPG, SQA
and project managers.

a : 0.71 ±7.97 b : 10.58 ±0.76

Fig. 13. The distribution measure for schedule deviation

330 Q. Wang and M. Li

5.2 Wide Application

SoftPM has been used in many areas in China. The national software industry bases
and 863 software incubators are important mechanisms to promote the software in-
dustry development with good environment for investment, new start-ups and incu-
bating. SoftPM has been accepted and applied in 8 of 11 software bases, located
across Beijing, Shanghai, Guangdong, Xian, Chengdu, Jiangshu, Zhuhai, Changsha,
and all of the 863 software incubators. These bases and incubators attract and aggre-
gate many software companies together, especially the small and middle companies.
SoftPM was applied in more than 100 companies of them.

Some software bases and incubators applied SoftPM to establish the Common
Technology Supporting System – CTSS to serve the local software companies and
improve the process management capability and level. For example in Beijing, 863
software incubator takes the lead to apply SoftPM to establish the CTSS for Beijing
software industry in 2003. There is hundreds of software companies have became the
members of the CTSS. They access to the common process service through the
SoftPM- customization system. Additionally, they can also apply SoftPM in enter-
prise level to support the internal process management and process asset safety. In
Guangdong, the Software Park and incubator apply SoftPM to extend the resource
and capability of service to the Zhujiang river Triangle area. The application of
SoftPM improves the level of process and quality management of software companies
within the park and incubator. The average benefit increased every year of companies
within park and incubator is more than 200 million US dollars.

Besides the software companies in these software parks and incubators, SoftPM is
also applied in many large software organizations, such as Chinasoft Co. Ltd,
CS&S(China National Computer software and technology service Corporation),
Beida Jade bird and NECAS. SoftPM helps software organizations promote their
productivity, enhances the effect of process management and reduces the cost of man-
agement, cuts down the rework and improves the quality of products. The benefit
result from applying SoftPM is more than 40 millions US dollars depended on the
statistical data provided by partial software companies.

We investigated three software parks and incubators applied SoftPM from Guang-
dong, Henan and Xian. The statistical data is presented in Table 3:

Table 3. The data of benefit applied SoftPM in some software parks and incubator

National software parks
/863 software incubators

Increase Benefit Profit Tax

Guangdong 200 36 5
Henan 25 6.2 3.6
Xian 62.5 —— 7.8
Total 287.5 42.2 16.4
Notes: Unit: Million US dollar

There are another 13 national software parks and 863 software incubators. If we

use the smallest data from Table 3 (25million) as base of calculation, the total benefits
will be more than 600 million US dollars for all software parks and incubators which
use SoftPM.

 Software Process Management: Practices in China 331

6 Conclusion

Software process technologies bring the new solutions for meeting the software crisis.
Many achievement and practices have proven it is effective. Software process man-
agement is one of the primary research communities. It focuses on establishing the
institutionalized process to address the ad hoc and sightless project development. In
China, software industry has been developing rapidly. More and more new and small
or medium size software companies are emerging. All of them are in lack of mature
project management support and in desperate need of advanced and formal software
management technology to help them promote their process capability and products
quality.

This paper discussed a solution for software process management in China, and a
toolkit SoftPM implemented to support the software organizations adopt the solution.
It helps software organization take continual process improvement from immaturity to
maturity. SoftPM was applied in many software organizations in China. It has been
welcome. Moreover, our solution is also general for software process management.
It’s sure that SoftPM is suitable for the software organizations outside China too.

References

1. Lan Sommerville: Software Engineering 7th Edition, Addison Wesley Publishing Com-
pany (2004)

2. Evelyn Stiller, Cathie LeBlanc: Project-Based Software Engineering, Addison Wesley
Publishing Company (2002)

3. International Standard: ISO 9001 Quality Management System – Requirements (2000)
4. Mary Beth Chrissis, Mike Konrad, Sandy Shrum: CMMI Guidelines for Process Integra-

tion and Product Improvement, Addison Wesley Publishing Company (2004)
5. Barry Boehm, Chris A., Winsor B. Sunita C. Bradford K. C., Ellis H., Ray M., Donald R.,

Bert S.: Software Cost Estimation with COCOMO II, Prentice-Hall, Inc (2000)
6. China Software Industry Association: Annual Report of China Software Industry (2004)
7. Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, Charles V. Weber: Capability Maturity

ModelSM for Software, Version 1.1,Technical Report, CMU/SEI-93-TR-024, ESC-TR-93-
177 (February 1993)

8. International Standard: ISO/IEC 9126-1 Software Engineering – Product Quality - Part1:
Quality Model (2001)

9. Jim Lawler, Barbara Kitchenham: Measurement Modeling Technology, IEEE Software,
Vol.20 No.3 (May/June 2003) 68-75

10. Stephen H. Kan: Metrics and Models in Software Quality Engineering 2nd Edition, Addi-
son Wesley Publishing Company (2003)

11. Qing Wang, Mingshu Li, Xia Liu, An active measurement model for software process
control and improvement. Journal of Software, Vol.16 No.3 (March 2005) 407-418

12. CMMI Product Team: Capability Maturity Model Integration, for SE/SW/IPPD/SS V1.1,
Continuous Representation, CMU/SEI-2002-TR-011,ESC-TR-2002-011 (2002)

13. William A.Florac, Anita D. Carleton, Measuring software process-Statistical process con-
trol for software process improvement, Addison Wesley Publishing Company (1999)

14. Wang Qing, Li Mingshu, Measurement of software Requirement Based on SPC, Journal of
Computer, Vol.26 No.10 (October 2003) 1312-1317

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 332 – 346, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Elements: Components of Software Process
Architectures

Jesal Bhuta1, Barry Boehm1, and Steven Meyers2

1 Center for Software Engineering, University of Southern California,
Los Angeles, California, USA

{jesal, boehm}@cse.usc.edu
2 Software Process Group,

1968 Adams Blvd, Los Angeles, California, USA
steve@softwarepg.com

Abstract. To reduce the complexity and time spent in building life cycle plans,
project managers often reuse process assets from past projects. Such impromptu
reuse is risky when the assets being reused were not created with strategies that
make it reusable. In elaborating Osterweil’s “Software Processes are Software
Too” insight, Boehm et al have expressed the duality between software
products and processes as: “If a given approach is good for software products,
then its process counterpart is good for software processes.” In this paper we
discuss the duality between product and process reuse. We propose the
development of process elements, “process counterparts to software
components,” which can be built with reusable strategies. These process
elements can then be integrated with other process elements to develop software
plans. We also present the results of an experiment that was conducted on
several projects using our approach.

1 Introduction

Building project plans from scratch can be difficult and time consuming. In order to
reduce the complexity and time spent, project managers often reuse process assets
from past projects in developing the current one. However, impromptu reuse of
process assets across different projects, similar to ad hoc product reuse, is risky and
unadvisable, especially when the process was not created with strategies that make it
reusable. Processes lacking the flexibility, quality, and maintainability for reuse are
likely to be ineffective when applied across diverse projects. This is because they may
not share common success criteria, their project context and objectives will differ, and
other project-specific assumptions may not hold. For example, a traditional waterfall
implementation for building a system using Commercial Off the Shelf (COTS)
products is likely to fail [29]; since the waterfall process, amongst other things, does
not account for frequent vendor upgrades to COTS packages [4]. Another problem
project managers’ face when planning software projects is estimating the effort and
resource for individual activities. Cost estimation models such as COCOMO [9] and
COCOTS [1] provide a project and phase level process estimate, but do not accurately
estimate the per-task effort and resource allocation. In elaborating Osterweil’s

 Process Elements: Components of Software Process Architectures 333

“Software Processes are Software Too” insight [30], Boehm et al in [16] have
expressed the duality between software products and software processes as: “If a
given approach (disciplined programming, requirement definition and validation,
reuse, risk management) is good for software products, then its process counterpart is
good for software processes.” In this paper we will discuss how this duality can be
applied between product and process reuse and its effect on plan reuse.

As with to product reuse, it is not possible to reuse entire project plans across
multiple projects given that project parameters such as available resources, project
objectives, and domain are dissimilar in different projects. However, if discrete
elements, much like software components, are built with reusable strategies it is
possible to integrate them to create software development plans used across multiple
projects. These elements, based on past experience, can provide information on the
effort and resources required to implement them. Also, each element will provide
value to the overall project by reducing risk, increasing the probability of success, and
improving the projects visibility. In this paper we will define and describe “Process
Elements”, a component counterpart of process architectures. Additionally we show
how one can build and use process elements within an organization.

The next section will provide background and related work; section 3 will define
and discuss the process element. Section 4 provides an overview of developing and
using process elements, within an organization. Section 5 describes an experiment and
empirical results gathered during the experiment.

2 Related Work

There is a significant amount of literature that describes the building reusable product
assets and reusing them across multiple projects [19, 21, 24, 25, 26, 33, 37]. Few
researchers have however explored the possibility of developing the process
counterpart of such product assets. Tailorable fault project processes have been
developed around commercial tool suites such as the Rational Unified Process.
Similar tailorable corporate software processes have been developed and used in
response to such evaluation criteria as the Software CMM [31, 35]. Reusable process
components have also been enabled by process programming research environments
such as Little Jil [17]. Process researchers have also defined process patterns, which
describe a proven, successful approach and/or series of actions for developing
software [2, 3]. However, few have attempted to split the patterns into small discrete
parts that serve a purpose in the project [32].

In [16], authors present an open architecture for software process asset reuse. In
this paper we will extend their work so that it can be accommodated in multiple type
of projects, and project domains.

3 Process Elements Definition and Description

In [20] authors describe a Process Element simply as “a component of a process”. We
expand the definition above to “a Process Element (PE) is a group of project
activities, and/or other process elements related by logical dependencies, which when

334 J. Bhuta, B. Boehm, and S. Meyers

executed (or enacted) provides value to the project”. Process Elements, like software
components, have input and output interfaces, defined by pre-conditions and post-
conditions. Within a process element, the project activities and sub-process elements
are classified as variants and invariants. Additionally, PE’s incorporate feedback from
a knowledge base that has information on past project plans. Figure 1 shows the
overall PE interactions. In the reminder of this section we will describe each of the
interacting elements of a PE and provide an example.

Past process
activities

information

Past effort and
resource

information

Process dependencies

Project Effort and
resource estimates

Intermediate value

Pre-conditions Post-conditions

Experience Base

Variants

Invariants

Process Element

Fig. 1. Process Element Interactions

Pre-Conditions
The pre-conditions of a PE include its dependencies, i.e. artifacts and information that
it will need for execution and the project effort, schedule and/or resource estimates.
The dependencies of a PE usually include the results provided by predecessing PEs.
The effort, schedule and resource estimates are used to determine the effort and
resources of the activities and sub-process elements within the PE.

Post-Conditions
The post-conditions define the results obtained from executing a PE. These may be in
the form of abstract models, information and analysis, or simply risk reduction.
Results from one PE usually form the input or dependencies of another PE.

Process Element
As defined earlier the process element consists of a set of activities and/or sub process
elements. Both activities and sub process elements are classified as variant or
invariant. Unlike software components, which are usually treated as a black box,
process elements will most likely undergo some sort of customization to meet the
objectives of the project at hand. Variant activities are those that can be modified, and
if required even removed from the process element, without significantly impacting
the results produced by the PE. Invariant activities on the other hand, may be tweaked
but cannot be extensively modified, since upon such modification the PE can no
longer guarantee to produce the initially promised results.

Experience Base
Process elements should take into consideration the implications of past projects from
both within and outside the organization. Incorporating past project schedule, effort,

 Process Elements: Components of Software Process Architectures 335

and relationship information within the process elements will produce empirically
proven project plans. Additionally, they should also include organizational and
industry best practices. The past effort information for the process element can be
used to determine the percent of overall project effort and resources required to
implement the process element.

Process Element Example
In figure 2 we present the USC Spiral COTS-Based Application (CBA) Framework
initially published in [15]. Each block in this framework indicates a process element.
The arrows indicate the direction of data and control flow, and hence dependencies
between the process elements. Figure 3 indicates the COTS Assessment Process
Element, a sub process element of the framework.

Identify Objectives,
Constraints and

Priorities (OC&Ps)

Do Relevant COTS
Products Exist?

COTS Assessment

Tailoring Required?

Single Full-COTS solution
satisfies all OC&Ps

Yes or Unsure

Can adjust OC&Ps?No

No acceptable
COTS-Based Solution

Multiple COTS cover
all OC&Ps?Partial COTS solution best

Custom Development

NoYes

COTS Glue Code
Development

Coordinate custom
code and glue code

development

Custom Code
Development

No, Custom code
Required to satisfy

all OC&Ps

Yes

COTS Tailoring Productize, Test and
Transition

NoYes

Deploy

Deploy

Process Element

Decision/Review

No

Start

Fig. 2. USC CBA Spiral Framework

The COTS Assessment PE requires the Objectives, Constraints and Priorities
(OC&Ps) of the project. This information as seen in the framework is provided by an
earlier process element “Identify Objectives, Constraints and Priorities”. The COTS
Assessment element itself is composed of multiple variant and invariant PEs. Each of
these in turn is composed of process elements or activities. Activities within a variant
PE such as the “Market Trend Analysis” can be modified, or even removed by the
project manager, if enough market information is already known. Alternately an
invariant PE such as the “Detailed Assessment”, although it can be tweaked, should
not be modified or removed since this may significantly reduce the overall value
provided by the COTS assessment PE; in that inadequate detailed assessment may

336 J. Bhuta, B. Boehm, and S. Meyers

Artifact Invariant Project Activities or Sub Process Element

Entry points

Entry Conditions:
- Objectives,
Constraints and
Priorities (OC&Ps)

Establish
evaluation criteria,
weights; Identify
COTS candidates

Initial Filtering:
document/

literature review

Prepare for
detailed

assessment

Detailed
Assessment

Collect data and
analyze assessment

results

Market Trend Analysis

Remaining COTS candidates

Changes of COTS Vendor/Standards

Can adjust OC&Ps?

No acceptable
COTS-Based

Solution

Clear Choice?

Multiple COTS cover
all OC&Ps?

No acceptable
COTS-Based

Solution

Partial COTS
solution best

Single Full-COTS solution
satisfies all OC&Ps

COTS
Assessment
Background

(CAB)

COTS
Assessment

Process
(CAP)

COTS
Assessment

Report
(CAR)

Tailoring Required?

Variant Project Activities or Sub Process Element

Fig. 3. COTS Assessment Process Element

result in higher risk and uncertainty during final COTS selection. Upon implementing
this PE, the project will present one of the following results: no combination COTS
candidates that satisfy all OC&Ps, a single COTS product that will satisfy all OC&Ps,
or multiple COTS products that when integrated cover all OC&Ps. Implementing this
process element reduces the overall risk of the project, by providing the team
visibility into what exists or does not exist in the COTS market. The team now knows
if there is a single, combination, or no COTS product that will satisfy OC&Ps of the
project. Further if there is a combination or no COTS product that satisfy the OC&Ps
the team can identify the ones that could be renegotiated with the client. The artifacts
COTS Assessment Background (CAB), COTS Assessment Process (CAP) and COTS
Assessment Report (CAR) document the result obtained in the COTS assessment PE.

4 Developing and Using Process Elements

In the present day, if a programmer wishes to convert a string variable into an integer,
(s)he does not need to write a function to do so. Most programming languages provide
libraries that already have functions that will perform the conversion. Similarly, an
organization could provide a library of process elements to the project planners that
they can use to rapidly build project plans.

A framework for the development and use of process elements is provided in
figure 4. The figure consists of three distinct divisions. The topmost division indicates
the infrastructure required by the organization, specifically for developing process
elements. The bottom left portion indicates a project repository that stores information
about projects developed in the organization. The bottom right portion indicates the
planning activities within a single project. The developers of process elements use
information from the Project Repository to identify the prominent process elements
and patterns for the organization. They evaluate the best possible set of activities for a
specific PE and store them along with any additional contextual information and

 Process Elements: Components of Software Process Architectures 337

Adapt and
compose

Process Elements and
Patterns

Project
Planners

Process Element
Library

Evaluate
and Build

Find and
select

Plans modified to
project parameters

Individual Projects

Organization Process Element Infrastructure

Execute

Process
Element

Developers

Evaluate
and Build

Plans as executed

Identify

Project Repository
(Experience Base)

Fig. 4. Developing and Using Process Elements

examples in the process element library. The project planners find and select the PEs
from the library for their projects. They adapt and compose the PEs to build a plan
that will satisfy project parameters. When the project is completed the project plan as
executed is stored back in to the project repository for evaluation to furnish new parts
of the Process Element Library (or Experience Base as in Figure 1).

In this section we will focus on the specific activities of developing, and using
process elements. Information regarding the development of a Project Repository and
Experience Base can be found in [5].

4.1 Process Element Development

This section describes the development aspects of process elements including design
of process elements, qualities the PEs should possess for them to be reusable,
estimating the effort, and resource for each process element in a project and finally
dealing with cross-cutting concerns in the project.

4.1.1 Process Element Design
There already exists a large amount of literature for designing reusable software
components, such as the 3Cs (Concept, Content and Context) model in [37], the
commonalities-and-variabilities (C&V) approach in [22], and the “rules of threes” in
[6]. In the 3Cs model the concept of a software component is represented by an
abstract set of specification, a family of implementations represents the content, and
project parameters represent the context. Similarly, one can apply the 3Cs model to
PEs where the concept is represented by the value provided by the element, its content
is the set of activities, and effort, resource estimates, and its context is the project
parameters. The (C&V) approach is similar to the process invariants-and-variants
approach shown in Figure 3. Additionally, using the “rules of threes” process
developers can identify patterns in which these process elements occur in the project.

338 J. Bhuta, B. Boehm, and S. Meyers

An example where authors identified commonly occurring process element patterns in
COTS-based Applications is provided in [32].

4.1.2 Process Element Qualities
In [24, 25] authors propose the Ada code reuse guidelines for design-for-reuse in 4
groups, i.e. adaptability, comphrensibility, independence, and robustness. Similar to
these when building process elements, process developers should design them to have
similar qualities:

Adaptability: Unlike software product reuse where components are treated as black
box, process elements are likely to be modified to meet the specific needs of the
project. To be used it is essential that the process elements are designed to be flexible,
where a project manager can add, modify and remove the variant activities with
minimal impact on the process element.

Comphrensibility: Having a library of process elements will hardly be of any use if
the project managers do not understand what each task stands for. Even at the lowest
level project activities such as “analyze the COTS assessment results and select the
top 3 COTS products” would require some sort of explanation for managers new to
COTS-Based Systems development. Every process element and project activity must
accompany at a minimum some help information that defines:

• what the PE or activity does,
• value the PE provides,
• how can one execute it, and
• what resources are required to execute it.

Additionally, help can contain the context information about projects where the
process element has been successfully executed, and the average absolute and/or
percentage project effort required for implementing the PE.

Independence: Process elements should be independent, in that it should be possible
to reuse a single element without adopting other unrelated ones.

Robustness: Activities within process elements should be correct, and fault-tolerant
in being able to deal with discrepancies in their preconditions. An error in a process
element or its interface can have far reaching consequences encompassing multiple
projects.

4.1.3 Cost Estimation for Process Elements
Cost estimation for individual process elements over a long term requires
organization-specific calibration. Such calibration can be done using data collected
from past projects. Model-Based (System) Architecting and Software Engineering
(MBASE) and Rational Unified Process (RUP) provide phase distribution percentages
for effort and schedule in the four phases of inception, elaboration, construction, and
transition [9, 27, 34]. Similarly, one could collect information for individual process
elements, and identify their distribution in the overall project. The calibration
however will require the consideration of the project domain and the project
development method. Figure 5 [14] shows the percentage of total project effort spent
in the major effort sources of COTS-Based Application (CBA) projects for three

 Process Elements: Components of Software Process Architectures 339

different types of CBA projects as well as non-CBA projects. As we can see in the
figure, even within CBA projects there is a significant difference in distribution of
effort amongst project activities in Assessment intensive CBA (ACBA), Tailoring
intensive CBA (TCBA), and Glue-code intensive CBA (GCBA).

0%

5%

10%

15%

20%

25%

T
ea

m
In

te
ra

ct
io

n

C
O

T
S

as
se

ss
m

en
t

C
lie

nt
In

te
ra

ct
io

n

Li
fe

 C
yc

le
P

la
nn

in
g

P
ro

je
ct

 W
eb

-
si

te

T
ra

in
in

g
an

d
P

re
pa

ra
tio

n

C
O

T
S

T
ai

lo
rin

g

T
ra

ns
iti

on
an

d
S

up
po

rt

G
lu

e
C

od
e

cu
st

om
de

ve
lo

pm
en

t

Activity

E
ff

or
t

ACBA TCBA GCBA Non-CBA

Fig. 5. Comparison of COTS-Based Application and Non-COTS Effort Sources

Effort estimation for individual process elements will also depend upon project
constraints. In Schedule As Independent Variable (SAIV) projects [11], the effort and
resources allocated per process element will be calculated based upon the available
schedule. Similarly, for Cost as Independent Variable (CAIV) [18] projects’ effort
and schedule will be calculated based on available resources.

4.1.4 Cross Cutting Concerns Within Process Elements
In software applications non-functional requirements or aspects of the application, are
usually realized in more than one software product component [23, 36]. Similarly, the
various aspects of the project such as dependability, security, and quality are more
often than not realized in multiple process elements. In such cases, the value provided
by the string of process elements across the project is usually greater than the sum of
the value provided by individual process elements. An example of such realization is
shown in figure 7. The level of service aspect here encompasses multiple process
elements, in different project phases. In the inception phase the project team needs to
identify the level of service requirements, while in elaboration they are required to
prototype and identify the desired and acceptable levels of service. The level of
service aspect example here will also add project activities in the Architecting and
Design PEs in inception as well as elaboration phases.

4.2 Using Process Elements

In order to reuse software components the developers are required to [19]

• find a component,
• select a component,

340 J. Bhuta, B. Boehm, and S. Meyers

• understand the components selected, and if required
• adapt the components.

When reusing process elements the project planner will undergo a similar set of
steps.

4.2.1 Finding and Selecting Process Elements
The finding process for PEs depends upon the infrastructure set by the organization
providing them. Selection of elements will depend upon the value required by the
project, the status of the project in the life cycle, and the resources available. For
example, if the value required is defect reduction, it is recommended to add an
inspection PE, if it has to be executed early during the project life cycle. Alternately
to reduce defects late during the project life cycle, testing PE will provide better
results than inspection. This is because software inspections identify more defects
early in the project life cycle, while testing identifies more defects late in the project
life cycle. More extensive Experience Bases can provide information on which types
of defects are better found by inspection and testing PEs [10].

4.2.2 Understanding and Adapting Process Elements
Understanding process elements involves the:

- Understanding the significance of each project activity in the PE
- Understanding how each activity is related to others in the PE
- Understanding the variants and invariants of the PE, and exploring alternate

variant activities when required
- Understanding the dependencies and results of the PE
- Understanding how to execute the PE.

An in-depth understanding of the PE will enable the project planner to allocate
optimal resources to execute the process element. Additionally, it will provide the
planner with the ability to modify the process element to suit the project parameters.

4.2.3 Process Elements Within the Spiral Framework
Figure 6 shows the anchor point milestone-elaborated Win Win spiral initially
published in [15]. It returns to the original four segments of the spiral [7], and adds
stakeholders’ win-win elements in appropriate places. It also emphasizes concurrent
product and process development, verification and validation; adds priorities to
stakeholders’ identification of objectives and constraints; and includes the Life Cycle
Objective (LCO), Life Cycle Architecture (LCA), and Initial Operational Capability
(IOC) anchor point milestones [8] also adopted by the Rational Unified Process.
Figure 7 shows an instance of a hierarchical process plan for an assessment intensive
COTS-based application. It describes process elements in the phases of inception and
elaboration in details.

In the inception and elaboration phases, the plan implements the four original
segments of the spiral model, “Identify OC&Ps”, “Evaluate Alternatives with respect
to OC&Ps”, “Elaborate product and process definitions”, and “Verify and Validate

 Process Elements: Components of Software Process Architectures 341

process definitions”, in the process elements I4, I5, I6, I7, and E4, E5, E6 and E7
respectively. Additionally, it incorporates the anchor point milestones and related
activities in I8 and E8.

Fig. 6. Anchor Point Milestone-Elaborated Win Win Spiral Model

Fig. 7. Using Process Elements within the Spiral Framework

342 J. Bhuta, B. Boehm, and S. Meyers

Fig. 8. Breakup of the Detailed COTS/Technology Assessment Process Element in the MS
Project Template form

The process elements in figure 7 can be further divided into sub PEs and activities.
An example of the process element E5.2 – “Detailed COTS Assessment” in the MS-
Project template is provided in figure 8. The PE “Quality Management Review” in the
above example is a quality related crosscutting concern, which will span multiple
PEs.

5 Experiment Using Process Elements

In the fall semester of 2004 we conducted an experiment using process elements in
CSCI 577, a graduate level software engineering course. This section describes the
experiment and the results derived.

CSCI 577 focuses on the development of a software system [12], requested by a
real-world client. Over the last few years we have received requests to develop
software systems for e-services, research (medicine and software), and business
domains. Graduate students enrolled in the course form five or six person teams to
design and implement a project requested by a real-world client, over a course of 2
semesters (24 weeks). During these 24 weeks the project goes from its inception and
elaboration to construction and transition phases. The first semester involves the
inception and the elaboration phases where the students negotiate mutually
satisfactory (Win Win) OC&Ps with their clients and design a feasible solution that
will satisfy them. During this process they undergo two Architecture Review Board
(ARB) meetings where the instructors provide technical and business feedback to the
teams [8]. The first ARB is the Life Cycle Objective (LCO) review where teams
present at minimum, one feasible architecture that will satisfy the project OC&Ps. In
the second ARB – the Life Cycle Architecture (LCA) review the teams select and
present a single architecture and justify that it is feasible technically as well as from a
business perspective. Based on the reviews and client feedback, a handful of the
projects proceed to the next semester where they are built and deployed. In the second
(spring) semester, the team members are re-distributed and undergo a Rebaselined

 Process Elements: Components of Software Process Architectures 343

Life Cycle Architecture (RLCA) where the teams accommodate any additional or
modified OC&Ps since the last review in their architecture and design. The team next
moves on to the construction phase where they implement the system; first the top-
priority core system requirements, which are presented at the Core Capability Drive-
thru (CCD) and then the schedule-driven next-priority system requirements up to the
Initial Operational Capability (IOC) phase. Finally, the project moves on to the
transition phase, where the team transitions the system and any related information on
the client site. Over the life cycle of the project the teams use the MBASE guidelines
[13, 28] to guide them in the development and documentation of the success, process,
product and property models.

The experiment was conducted during the inception and elaboration phases. We
created a set of process elements for CBA and traditional (new code) projects, and
made them available in two Microsoft Project template files on the course website.
The elements were arranged in the pattern that was most commonly observed in the
course. It was completely optional for students to use these templates. At the LCO
stage, of the 17 teams in the class, 6 used a significant number of process elements
critical to their project.

The percentage grade-scores for the “Milestones and Products” section in the life
cycle plan of the project at the LCO stage are illustrated in figure 9. The scores were
produced by the course graders without knowledge of which projects used the PEs,
nor did the creators of the PEs have any involvement in the course grading. We
selected the “Milestones and Products” section of the MBASE guidelines at the LCO
stage since it provides the most information regarding the present and future plans of
the project; and by LCO project teams have had sufficient exposure to the project
planning concepts to plan ahead for the future phases. From the graph we see that
projects, which used process elements to build their plans, obtained a higher score
than projects that did not. The average percentage score of projects using process
elements was 82% as opposed to the 57% for projects that did not. A 2-group t-test on

Fig. 9. Milestone and Products section scores at LCO

344 J. Bhuta, B. Boehm, and S. Meyers

the team scores found the difference to be statistically significant. The two-tailed p
value was 0.448, while the 95% confidence interval of this difference was from 0.552
to 40.404 %. The results of the test, although not conclusive are sufficient to warrant
further research and experimentation. Of the projects that used process elements in the
graph above, projects 16 and 15 used them without any modification; project 14
significantly modified one PE; projects 13 and 9 added one additional PE and
customized one PE; and project 11 modified and used just 2 process elements critical
to their project.

While this experiment is not entirely sufficient to demonstrate that composing
process elements to build software development plans will be successful, the initial
results look promising. In the forthcoming annual series of projects we plan to
perform more extensive experiments, and measure the results over a larger project life
cycle.

6 Conclusion and Future Direction

Software reuse principles can be applied to process elements as well as product
components. Using process elements coupled with Win Win Spiral Model’s Risk
Driven approach and process patterns enabled project teams to develop better quality
software life cycle plans. In this paper we have provided an initial set of principles for
developing and composing process elements for CBA and traditional projects within
the Win-Win Spiral framework. While additional experimentation is required to
obtain more concrete conclusions, the initial results look extremely promising.
Lessons learned from the initial experiment included:

- Providing concise and clear help files along with process elements, especially
for process elements that are unfamiliar to the development teams

- Providing guidelines on the activities within process elements that can be
modified and the ones that cannot.

In the coming annual series of projects we plan on performing extensive
experiments over a larger project life cycle. We will also attempt to build models
using the COCOMO suite that will help identify the effort and resource estimates for
individual process elements. Through these increments we hope to provide project
managers with richer insights in effort and resource planning.

Acknowledgements

We would like to thank Tami Perez, Jizhe Wang and Sophia Yang for helping us in
creating materials for the experiment, and Ye Yang for her useful insights.

References

1. Abts C., Boehm B., Clark E.: COCOTS: A Software COTS-Based System (CBS) Cost
Model. Proceedings, ESCOM 2001, (2001) 1-8

2. Ambler S., McGibbon B.: Process Patterns: Building Large-Scale Systems Using Object
Technology. Cambridge University Press (1998)

 Process Elements: Components of Software Process Architectures 345

3. Ambler S., McGibbon B.: More Process Patterns: Delivering Large-Scale Systems Using
Object Technology. Cambridge University Press (1999)

4. Basili V., Boehm B.: COTS-Based Systems Top 10 List. IEEE Computer, May (2001)
91-93

5. Basili V., McGarry F.: The Experience Factory: How to Build and Run One. 19th
International Conference on Software Engineering, Boston, Massachusetts, May (1997)

6. Biggerstaff T.: Design Recovery for Maintenance and Reuse. IEEE Computer July (1989)
36-49

7. Boehm B.: A Spiral Model of Software Development and Enhancement. IEEE Computer
May (1988) 61-72

8. Boehm B.: Anchoring the Software Process. IEEE Software. July (1996) 73-82
9. Boehm B., Abts C., Brown A. W., Chulani S., Clark B., Horowitz E., Madachy R., Reifer

D., Steece B.: Software Cost Estimation with COCOMO II Prentice Hall (2000)
10. Boehm B., Basili V., "Software Defect Reduction Top-10 List," IEEE Computer Jan

(2001)
11. Boehm B., Brown A. W., Huang L., Port D.: The Schedule as Independent Variable

(SAIV) Process for Acquisition of Software-Intensive Systems. USC CSE Technical
Report Nov 2003

12. Boehm B., Egyed A., Port D., Shah A., Kwan J., Madachy R.: A stakeholder win-win
approach to software engineering education. Annals of Software Engineering Volume 6
Issue 1-4 (1998) 295 - 321

13. Boehm B., Port D., Abi-Antoun M., Egyed A.: Guidelines for the Life Cycle Objectives
(LCO) and the Life Cycle Architecture (LCA) deliverables for Model-Based Architecting
and Software Engineering (MBASE). USC CSE Technical Report (1999)

14. Boehm B., Port D., Bhuta J., Yang Y.: Not All CBS Are Created Equally: COTS Intensive
Project Types. Springer Verlag 2002, ICCBSS 2002, Feb (2003) 36-50

15. Boehm B., Port D., Yang Y., Bhuta J., Abts C.: Composable Process elements for
Developing COTS-Based Applications. Proceedings of the ACM-IEEE Symposium on
Empirical Software Engineering August (2003)

16. Boehm B., Wolf S.: An Open Architecture for Software Process Asset Reuse. Proceedings
of the 10th International Software Process Workshop (1996)

17. Cass A., Lerner B., Sutton S., McCall E., Wise A., Osterweil L.: Little-JIL/Juliette: a
process definition language and interpreter. Proceedings of the 22nd international
conference on Software engineering (2000)

18. Cost as Independent Variable (CAIV). http://www.ar.navy.mil/aosfiles/tools/turbo/topics/
u.cfm

19. Dusink L., Katwijk J.: Reuse Dimensions. Proceedings of the 1995 Symposium on
Software reusability Volume 20 (1995) 137-149

20. Feiler P., Humphrey W.: Software Process Development and Enactment: Concepts and
Definitions. Second International Conference on the Software Process (1993)

21. Gacek C., Boehm B.: Composing Components: How Does One Detect Potential
Architectural Mismatches? Proceedings of the OMG-DARPA-MCC Workshop on
Compositional Software Architectures January (1998)

22. Jacobson I., Griss M., Jonsson P.: Software Reuse. Addison Wesley (1998)
23. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier J., Irwin J.:

Aspect-oriented programming. 11th European Conference Object-Oriented Programming,
Volume 1241 of Lecture Notes in Computer Science, June (1997) 220-242

24. Kim H.: Ada Code Reuse Guidelines for Design-for-Reuse. Master's Thesis, Department
of Computer Science, University of Durham, Durham, England, U.K., June (1996)

346 J. Bhuta, B. Boehm, and S. Meyers

25. Kim H., Boldyreff C.: An approach to increasing software component reusability in Ada.
Proceedings of 1996 Ada-Europe International Conference on Reliable Software
Technologies (1996) 89-100

26. Kim H., Boldyreff C.: Software Reusability Issues in Code and Design. ACM SIGAda
Ada Letters, Volume XVII, Issue 6 (1997) 91-97

27. Kruchten P.: The Rational Unified Process: An Introduction. Addision-Wesley (1999)
28. Model-Based Systems Architecting and Software Engineering (MBASE) Guidelines,

URL: http://sunset.usc.edu/cse/pub/research/mbase/MBASE_Guidelines_v2.4.0.pdf
29. Morisio M., Seaman C., Parra A., Basili V., Kraft S., Condon S.: Investigating and

Improving a COTS-Based Software Development Process. Proceedings of the 22nd
International Conference of Software Engineering June (2000) 32-41

30. L. Osterweil: “Software Processes are Software Too,” Proceedings of 9th International
Conference of Software Engineering , ACM/IEEE, 1987

31. Paulk M.: Key practices of the capability maturity model Version 1.1. Research Access for
Software Engineering Institute (1993)

32. Port D., Yang Y.: Empirical Analysis of COTS Activity. 3rd International Conference on
COTS-Based Software Systems Feb (2004)

33. Rakic M., Medvidovic N.: Increasing the Confidence in Off-the-Shelf Components: A
Software Connector-Based Approach. Proceedings of the 2001 Symposium on Software
Reusability (2001) 11-18

34. Royce W.: Software Project Management A Unified Framework. Addision-Wesley (1998)
35. Software Engineering Institute: The Capability Maturity Model: Guidelines for Improving

the Software Process. Addison-Wesley Professional (1995)
36. Tarr P., Ossher H., Harrison W., Sutton S.: N Degrees of Separation: Multi-Dimensional

Separation of Concerns. Proceedings 21st International Conference on Software
Engineering (1999) 107-119

37. Tracz W., Edwards J.: Implementation Working Group Report. Reuse In Practice
Workshop, Software Engineering Institute

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 347 – 359, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Programming to Support Medical Safety:
A Case Study on Blood Transfusion

Lori A. Clarke1, Yao Chen1, George S. Avrunin1, Bin Chen1, Rachel Cobleigh1,
Kim Frederick1, Elizabeth A. Henneman2, and Leon J. Osterweil1

1 Department of Computer Science, University of Massachusetts
Amherst, MA 01003, USA

{clarke, yaoc, avrunin, chenbin, rcobleig,
kfrederi, ljo}@cs.umass.edu

2 School of Nursing, University of Massachusetts
Amherst, MA 01003, USA

henneman@nursing.umass.edu

Abstract. Medical errors are now recognized as a major cause of untimely
deaths or other adverse medical outcomes. To reduce the number of medical er-
rors, the Medical Safety Project at the University of Massachusetts is exploring
using a process programming language to define medical processes, a require-
ments elicitation framework for specifying important medical properties, and
finite-state verification tools to evaluate whether the process definitions adhere
to these properties. In this paper, we describe our experiences to date. Although
our findings are preliminary, we have found that defining and evaluating proc-
esses helps to detect weaknesses in these processes and leads to improved
medical processes definitions.

1 Introduction

It has been estimated that there are approximately 98,000 deaths per year in the
United States resulting from medical errors [7]. The Institute of Medicine (IOM) re-
ported that many medical errors are caused by faulty processes and conditions that
lead people to make mistakes or fail to prevent them [6]. Although the IOM advocates
using more information technology in order to help improve medical care, it does not
indicate what kinds of technology should be employed.

In the University of Massachusetts Medical Safety Project, software engineering
researchers from the Department of Computer Science have been working with re-
searchers and medical practitioners from the University of Massachusetts School of
Nursing and from Baystate Medical Center to evaluate how selected technologies
might help reduce medical errors. Although it is not possible to totally eliminate mis-
takes, it is our hypothesis that medical processes can be defined in such a way that
mistakes are less likely to occur.

Medical processes tend to be complex, concurrent, and exception-prone. They tend
to involve multiple practitioners with very different perspectives about the on-going
process. Thus, we are interested in a process language that can capture this complex-
ity yet still be understandable to a (trained) medical professional. Moreover, the proc-

348 L.A. Clarke et al.

ess language should be precise enough to support static analysis techniques and to
eventually drive simulations and executions.

To date we have experimented with using the Little-JIL process programming lan-
guage [11], the Propel property elucidation system [10], and several finite-state verifi-
cation systems, specifically LTSA [1, 9], SPIN [5], and FLAVERS [4]. In this paper
we report on our experiences using these technologies to define and evaluate a in-
patient blood transfusion process. In-patient blood transfusion plays a vital process in
modern health systems. Although in-patient blood transfusion errors are rare, when
they do occur, they can result in death and are among the most serious types of medi-
cal errors. Thus, we use in-patient blood transfusion as an example to demonstrate
how our approach is effective at improving the safety of medical processes.

The rest of this paper is organized as follows. Section 2 presents a brief overview
of the Little-JIL process programming language. Section 3 presents part of the in-
patient blood transfusion process as specified using Little-JIL. Section 4 describes
how properties are specified using Propel and the results of our analysis using finite
state verification. The final section highlights our results and discusses future work.

2 Little-JIL Features

Little-JIL is a visual language for coordinating tasks that are to be executed by either
computation or human agents. A process is defined in Little-JIL using hierarchically
decomposed steps, where a step represents some specified task to be done by the as-
signed agent. Steps may also indicate any prerequisites, postrequisites, and exception
handling behavior that should be associated with the step. Non-leaf steps, in addition
to the above, also indicate the order for processing all substeps. The language has pre-
cise enough semantics that Little-JIL programs can be executed or can serve as the
subject of careful static analysis.

To help the reader understand the blood transfusion process example, we first give
an overview of the semantics and notation of Little-JIL. For a detailed description of
Little- JIL, see the Little-JIL Language Report [11].

Steps. Steps are the basic elements of Little-JIL programs. As shown in Figure 1,
each step has a name and a set of badges to represent the control flow, exceptions
handled, prerequisites, and postrequisites. Each step need only be defined once, but
can be referenced many times. References are represented by a step with the name of
the referenced step, but with no badges. Although not shown in our examples here,
steps also can indicate the resources required, including the agent responsible for step
execution.

Step Execution. At run-time, a step can be in one of five states: posted, started, com-
pleted, terminated and retracted as shown in Figure 2. When a step is eligible to be
started, it is moved into the posted state. It is started when the agent assigned to the
step obtains the resources that it requires and begins to do the work. If the step is fin-
ished successfully, it is moved into the completed state and resources are released. If
the agent fails to complete the work, the step is moved to the terminated state. A step
is retracted if it is withdrawn from an agenda after having been posted but without be-
ing started by the agent. In the analysis phase, we often want to refer to a specific

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 349

Fig. 1. Little-JIL step icon

Fig. 2. States associated with Little-JIL step execution

state of a step. To do this, we append the state name to the name of the step. Thus,
“Transfuse_ STARTED” refers to the step “Transfuse” when it is in the started state.

Step Sequencing. Every non-leaf step has a sequencing badge, which defines the or-
der in which its substeps execute. A sequential step indicates that its substeps are to
be executed from left to right and is only successfully completed after all of its sub-
steps has successfully completed. A parallel step indicates that its substeps are to be
executed asynchronously and that it cannot be successfully completed until all of its
substeps successfully complete. A choice step allows the agent to dynamically select a
substep to execute among its substeps. A choice step is considered completed only af-
ter one of its substeps have completed. A try step indicates that its substeps are exe-
cuted from left to right until one of them has been completed. A try step is success-
fully completed only if one of its substeps successfully complete.

Exception Handling. A step in Little-JIL can throw exceptions when aspects of the
step fail. For example, if a prerequisite is not satisfied, it may indicate that an excep-
tion is to be thrown. A thrown exception is handled by a matching exception handler
associated with the parent step of the step that throws the exception or, if no such
handler is found, the exception is rethrown by the parent step.

An exception handler has an associated control-flow badge that indicates how the
step catching the exception executes after the handler finishes. There are four kinds of
control badges:

350 L.A. Clarke et al.

• continue: the step catching the exception should continue as if the substep that
throws the exception completed successfully;

• complete: the step catching the exception should be completed;
• rethrow: the step catching the exception should be terminated and the exception

rethrown to the parent of this step;
• restart: the step with the exception handler should be restarted.

Requisites. Each step may have a prerequisite and a postrequisite. Requisites provide
a way to check entry and exit conditions associated with a step. A prerequisite has to
be completed before its associated step is initiated. A postrequisite has to be com-
pleted before its associated step is completed. When a requisite cannot successfully
complete, the associated step is terminated and an exception is thrown.

Deadlines. Deadlines determine the time by which a step must be completed.
Deadlines are used to define the maximum time allowed for a certain task. If a step
continues to execute past its stated deadline, an exception is thrown.

Resources and Agents. The interface to a step specifies the resources used by the
step, where agent is a special type of resource. For example, in a medical process, the
agent might be a nurse, doctor, patient, or computer system. Each step must have an
agent; if no agent is declared, the agent is inherited from the parent step.

Diagrams. To facilitating viewing, Little-JIL programs are decomposed into
diagrams, where a diagram usually fits into a single window. Diagrams are usually
used to decompose a Little-JIL program into conceptually meaningful subprocesses.

3 In-Patient Blood Transfusion Example

We have used Little-JIL to model a real-world in-patient blood transfusion process.
This process model consists of 23 Little-JIL diagrams, comprised of about 112 steps.
In this section, we present a few of the Little-JIL in-patient blood transfusion dia-
grams to give the reader an indication of what the model looks like.

An in-patient blood transfusion process cannot start unless there is a blood transfu-
sion order from a physician. One order may require that several units of blood product
be transfused to the patient. Once the required units have been transfused, the process
completes. Figure 3 shows the top diagram of this process.1

In the root step, In-Patient Blood Transfusion Process has a prerequisite step Phy-
sician Prescribes Blood Transfusion. There is a cardinality “+” adjacent to the edge
between the In-Patient Blood Transfusion Process step and Carry Out Physician Order
for Transfusion step, which means that Carry Out Physician Order for Transfusion
will be done at least once. Since In-Patient Blood Transfusion Process is a sequential
step, instances of Carry Out Physician Order for Transfusion must be executed
sequentially. Before Carry Out Physician Order for Transfusion starts, the agent

1 In the actual In-Patient Blood Transfusion Process diagram (a modified version of which is

shown in Fig. 3), the Single-Unit Transfusion Process step is replaced by an intermediate step
called "Perform Transfusion". The Single-Unit Transfusion Process (Fig. 4) is really a sub-
step of the Perform Transfusion step. This missing intermediate step is not shown because of
space considerations.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 351

(agent assignments are not shown) must check the form signed by the patient, indicat-
ing consent for the blood transfusion. If the consent form is not signed, a NoPatient-
Consent exception will be thrown and then handled by the No Patient Consent excep-
tion handler associated with the In-Patient Blood Transfusion Process step.

Fig. 3. In-Patient Blood Transfusion Process

Since this handler is a continue exception handler, as indicated by the right arrow,
after completion of the handler, the process continues the sequential execution of the
In-Patient Blood Transfusion Process step, meaning that the “next” instance of the
Carry Out Physician Order for Transfusion step may start. If the consent form is
signed, the agent can start to execute Carry Out Physician Order for Transfusion. The
Carry Out Physician Order for Transfusion step has five substeps: Check for Exis-
tence of Type and Screen, Prepare Documentation for Blood Pick-up, Pick up Blood
from Blood Bank, Single-Unit Transfusion Process, and Follow Through Check. The
right arrow sequencing badge specifies that these substeps should be executed one by
one, from left to right. Each one of these substeps is a reference to a step defined in
another diagram, so none of these steps are elaborated in this diagram. There is a car-
dinality “+” adjacent to the edge between the Carry Out Physician Order for Transfu-
sion step and Single-Unit Transfusion Process step, which means that Single-Unit
Transfusion Process will be done once per unit of blood product.

Figure 4 shows the diagram that elaborates the Single-Unit Transfusion Process
step. According to clinical research, the most common adverse outcomes during blood
transfusions are caused by a failure to detect that an incorrect unit had been issued at
the bedside [7]. To prevent such common errors, bedside checks are recommended.
Thus, in our process definition, there are two bedside checks, Verify Patient Identifi-
cation and Product Verification. Verify Patient Identification requires that the identity
of the patient be established.

The Product Verification step definition, which is shown in Figure 5, requires a vis-
ual comparison of the information on the transfusion tag with the blood product bag. All
identifying information on the blood product, the transfusion tag, and the patient identi-
fication armband must be verified. Thus there are four substeps to be executed: Verify

S eq u en c in g B a d g es :

S eq u en tial
P a ra lle l
C h o ice
T ry

E x cep t io n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

S eq u en c in g B a d g es :

S eq u en tial
P a ra lle l
C h o ice
T ry

S eq u en c in g B a d g es :

S eq u en tial
P a ra lle l
C h o ice
T ry

E x cep t io n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

E x cep t io n B a d g es:
R eth ro w
C o n tin u e
C o m p lete
R esta rt

352 L.A. Clarke et al.

Product Tag Matched to Product Label, Check Product Expiration Date & Time, Verify
Product Tag Matched to Patient Armband, and Verify Product Type Matched to Patient
Record. Since these verification steps are independent of each other, they can be done in
any order, as indicated by the parallel sequencing badge. If any of these substeps finds a
discrepancy, a FailedProductVerification exception is thrown. This exception is re-
thrown to the handler HandleFailed Product Verification associated with the parent of
Product Verification, step Bedside Checks. This exception handler, although not shown
here, would handle this discrepancy according to hospital policy.

Fig. 4. Single-Unit Transfusion Process

Fig. 5. Product Verification Process

4 Analyzing Processes

Although we have only shown a small part of the in-patient blood transfusion process,
it is easy to see that it quickly becomes quite complex. The Little-JIL definition
tersely describes complex control flow. This is both a strength and a weakness. It is a
strength because medical professionals can understand the process definitions and
help to describe them and develop improvements to them. Moreover, the process
definition can easily be decomposed into subprocesses (e.g., diagrams) so that one’s
focus can be directed to relatively small, coherent aspects of the process. This terse-

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 353

ness is a weakness, however, because it is easy for humans to overlook or misunder-
stand some of the complex flows through the system or among subprocesses. This is
particularly true when exceptions or parallel execution can occur [2].

One way to help validate a process is to use analysis techniques to verify that im-
portant policies are not violated by the process definition. These policies can be repre-
sented as formal properties stated in terms of the states of the steps. We then apply fi-
nite-state verification techniques to determine if these properties will always hold on
all possible traces through the process. For example, for the transfusion process, pa-
tient identification on the patient’s armband must match the patient information on the
tag affixed to the blood product before that unit of blood product is transfused. If this
property does not hold for the process definition, the finite-state verification tool will
provide a counterexample trace through the system showing where at least one such
violation occurs. We can use this trace to identify and correct the error in the process
and then try to reverify the revised process definition.

In this section we first describe some of the properties that need to be verified for
the blood transfusion process and how we represented those properties and then de-
scribe what techniques we used to verify these properties.

4.1 Representing Properties

It is a surprisingly difficult task to determine the properties that should be verified. In
the medical field, policies often exist that are a starting point for these properties. Be-
low are some example policies often associated with the in-patient blood transfusion
process:

• The patient’s informed consent must be confirmed prior to carrying out a physi-

cian’s order for a blood transfusion.
• The patient’s identification must be verified immediately before obtaining each

blood specimen.
• The patient’s identification must be verified prior to administering each unit of

blood product.
• Verifying that the patient’s identification on the armband matches the patient’s

information on the tag affixed to the unit of blood product must precede adminis-
tering that unit of blood product.

• The information for the unit of blood product must be verified by two healthcare
professionals prior to administering the unit of blood product.

• The expiration date and time for the unit of blood product must be checked be-
fore starting to administer that unit of blood product.

• The patient’s status must be assessed immediately before administering each unit
of blood product.

• The patient’s status must be assessed immediately after administering each unit
of blood product.

• If a transfusion reaction is suspected, the transfusion must be stopped immediately.
• If a transfusion reaction is suspected, the physician and the blood bank must be

notified.
• If a transfusion reaction is suspected, the the patient’s information and the infor-

mation for the unit of blood product must both be re-verified.

354 L.A. Clarke et al.

Such policies are often vague, however, and need to be translated into a precise in-
stantiation based on the process that is actually being applied. For example, “confirm
patient consent” must be represented in terms of the consent form that is actually used
at the hospital where the process is being applied. Moreover, who is to do this confir-
mation and how is this confirmation documented?

Beyond that, finite-state verification requires a rigorous representation of each prop-
erty. It is rare for English descriptions to describe accurately and unambiguously all the
situations that need to be considered. The Propel system [10] is designed to help users
consider all the situations associated with formulating a property. Propel provides a ques-
tion tree that guides the user through the options that should be considered. Figure 6
shows an example of the question tree. After making some initial selections in this ques-
tion tree, the user can continue to select options from the question tree or can choose in-
stead to select options from a template of English phrases, called disciplined natural lan-
guage (DNL), or from a finite-state automaton (FSA) template. Figure 7 shows the
Propel GUI when formulating the DNL and FSA representation of the resulting property.

Fig. 6. Propel Question Tree

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 355

Fig. 7. Propel DNL and FSA representations

Thus, after using Propel, the first policy:

“The patient’s informed consent must be confirmed prior to carrying out a physi-
cian’s order for a blood transfusion.”

would be represented by the following disciplined natural language:

Carry_Out_Physician_Order_for_Transfusion_STARTED cannot occur
unless Confirm_Patient_Consent_COMPLETED has already occurred.

Confirm_Patient_Consent_COMPLETED is not required to occur, how-
ever, and if it does not occur,
Carry_Out_Physician_Order_for_Transfusion_STARTED can never occur. Even
if Confirm_Patient_Consent_COMPLETED does occur,
Carry_Out_Physician_Order_for_Transfusion_STARTED is not required to oc-
cur.

Before the first Confirm_Patient_Consent_COMPLETED occurs (or the
scope interval ends), the events in the alphabet of this property, other than
Carry_Out_Physician_Order_for_Transfusion_STARTED, can occur any num-
ber of times.

356 L.A. Clarke et al.

After Confirm_Patient_Consent_COMPLETED occurs and before the first
subsequent Carry_Out_Physician_Order_for_Transfusion_STARTED occurs (or
the scope interval ends), the events in the alphabet of this property, including
Confirm_Patient_Consent_COMPLETED but not
Carry_Out_Physician_Order_for_Transfusion_STARTED, can occur any num-
ber of times.

After the first subsequent
Carry_Out_Physician_Order_for_Transfusion_STARTED occurs:

• the events in the alphabet of this property, other than Con-
firm_Patient_Consent_COMPLETED or
Carry_Out_Physician_Order_for_Transfusion_STARTED, could occur
any number of times;

• Carry_Out_Physician_Order_for_Transfusion_STARTED cannot occur
again until after another Confirm_Patient_Consent_COMPLETED oc-
curs;

• Confirm_Patient_Consent_COMPLETED can occur and if it does, then
the situation should be regarded as exactly the same as when the first Con-
firm_Patient_Consent_COMPLETED occurred, meaning that all restric-
tions described on the events would again apply.

The reader might be surprised at how long and detailed the resulting disciplined
natural language is for this one relatively simple property. A careful examination of
Figures 6 and 7, however, shows the number of issues that must be addressed in pre-
cisely specifying such a property. The resulting FSA would be the basis for verifying
the process definition. Some finite-state verification systems, such as FLAVERS, ac-
cept a property represented as a FSA. For others, the FSA would need to be translated
into their property representation. For example, for SPIN, the FSA must first be trans-
lated into linear time temporal logic.

4.2 Process Verification

There are several finite-state verification tools that could be used to determine if the
process definition is consistent with a property. To date, we have investigated using
three such tools: SPIN, FLAVERS, and LTSA. To facilitate using different tools, we
first translate the Little-JIL process into an intermediate representation, called the
Bandera Intermediate Representation (BIR). BIR was specifically designed to support
finite-state verification and thus was a natural choice [3]. Once we have the BIR rep-
resentation, we translate BIR to the internal form required for the particular verifier.
Figure 8 depicts this two-state translation process.

A common problem with finite-state verification is that the size of the state space
that must be explored grows too large. Direct translation of a process usually results
in a model that is too large to be verified. Therefore, we use several optimizations and
abstractions to reduce the size of the model generated. Some of these transformations
have been previously reported [2, 8] and some are currently being investigated. All
the transformations that are used must be shown to be conservative for the property
and process definition. This means that a process will not be reported to be consistent
with a property unless that is indeed the case for the unoptimized version as well.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 357

False positives, violations that do not correspond to any real trace through the system,
can be a problem but are less likely to occur for process descriptions than for detailed
designs or source code.

All the verifiers that we have used have been able to find (the same) errors in the
process and to prove interesting properties about the in-patient blood transfusion
process. All of them have some limitations and their translation and optimization
process is being improved to address these concerns. FLAVERS is currently best able
to handle the larger problems, but requires more insight about the constraints that
must be introduced to eliminate false positives.

Bir File

Property

Little-JIL Process

FSV
Tools

Translator

Verification
ResultsBir File

Property

Little-JIL Process

FSV
Tools

Translator

Verification
Results

Fig. 8. The Little-JIL translation to BIR and then the BIR translation to the expected input for
the selected Finite-State Verification (FSV) tool

5 Conclusions and Future Work

We have successfully used Little-JIL to specify a real-world, non-trivial in-patient
blood transfusion process and verified that the process satisfies some important safety
properties. We have also learned a considerable amount about the strengths and
weaknesses in the technology that we are using.

The Little-JIL process language has been extremely useful in representing the in-
patient blood transfusion process. Surprisingly, the medical professionals have be-
come very adept at understanding the Little-JIL processes. It has turned out to be an
excellent medium for describing the in-patient blood transfusion process and discuss-
ing alternative processes. The medical professionals have shied away from actually
creating the process definitions. Instead they rely on the computer scientists to create
the process definitions, although they are quick to point out problems or suggest im-
provement. As noted, there is also a tension between the expressiveness of the process
language and the analyzability of the resulting processes. Humans like flexible proc-
esses, but such processes are much more difficult to analyze since they result in more
choices and thus more cases to consider.

As might be expected, simply rigorously defining a process uncovers problems
with that process. Often there were disagreements among the medical professionals
about the process definitions. Sometimes this could be attributed to the different roles

358 L.A. Clarke et al.

that medical professionals have (e.g., the nurse’s view versus the doctor’s view), but
sometimes these disagreements revealed a real problem in the underlying process and
an opportunity for a medical error to occur. In the future we are interested in explor-
ing how best to decompose (and then compose) the process definitions according to
the different roles.

Property specification also helped improve the process definitions. In considering a
property, it often became clear that the process definition omitted important details.
The medical policies that we had available before trying to define the process were
useful, but the extra detail required to formulate a property resulted in a deeper under-
standing of the problem that eventually was reflected in the process definition. For
example, thinking about how patient consent is required before an in-patient blood
transfusion revealed that we needed to consider how long a delay could exist between
the initial consent and the transfusion, how many transfusions could occur with one
consent, and what would happen if the patient rescinds consent.

The verification of the process definition did indeed reveal errors in the process.
Some were problems that appeared obvious once they were revealed. The more inter-
esting errors involved exceptions and concurrent behavior that lead to unexpected
event orderings. We found the verification useful in helping us debug the process
definitions (and the translators). The medical process definitions are ripe for detecting
event-ordering problems. Medical professionals are often involved in multiple parallel
activities and dealing with exceptional conditions upon exceptional conditions. It is a
problem domain that appears well matched with the technology we are applying.

There are many areas of future investigation. This case study has revealed limita-
tions in the process language, the property specification approach, and the verification
tools. For example, all three technologies need to be extended to have better support
for timing constraints. The process language needs better support for visualizing the
process. The property specification framework is still awkward to use, and the verifi-
cation tools need much improved, process-specific optimization techniques. The Lit-
tle-JIL to BIR translator currently does not support recursion. To handle recursion, we
simply unroll the recursive step up to a given bound, but this might make the verifica-
tion unsound.

The medical professionals are very interested in evaluating different kinds of medi-
cal processes, not just in-patient blood transfusion processes. In addition to improving
safety, they are interested in improving efficiency with respect to turnaround and
throughput. They would like to see how efficiency is affected by different symptom
mixes (e.g. ankle sprains versus cardiac pain), different resources, different resource
allocation strategies, and different processes. Such evaluations will depend on doing
extensive simulations using real event histories. Finally, in the long term it would be
desirable to actually execute carefully evaluated processes in the clinical setting.
These processes could help medical professionals track and prioritize their numerous
tasks.

Acknowledgments

We would like to thank Stephen Siegel, Jamieson Cobleigh, Sandy Wise, Ethan Katz-
Bassett, and Barbara Staudt Lerner for their many helpful suggestions with this work.

Process Programming to Support Medical Safety: A Case Study on Blood Transfusion 359

This material is based upon work supported by the National Science Foundation
under Award No. CCF-0427071, the U. S. Army Research Office under Award No.
DAAD19-01-1-0564, and the U. S. Department of Defense/Army Research Office
under Award No. DAAD19-03-1-0133.

Any opinions, findings, and conclusions or recommendations expressed in this
publication are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation, the U. S. Army Research Office, or the U. S. Depart-
ment of Defense/Army Research Office.

References

1. Cheung, S.C., Giannakopoulou, D., Kramer, J.: Verification of liveness properties using
compositional reachability analysis. In: Sixth European Software Engineering Conference
and Fifth ACM SIGSOFT Symposium on the Foundations of Software Engineering, Zu-
rich, Switzerland (1997) 227-243

2. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying properties of process definitions.
In: ACM SIGSOFT International Symposium on Software Testing and Analysis, Portland,
OR (2000) 96-101

3. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby: Bandera: A source-level interface for
model checking Java programs. In: 22nd International Conference on Software Engineer-
ing, Limerick, Ireland (2000) 762-765

4. Dwyer, M.B., Clarke, L.A., Cobleigh, J.M., Naumovich, G.: Flow analysis for verifying
properties of concurrent software systems. ACM Transactions on Software Engineering
and Methodology 14(3) (2004) 359-430

5. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engineering
23(5) (1997) 279-294

6. Institute of Medicine: Crossing the Quality Chasm: A New Health System for the 21st
Century. The National Academies Press, Washington DC (2001) 23-38

7. Kohn, L.T., Corrigan, J.M., Donaldson, M.S., (eds.): To Err is Human: Building a Safer
Health System. National Academy Press, Washington DC (1999)

8. Lerner, B.S.: Verifying process models built using parameterized state machines. In: ACM
SIGSOFT International Symposium on Software Testing and Analysis, Boston, MA
(2004) 274-284

9. Magee, J., Kramer, J.: Concurrency: State Models & Java Programs. John Wiley & Sons
(1999)

10. Smith, R.L., Avrunin, G.S., Clarke, L.A., Osterweil, L.J.: PROPEL: An approach support-
ing property elucidation. In: 24th International Conference on Software Engineering, Or-
lando, FL (2002) 11-21

11. Wise, A.: Little-JIL 1.0 language report. Technical report (UM-CS-1998-024), Department
of Computer Science, University of Massachusetts, Amherst, MA (1998)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 360 – 375, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Translation of Nets Within Nets in Cross-Organizational
Software Process Modeling*

Jidong Ge, Haiyang Hu, Ping Lu, Hao Hu, and Jian Lü

State Key Laboratory for Novel Software Technology,
Nanjing University, Institute of Computer Software,

Nanjing University, Nanjing 210093, China
gjd@ics.nju.edu.cn

Abstract. Software process technology is very important to improve the soft-
ware quality. Some process models have been developed for process manage-
ment during the software development process. Today’s software corporations
become so large and geographically distributed that modeling cross-
organizational software process becomes an important topic. In this paper, we
use nets within nets to model cross-organizational software processes based on
mobile agent systems. For indirect analysis of the model of nets within nets, this
paper presents translation rules from nets within nets to flat nets, which pre-
serve the soundness property. For enhancing the flexibility of execution, we in-
troduce weak synchronous concept into the model of nets within nets.

1 Introduction

Software process technology is very important to improve the software quality [6]. In
the modern idea of quality management, the three most important elements about
quality are processes, people and technology. It is a good idea to improve software
quality and productivity by improving software process management. In the past
decades, some process models have been developed for process management during
the software development process. Today’s software corporations become so large
and geographically distributed that they must often operate across the organizational
boundaries, so modeling cross-organizational software process becomes an important
topic. In this paper, we use nets within nets [12] to model cross-organizational soft-
ware processes and improve the flexibility and the scalability based on mobile agent
systems.

In this paper, we view the software process as a special workflow, and model
workflow process model by Petri nets or WF-nets [1], then by nets within nets [12]
for cross-organizational processes based on mobile agents.

The most important idea in the model of “nets within nets” is “Petri nets as token
objects” [12], that is, substituting Petri nets for token objects. In the Valk’s paper, nets

* Supported by NSFC (60273034, 60233010, 60403014), 863 Program of China

(2004AA112090, 2002AA116010), 973 Program of China (2002CB312002), JSFC
(BK2002203, BK2002409).

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 361

within nets are also called object Petri nets, but they are different from the definition
of Lakos’ [9]. In this paper, we focus on the definition of Valk’s. When token objects
replaced by Petri nets, the Petri net model becomes a higher order Petri net model,
which is the most important difference between the model of nets within nets and the
traditional Petri net models. Here, the model of nets within nets can be called multi-
dimensional Petri net model, and the traditional Petri net model including Pr/T nets,
colored Petri nets and hierarchical Petri nets can be called flat Petri net model.

In the model of nets within nets, the tokens have their own autonomous behaviors,
which is different from the traditional Petri net model. For example, in traditional
place/transition Petri nets, tokens are indistinctive. In colored Petri nets or Pr/T nets,
tokens have some data structures but not self-behaviors. The tokens’ autonomous
behaviors are analogous to the behaviors of software agents or mobile agents, so the
model of nets within nets can be used for agent based process modeling [7].

Using mobile agent technology is a good approach to improve the flexibility and
the scalability of process management. Mobile agents can represent roles of software
process participants to get across the boundaries of software organizations, so this
model provides a paradigm of cross-organizational processes, which is well suited for
the large software corporations to manage their large processes in the global strategy.

The model of nets within nets enhances the capability of modeling mobility, which
is the important advantage of this novel model, but the direct analysis for this model
is difficult. In this paper, the authors provide a set of equivalent translation rules from
multi-dimensional Petri nets to traditional flat Petri nets so that the model of nets
within nets can be indirectly analyzed under the translated traditional flat Petri nets
with many existing analysis approaches.

The paper is structured as follows. Section 2 presents the basic concepts and nota-
tions of Petri nets and WF-nets. In section 3 the model of nets within nets and NN-
WF-nets and NN-sound are defined. Section 4 gives a set of translation rules from
nets within nets to flat nets and some proofs for preserving soundness property. Sec-
tion 5 introduces the concept of weak synchronous relation and related translation
rules. The paper closes with a conclusion and an outlook to the further work.

2 Basic Notations of Petri Nets and WF-Net

With the idea of “Software Processes are Software too” [10], it means that developing
software processes is very like developing software. The control structures of soft-
ware processes are similar to the control structures of programming language. Be-
cause the control structures of Petri nets have the same equivalent expression as the
programming language, Petri nets can be used to model software processes [3]. Aalst
has listed three good reasons for using Petri nets for process modeling and analysis
[1]: formal semantics despite the graphical nature, state-based instead of event-based
and abundance of analysis techniques. In this paper, we view the software process as
a special workflow, and model the workflow processes by Petri nets or WF-nets [1],
then by nets within nets. In this section, we introduce the basic notions and notations
used throughout this paper. We first define Petri nets.

362 J. Ge et al.

Definition 1. Petri net
(1) A Petri net is a 3-tuple PN = (P, T, F) where

a) P is a finite set of places,
b) T is a finite set of transitions, P T∩ =

c) F ⊆ (P× T) ∪ (T × P) is a set of arcs (flow relation)
(2) The preset of a node x∈P ∪ T is defined as • x = {y∈P ∪ T | (y, x)∈F}
 The postset of x∈P ∪ T is defined as x • = {y∈P ∪ T | (x, y)∈F}

Definition 2. WF-net [1]
A Petri net PN = (P, T, F) is a WF-net (abbr. of Workflow net) iff:

(1) PN has two special places: i and o. Place i is a source place: i = φ. Place o is a
sink place: o • =φ.

(2) If we add a transition t* to PN so that t* {o} and t* = {i}, then the resulting
Petri net is strongly connected.

In WF-net, the transitions represent the activities of software processes, while the
tokens and the places represent the enable conditions of the process activities.

WF-net model based on traditional flat Petri nets has powerful expression, but in
the traditional flat Petri nets, the tokens do not have the self-behaviors, so the flat
Petri nets cannot model mobility directly. While, modeling mobility is important to
build cross-organizational computing for large software enterprises. In this paper, we
use the paradigm of nets within nets [12] to model mobility. In the model of nets
within nets, the tokens in system net level have their own autonomous behaviors,
which enhance the capability of modeling mobility. This paradigm can improve the
flexibility and the scalability of the software processes.

3 Nets Within Nets and NN-WF-Net

The most important idea in the model of “nets within nets” is “Petri nets as token
objects”, that is, substituting Petri nets for token objects.

The model of nets within nets has the hierarchy concept similar to the traditional
hierarchical Petri nets. But there are differences about the hierarchy concept between
the model of nets within nets and the model of the traditional hierarchical Petri nets.
The hierarchy concept comes from the substitution of the elements of Petri nets. In the
model of nets within nets, the substitution is Petri nets for token objects of the system
level nets. While in the model of traditional hierarchical Petri nets, the substitution is
Petri nets for places or transitions of the super level nets. So, here to distinguish these
two different hierarchy concepts, we call the hierarchy concept of the model of nets
within nets as dimension, which is a higher-order paradigm of Petri nets, or called
multi-dimensional Petri nets.

Here, we refer to Valk’s definition about the model of nets within nets [12]. The
simplest paradigm of the model of nets within nets is Unary Elementary Object Sys-
tem (abbr. Unary EOS or UEOS). The idea of “nets within nets” can be expressed in
the formal definition of EOS.

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 363

Definition 3. EOS - Elementary Object System [12]
A Unary elementary object system is a 4-tuple EOS = (SN, ON, ρ, OPS)

(1) SN = (P, T, W, M0) is an elementary net system with |M0| =1, called system net
of EOS.

(2) ON = (B, E, F, m0) is an elementary net system, called object net of EOS, and
(3) ρ ⊆ T × E is the interaction relation set between the transition sets of the two

level nets. The interaction relation set ρ is used to describe synchronous rela-
tion between SN and ON.

(4) OPS (abbr. of Organizational Place Sets) is a partition of the place set in SN,
which can be used to model mobility and define the organizational boundaries
clearly.

Figure 1 is an example of the EOS. On the right side of this figure, SN is the system
net, and on the left side of this figure, ON is the object net. Both of the SN and the ON
have initial markings, in SN marked in p1, while in ON marked in b1. There is an
interaction relation set between SN and ON, whose elements are labeled with <ix>.
For example, i1:(t2, e2) ρ∈ , is an element of the interaction set. In the definition of
EOS, we can observe that the EOS is a multi-dimensional Petri net, which is the es-
sential difference from the traditional flat Petri net.

In Figure 1, = {(t2, e2), (t7, e2), (t3, e3), (t4, e3), (t9, e4)}

A1

A2

b1

b2

e3

e2

e1

b3

b4

<i 1>

b6

b5

e4

e5

<i 3><i 2>

p1: A

<i 2>
t 6t 5t 4

p5:Bp4: B p6:B

p2: B

p3: B

t 7
<i 1>

t 1

<i 3>

SN

t 9

t 2 t 3

t 8

ON <i 1> <i 2>

p7:B p8: B
p9: C

Fig. 1. A scenario of software processes modeled by EOS

In the system net of Figure 1, the places are labeled with logic places: A, B, C. In
fact the places in SN are divided into some organizational place sets. For example, in
the SN of Figure 1, there are three organizational place sets: A= {p1}, B= {p2, p3, p4,
p5, p6, p7, p8}, C= {p9}. The organizational place sets represent the organizational
boundaries. In the same organizational place set, the token objects will not run across
the organizational boundaries when the transitions firing in SN. While across different
organizational place sets, the token objects will run across the organizational bounda-
ries when the transitions firing in SN. For example, when t1 firing, the token object in
p1 will go from p1 in place set A to p2 in another place set B, across the organiza-
tional boundary between A and B. When t2 firing, the token object in p2 will go from
p2 to p3 in the same place set B, not across the organizational boundary.

364 J. Ge et al.

In Definition 3, the token objects in SN replaced by object nets can be viewed as
software agents or mobile agents assigned with special tasks, which run in the system
environment and can migrate from one place to another place. On the other hand, the
system net can be viewed as system environment in which mobile agents run. Hence,
object nets can be also called agent nets. Mobile agents are encapsulated computa-
tional entities. The process logic described by object nets can be encapsulated in mo-
bile agents as their own behaviors. Mobile agents can represent some roles to run
across the organizational boundaries. The model of nets within nets provides a kind of
multi-dimensional process modeling. The object nets can be used to model micro-
processes, while the system nets can be used to model macro-processes. So, this para-
digm can be naturally used to model cross-organizational software processes, which is
well suited for the large software organizations to manage their large processes in the
global strategy.

Here is a scenario of software process modeling in Figure 1. The ON describes a
process that a software testing organization A sends two testing reports: A1 and A2,
which need the other software organization B to review. The transition e2 and e3 in
ON, mean reviewing the testing report A1 and A2 separately. After t1 and e1 firing,
the two testing reports and the token object come into place p2 in the organization B.
The token object in p2 means that the organization B has a choice when reviewing
these two testing reports. Because of the interaction relations (t2, e2) and (t3, e3),
both reviewing A1 and reviewing A2 have opportunities to happen. If selecting the
right path t3-t7, reviewing A1 will follow reviewing A2. Otherwise selecting the left
path t2-t4, reviewing A2 will follow reviewing A1.

For the special definition of the model of UEOS, there are special occurrence rules,
or called firing rules, which are described in Definition 4.

Definition 4. Occurrence Rules for EOS [12]
A bi-marking of a unary elementary object system EOS = (SN, ON,) is a pair

(,)M m where M is a marking of the system net SN and m is a marking of the object

net ON.

(1) System-autonomous firing: A transition t T is activated in a bi-marking
(,)M m of EOS if ()t and t is activated in M. Then the follower bi-

marking (', ')M m is defined by 'tM M (w.r.t. SN) and 'm m , written

as ,(,) (', ')tM m M m in the case.

(2) Object-autonomous firing: A transition e E is activated in a bi-marking
(,)M m of EOS if ()e and e is activated in m . Then the follower bi-

marking (', ')M m is defined by 'em m (w.r.t. ON) and 'M M , written

as ,(,) (', ')eM m M m in this case.

(3) Synchronous firing: A pair [,]t e T E is activated in a bi-marking (,)M m of

EOS if [,]t e and t and e are activated in M and m , respectively. Then the

follower bi-marking (', ')M m is defined by 'tM M (w.r.t. SN) and

'em m (w.r.t. ON), written as ,(,) (', ')t eM m M m in this case.

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 365

Here, the means empty occurrence sequence. The definition of notation of
()t and ()e : () : { | (,) }t e E t e and () : { | (,) }e t T t e .

According to Definition 4 of the occurrence rules, there is a following firing se-
quence in Figure 1 as an example: [, e1], [t1,], [t2, e2], [t4, e3], [t5,], [t8,]

[t9, e4], [, e5].
In this definition for occurrence rules, the system-autonomous firing means the

only actions of the system net, while the object-autonomous firing means the only
actions of the object nets, which assigns the autonomous self-behaviors to the token
objects. The synchronous firing means the synchronous actions between the system
net and the object nets.

Based on the model of nets within nets, we can define the NN-WF-net 1 for cross-
organizational process modeling. Here, we extend the workflow net in the paradigm
of nets within nets.

Definition 5. NN-WF-net comparison to the WF-net in Definition 2
An EOS = (SN, ON,) is a NN-WF-net iff:

(1) SN is a WF-net. SN has two special places: is and os. Place is is a source
place: is = . Place os is a sink place: os • = . If we add a transition t* to
SN so that • t* = {so}t* • and • = {is}, then the resulting SN is strongly
connected.

(2) ON is a WF-net. ON has two special places: io and oo. Place io is a source
place: io = . Place oo is a sink place: oo • = . If we add a transition e* to
ON so that • e* = {oo} and e* • = {io}, then the resulting ON is strongly con-
nected.

Figure 2 is an example of NN-WF-net, the left is ON, while the right is SN, and
both of them are WF-nets. Between SN and ON, there are interaction relations defined
by the set .

ON

SN
e*

t *ooi o

osi s

Fig. 2. NN-WF-net for cross-organizational process

Soundness is an important property in WF-net [1]. Comparing with the soundness
of WF-net in Definition 6, we define the soundness of NN-WF-net in Definition 7.

Definition 6. Soundness of WF-net [1] (for flat nets)
A procedure modeled by a WF-net PN = (P, T, F) is sound if and only if:

(1) For every state M reachable from state i, there exists a firing sequence leading
from state M to state o. Formally: ∀ M (i ⎯→⎯* M) (M ⎯→⎯* o)

1 Note: NN-WF-net is the abbreviation of nets-within-nets workflow nets.

366 J. Ge et al.

(2) State o is the only state reachable from state i with at least one token in place
o. Formally: ∀ M (i ⎯→⎯* M ∧ M ≥ o) (M = o) (Here, M ≥ o means
more than place o have a token.)

(3) There are no dead transitions in (PN, i). Formally:
∀ t∈T ∃ M, 'M , i ⎯→⎯* M ⎯→⎯t 'M

The first two requirements can be described as proper termination while the last
one states that there are no dead transitions (tasks) in the initial state i.

Definition 7. Soundness of NN-WF-net (for nets within nets), abbr. NN-soundness
Let EOS be a NN-WF-net, it is NN-sound iff.

(1) (,)M m∀ ((is,io) ⎯→⎯* (M, m)) ((M, m) ⎯→⎯* (os,oo)), (is,io) is the initial

state of NN-WF-net, while (os,oo) is the final state of NN-WF-net.
(2) t T∀ ∈ , if ()tρ φ= , then (,)M m∃ , (', ')M m [],* (,) (,) tis io M m λ⎯⎯→ ⎯⎯⎯→

(', ')M m ; if ()tρ φ≠ , then ()e tρ∀ ∈ (,)M m∃ ,

(', ')M m * (,) (,)is io M m⎯⎯→ ⎯⎯ →⎯] ,[et (', ')M m .

(3) e E∀ ∈ , if ()eρ φ= , then (,)M m∃ , (', ')M m [],* (,) (,) eis io M m λ⎯⎯→ ⎯⎯⎯→

(', ')M m ; if ()eρ φ≠ , then ()t eρ∀ ∈ (,)M m∃ ,

(', ')M m * (,) (,)is io M m⎯⎯→ ⎯⎯ →⎯] ,[et (', ')M m .

The model of nets within nets has powerful expression for process modeling [8],
because it enhances the more capability of directly modeling mobility than traditional
flat nets. But, as multi-dimensional Petri nets, the direct analysis is difficult. So, we
try to design a translation approach to decrease the dimension of the model. The trans-
lation from nets within nets to flat nets builds an equivalent bridge so that the model
of nets within nets can be indirectly analyzed with many existing analysis approaches,
which reduces the difficulty of the analysis.

4 Translation from Nets Within Nets to Flat Nets

According to the definition of occurrence rules and bi-marking in Definition 4, we
can define a set of rules to translate the model of nets within nets into traditional flat
Petri net equivalently.

Rule 1. Translation from nets within nets to flat nets
Translation from EOS to Translated EOS, abbr. TEOS is defined by following. Given
an EOS = (SN, ON,) in Definition 3. Let Translated EOS, TEOS = (TS, TT, TF) is a
flat net translated from EOS, iff: (a)-(c)

(a): TS P B= ∪
(b): TT =T Eρ ρ ρ∪ ∪

: { | ,(,) }T t T e E t e , : \T T T

: { | ,(,) }E e E t T t e , : \E EE

(c): Construction of TF by a set of translation rules: (1)-(3)

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 367

Rule (1): ti T ,
px ti in SN, then (,)px ti TF in TEOS

py ti in SN, then (,)ti py TF in TEOS

Rule (2): ej E ,

bx ej in ON, then (,)bx ej TF in TEOS

by ej in ON, then (,)ej by TF in TEOS

Rule (3): : (,)ik ti ej , then add a new transition tiej to TT, ie. tiej TT∈

px ti in SN, then (,)px tiej TF in TEOS

py ti in SN, then (,)tiej py TF in TEOS

bx ej in ON, then (,)bx tiej TF in TEOS

by ej in ON, then (,)tiej by TF in TEOS

TS is the place set of TEOS, which combines the place set P of SN and the place set
B of ON. TT is the transition set of TEOS, which combines the transition set T of SN
and the transition set E of ON, but removingT ρ and Eρ , then adding new transitions
for every interaction relation of ρ ,

TF is an arc set of TEOS. The following rules (1) (2) (3) are defined for the arcs of
TEOS. These rules are defined according to the occurrence rules of Definition 4.

In fact, the rule (1) is according to System-autonomous firing of Definition 4, the
rule (2) is according to Object-autonomous firing, and rule (3) is according to Syn-
chronous firing.

The rule (1) and rule (2) mean remaining full places and partial transitions of both
SN and ON, which is easily understood. Here we combine the structure of two-
dimensional into a flat net, and remain the structure as originally where there is no
synchronous interaction relation between SN and ON. But for the synchronous inter-
action set , we define the rule (3). Given a pair of synchronous transitions (ti, ej),
which have a synchronous relation, rule (3) deletes ti and ej, then adds new transition
tiej to TT, removing the preset of both ti and ej to be attached with the transition tiej
as preset, removing the postset of both ti and ej to be attached with the transition tiej
as postset respectively. Figure 3 shows a local scenario of the translation rule (3) in
Rule 1.

According to the translation Rule 1, the EOS can be equivalently translated into a
flat net. Figure 4 shows an example of the translation from Figure 1.

The translation from nets within nets to flat nets is a process to decrease the dimen-
sions of the model of nets within nets, which will reduce the difficulty of analyzing
the model of nets within nets, since there are many existing approaches for traditional
flat nets.

This paper only presents a paradigm of translation from the two-dimensional nets
into the flat nets, but under the idea of this translation approach, the k-dimensional
(k>2) nets also can be translated into the flat nets step by step.

368 J. Ge et al.

bx

pn

bv

pm

pj

pi

bu

bx

pn

bv

by

pm

pj

pi

buON
ej

t i

SN

by

t i ej

(t i , ej)

EOS Fl at net

i k: (t i , ej)

i k: (t i , ej)

Fig. 3. Local scenario of the translation rule (3) in Rule 1

The paradigm of nets within nets divides the global process logic into object nets
and system nets and combines the two level nets with the interaction relation set .
This approach is suited for describing the global processes and local processes sepa-
rately. During modeling cross-organizational processes, we can use the paradigm of
nets within nets, which can improve the flexibility and the scalability of software
processes, also enhance the understandability of cross-organizational process models.
However, during the analysis and the verification, the paradigm of nets within nets is
very difficult to be analyzed directly. The translation rules can help us to analyze the
model of nets within nets by analyzing the translated flat nets with many existing
analysis methods.

b1

t 8

<i 2>

b5p8p7b3

p6p5p4p3

p2

b4b2

p1

<i 1>

t 1

e5

b6<i 3>

p9

t 9e4

t 2e2

e1

t 3e3

t 4e3 t 7e2

t 6t 5

<i 1> <i 2>

Fig. 4. A translation from Figure 1

For the indirect analysis of NN-WF-net (Definition 5), we define the Translated
NN-WF-net according to Rule 1 in Definition 8.

Definition 8. Translated NN-WF-net, abbr. TNN-WF-net (see Figure 5)
A Translated EOS, TEOS = (TS, TT, TF) is a TNN-WF-net iff:

Rule 1

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 369

(1) TEOS is a flat net translated from an EOS.
(2) TEOS has two special transitions: it*, ot* and two special places: i, o. it*• =

{is, io}, • it*={i}, • ot*= {os, oo}, ot*• ={o}, i = , o • = .

(3) If we add a transition tt to TEOS so that • tt = {o} and tt • = {i}, then the re-
sulting Petri net is strongly connected.

Figure 5 shows the Translated NN-WF-net for cross-organizational process model-
ing from Figure 2.

The NN-WF-net can be used for multi-dimensional process modeling. In the lower
level, the geographically distributed organizations define their own processes as ob-
ject nets, while the higher level organization defines the higher level processes as
system nets and the interaction relations between two level nets. This provides a para-
digm of combining the distributed modeling and the global modeling, which can im-
prove the flexibility of process modeling and executing, and enhance the scalability of
cross-organizational process management.

About the process detail, the distributed organizations themselves maybe know
more clearly than the higher-level organization. It is a good idea to let distributed
organizations define their own process models. Then the higher-level organization
compose the lower level processes as object nets into the higher-level process as sys-
tem nets.

 ON

 SN

e*

t *

ooi o

osi s
Synchronous Int er act i on

t t

i o

Tr ansl at ed EOS

i t * ot *

Fig. 5. Translated NN-WF-net from Figure 2

Soundness is an important property of workflow net. For the translation Rule 1, we
try to prove that this translation preserves the soundness property, i.e. NN-WF-net is
sound (see Definition 7) if and only if TNN-WF-net is sound (see Definition 6). To
construct this proof, we need Definition 9 and Lemma 1.

Definition 9. Compatible Firing Sequence
Let EOS = (SN, ON, ρ) be an elementary object net and TEOS = (TS, TT, TF). For
EOS, let 1σ = t1t2t3…tn be a firing sequence of EOS and 2σ = u1u2u3…un be a firing
sequence of TEOS. We call 1σ and 2σ are compatible iff:

(1) tx = [λ , e] in EOS ⇔ ux = e, in which e∈E in TEOS.
(2) tx = [t, λ] in EOS ⇔ ux = t, in which t∈T in TEOS.
(3) tx = [t, e] in EOS ⇔ ux = te, in which e∈E and t∈T in TEOS.

370 J. Ge et al.

According to Definition 9, a firing sequenceσ , either in an EOS or in its translated
net TEOS, will determine only one firing sequence 'σ , which is compatible to σ .

Lemma1. Let TEOS is translated from EOS by Rule1. EOS has initial bi-marking (M,
m), TEOS = (TS, TT, TF) has initial marking S and S = M+m. 1σ is a firing sequence
of EOS and 2σ is a firing sequence of TEOS. If 1σ and 2σ are compatible, then

1(,) (', ')M m M mσ⎯⎯→ ⇔ 2 'S Sσ⎯⎯→ , in which ' ' 'S M m= + .

Proof. The proof is organized in the following two parts:

(1) Suppose for EOS, 1(,) (', ')M m M mσ⎯⎯→ . We shall prove by induction on the

length of 1σ . The case | 1σ | = 0, i.e. 1σ = ε is trivial, so let | 1σ | = n and we have
1(,) (', 'M m M mσ⎯⎯→ 2 'S Sσ⎯⎯→ in which ' 'S M m= + . Now 1 1 1' ntσ σ +=

and 1 1(,) (', ') ('', '')ntM m M m M mσ +⎯⎯→ ⎯⎯→ .

(a) If tn+1 = [λ , e], then the marking 'm would enable e in ON. According to
Rule 1, the transition e is also enabled in TEOS at 'S , so there exists

2 1' ''nuS S Sσ +⎯⎯→ ⎯⎯⎯→ in which un+1 = e and ' ''em m⎯⎯→ . It is easy to see
that we have '' ' '' '' ''S M m M m= + = + , so we have

11(,) ('', '')ntM m M mσ +⎯⎯⎯→ 12 ''nuS Sσ +⎯⎯⎯→ .

(b) If tn+1 = [t, λ], then the marking 'M would enable t in SN. According to
Rule 1, the transition t is also enabled in TEOS at 'S , so there exists

2 1' ''nuS S Sσ +⎯⎯→ ⎯⎯⎯→ in which un+1 = t and ' ''tM M⎯⎯→ , It is easy to
see that we have then '' '' ' '' ''S M m M m= + = + , so we have

1 11 2(,) ('', '') ''n nt uM m M m S Sσ σ+ +⎯⎯⎯→ ⎯⎯⎯→ .

(c) If tn+1 = [t, e], According to Rule 1, 'M would enable t in SN and 'm would
enable e in ON, thus 'S would enable te in TEOS. Similarly, we have

2 1' ''nuS S Sσ +⎯⎯→ ⎯⎯⎯→ in which un+1 = te, ' ''tM M⎯⎯→ and ' ''em m⎯⎯→ ,
then '' '' ''S M m= + , so 1 11 2(,) ('', '') ''n nt uM m M m S Sσ σ+ +⎯⎯⎯→ ⎯⎯⎯→

According to the proofs in (a) (b) and (c) we can conclude that
1(,) (', ')M m M mσ⎯⎯→ 2 'S Sσ⎯⎯→ for any compatible firing sequence 1σ and 2σ .

(2) Suppose for TEOS, S 2σ⎯⎯→ S’. We can also prove it by induction on the length of
2σ . This can be proved analogously to (1).

Theorem 1. Let TNN-WF-net be translated from an NN-WF-net by Rule 1. NN-WF-
net is NN-sound (see Definition 7) iff TNN-WF-net is sound (see Definition 6).

Proof. We organize the proof in the following two parts, part (1) proves the sufficient
relation; part (2) proves the necessary relation.

(1) Suppose that TNN-WF-net is sound.
[is+io] is the marking where only place is and io each has one token, while [os+oo] is
the marking where only place oo and os each has one token and other places in TNN-
WF-net have no token (see Figure 5). 1σ is a firing sequence of NN-WF-net and 2σ
is a firing sequence of TNN-WF-net.

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 371

(a) For the NN-WF-net, let (is,io) 1σ⎯⎯→ (M, m). According to Lemma 1, it is easy
to see that in TNN-WF-net that there exists a firing sequence 2σ , and S is a mark-
ing of TNN-WF-net, [i] *it⎯⎯→ [is+io] 2σ⎯⎯→ S, in which 1σ and 2σ are compati-
ble and S = M+m. Since TNN-WF-net is sound, there exist a firing sequence 2'σ ,

'2 *[] []otS os oo oσ⎯⎯⎯→ + ⎯⎯→ . According to Lemma 1, there will be a firing sequence

1'σ which is compatible to 2'σ and (M, m) '1σ⎯⎯→ (os,oo).

(b) Let t∈T, if ()tρ φ= : Since TNN-WF-net is sound, there will also be a transi-

tion t in TNN-WF-net, and exist [i] *it⎯⎯→ [is+io] ⎯→⎯ 2σ 'tS S⎯⎯→ . According to
Lemma 1, there will be a firing sequence 1σ which is compatible to 2σ such that
(is,io) 1σ⎯⎯→ (M, m) and S = M+m. According to Definition 8, it is easy to see that
(M, m) [,]t λ⎯⎯⎯→ (', 'M m). If ()tρ φ≠ : ()e tρ∀ ∈ , Since TNN-WF-net is sound,

there will be a transition te in TNN-WF-net and exist [i] *it⎯⎯→ [is+io] 2σ⎯⎯→ S
'te S⎯⎯→ . According to Lemma 1, there will be a firing sequence 1σ which is

compatible to 2σ such that (is,io) 1σ⎯⎯→ (M, m) and S = M+m. According to Defi-
nition 8, we have , (', ')t eM m M m⎯⎯⎯→ .

(c) Let e∈E, if ()eρ φ= : Since TNN-WF-net is sound, there will also be a transi-

tion e in TNN-WF-net, and exist [i] *it⎯⎯→ [is+io] 2σ⎯⎯→ 'eS S⎯⎯→ . According to
Lemma 1, there will be a firing sequence 1σ which is compatible to 2σ such that
(is,io) 1σ⎯⎯→ (M, m) and S = M+m. According to Definition 8, it is easy to see that
(M, m) [,]eλ⎯⎯⎯→ (', 'M m). If ()eρ φ≠ : ()t eρ∀ ∈ , Since TNN-WF-net is sound,

there will be a transition te in TNN-WF-net and exist [i] *it⎯⎯→ [is+io] 2σ⎯⎯→ S
'te S⎯⎯→ . According to Lemma 1, there will be a firing sequence 1σ which is

compatible to 2σ such that (is,io) 1σ⎯⎯→ (M, m) and S = M+m. According to Defi-
nition 8, we have , (', ')t eM m M m⎯⎯⎯→ .

According to the proofs in (a), (b) and (c), we can conclude that EOS is NN-sound.
(2) Necessary relation can be proved analogously as (1).

According to the Theorem 1, the translation Rule1 preserves the soundness prop-
erty of the NN-WF-net. So, the NN-soundness property of NN-WF-net can be equiva-
lently verified by checking the soundness property of its translated TNN-WF-net.

5 Weak Synchronization and Strong Synchronization

Because the synchronous relation restricts the enable conditions of the transition fir-
ing, for practical application, we define a new weak synchronous relation to relax the
condition of firing, which can enhance liveness and flexibility of the model.

Definition 10. Weak Synchronization and Strong Synchronization

(1) For (t, e) ρ∈ , a state (M, m), if t is activated in M, and e is not activated in m,
then , (',)tM m M mλ⎯⎯⎯→ .

(2) For (t, e) ρ∈ , a state (M, m), if t is not activated in M, and e is activated in m,
then , (, ')eM m M mλ⎯⎯⎯→ .

372 J. Ge et al.

(3) For (t, e) ρ∈ , a state (M, m), if t is activated in M, and e is activated in m, then
, (', ')t eM m M m⎯⎯⎯→ .

For the above three firing rules for the synchronous relation (t, e), if rules (1) (2)
and (3) are all allowed, the synchronous relation is called weak synchronization. If
only rule (3) is allowed, the synchronous relation is called strong synchronization,
which is described in Definition 4.

According to Definition 10, the weak synchronous relation means that object nets
can fire without infinitely waiting the synchronization of the system nets, and also
means that system nets can fire without infinitely waiting the synchronization of the
object nets. In practical application, weak synchronous relation can be fixed with a
duration value. Within the duration, it must select strong synchronous firing as (3) in
Definition 10, and when beyond the duration, it can select weak synchronous firing as
(1) or (2) or (3) in Definition 10. The value of duration represents the degree of wait-
ing synchronization. If the value of duration is infinite it means strong synchroniza-
tion. If the value of duration is zero, it means no synchronization. When modeling, the
weak synchronous relation can be marked with a capital character W (See Figure 6),
so that it can be distinguished with the strong synchronous relation. For the weak
synchronization, we define a translation from nets within nets to flat nets as Rule 2.

Rule 2. Translation with weak synchronous relation.
Translation from EOS with weak synchronous relation to Translated EOS, is defined
by following. Given an EOS = (SN, ON,) in Definition 3. Let Translated EOS,
TEOS = (TS, TT, TF) is a flat net translated from EOS, iff: (a)-(c)

(a): TS P B= ∪
(b): TT =T E ρ∪ ∪
(c): Construction of TF by a set of translation rules: (1)-(3)

Rule (1): ti T ,
px ti in SN, then (,)px ti TF in TEOS
py ti in SN, then (,)ti py TF in TEOS

Rule (2): ej E ,
bx ej in ON, then (,)bx ej TF in TEOS
by ej in ON, then (,)ej by TF in TEOS

Rule (3): : (,)ikW ti ej , then add a new transition tiej to TT, ie. tiej TT∈ ,
and assign the duration of tiej with the duration of (ti,ej)

 px ti in SN, then (,)px tiej TF in TEOS
py ti in SN, then (,)tiej py TF in TEOS
bx ej in ON, then (,)bx tiej TF in TEOS
by ej in ON, then (,)tiej by TF in TEOS

Compared with Rule 1, TS is the place set of TEOS, which combines the place set
P of SN and the place set B of ON. TT is the transition set of TEOS, which combines
the transition set T of SN and the transition set E of ON, and adding new transitions
for the interaction relation set ρ ,

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 373

bx

pn

bv

pm

pj

pi

bu

bx

pn

bv

by

pm

pj

pi

buON

i kW: (t i , ej)

SN

by

t i ej

EOS Fl at net

i kW: (t i , ej)

i kW: (t i , ej)

i kW: (t i , ej)

ej

t i

(t i , ej)

ej ej

t i

Fig. 6. Local scenario of the translation rule (3) with weak synchronous relation

TF is an arc set of TEOS. The following rules (1) (2) (3) are defined for the arcs of
TEOS. These rules are defined according to the occurrence rules of Definition 4 and
weak synchronous of Definition 10.

In Rule 2, the rule (1) is according to System-autonomous firing of Definition 4,
the rule (2) is according to Object-autonomous firing, and rule (3) is according to
Weak Synchronous firing.

The rule (1) and rule (2) in Rule 2 mean remaining the elements and the structures
of both SN and ON. For weak synchronous relation, the rule (3) in Rule 2 is the same
as the rule (3) in Rule 1.

According to the translation rules for weak synchronous relation, the EOS with
weak synchronous relation can be equivalently translated into a flat net.

Figure 6 shows a local scenario of the translation rule (3) in Rule 2, a translation
supporting weak synchronous relation.

Theorem 2. The translation Rule 2 also preserves the NN-soundness property of NN-
WF-net.

The proof is similar to the Theorem1. Here is omitted due to the length limitation.
With the weak synchronous and duration concepts, the model of nets within nets

can be better used to model cross-organizational process.

6 Related Work and Conclusions

Petri net model is a good formalism for software process modeling. W. Deiters and V.
Gruhn et al. presented a FUNFOST net model used in MELMAC system [3]. Aalst
presented the definition of workflow nets [1]. Verbeek has developed an inter-
organizational workflow nets using XRL/Flower [14]. Both of them are based on
traditional flat nets, which cannot model mobility directly and define the organiza-
tional boundaries clearly.

As a novel multi-dimensional Petri net model, Valk presented the definition of nets
within nets [12]. The model of nets within nets enhances the capability of modeling
mobility and is well suited for cross-organizational process modeling.

In the design perspective of workflow systems, T. Cai et al. at Dartmouth College
developed a workflow system based on mobile agents, called DartFlow [2]. M. Divit-
ini et al. also provided a system concept of inter-organizational workflow based on

 Rule 2

374 J. Ge et al.

agent coordination [5]. Mobile agent is a good technique for improving the flexibility
and the scalability of process management system.

To improve the flexibility and the scalability of process management in the cross-
organizational environment, we combine the advantages of the paradigm of net within
nets and mobile agent technology. In this paper, we apply the model of nets within
nets to model cross-organizational process, and extend the concept of WF-nets in the
paradigm of nets within nets. Then, we provide an equivalent translation approach
from multi-dimensional Petri nets to traditional flat Petri nets so that the model of nets
within nets can be indirectly analyzed with many existing analysis approaches. The
translation rule reduces the difficulty of direct analysis and preserves the soundness
property. For enhancing the flexibility of execution, we introduce weak synchronous
relation into the model of nets within nets. This is the main work of this paper. Petri
net model has firm mathematical foundation, so this translation will provide a base for
verification and analysis of cross-organizational process model.

In this paper, we focus on the control process perspective of the software proc-
esses. For a complete software process support system, resource perspective, data
perspective and organizational perspective are included. In our opinion, the control
process perspective is the kernel of process model, and other perspectives can be
added around the control process perspective. This is the future direction of our work.

Acknowledgements

We want to thank Professor R. Valk, Dr. M. Köhler and Dr. B. Farwer of TGI Group,
Hamburg University and Dr. K. Misra of Department of Computer Science, Warwick
University for their valuable suggestions.

References

1. W.M.P. van der Aalst: The Application of Petri Nets to Workflow Management. Journal
of Circuits, Systems, and Computers, (1998) 21-66

2. T. Cai, P. A. Gloor and S. Nog: DARTFlow: A Workflow Management System on The
Web Using Transportable Agents. Dartmouth College PCS-TR96-283

3. W. Deiters and V. Gruhn: The FUNSOFT Net Approach to Software Process Manage-
ment. International Journal on Software Engineering and Knowledge Engineering, (1994)
229-256

4. J. Desel, J. Esparza: Free choice Petri nets. Cambridge University Press (1995)
5. M. Divitini, C. Hanachi, C. Sibertin-Blanc: Inter-Organizational Workflows for Enterprise

Coordination. Coordination of Internet Agents: Models, Technologies, and Applications,
Springer (2001) 369-398

6. W. S. Humphrey: Managing the Software Process. Addison-Wesley (1989)
7. M. Köhler, D. Moldt, and H. Rölke: Modelling mobility and mobile agents using nets

within nets. Proc. of Application and Theory of Petri Nets 2003, Springer-Verlag, LNCS
2679 (2003) 121-140

8. M. Köhler and H. Rölke: Properties of Object Petri Nets. Proc. of Application and Theory
of Petri Nets 2004, Springer-Verlag, LNCS 3099 (2004) 278–297

9. C. Lakos: From Coloured Petri nets to Object Petri nets. Proc. of Application and Theory
of Petri Nets 1995, Springer-Verlag, LNCS 935 (1995) 278-297

 Translation of Nets Within Nets in Cross-Organizational Software Process Modeling 375

10. L. J. Osterweil: Software Processes are Software too. Proc. of ICSE (1987) 2-13
11. W. Reisig: An Introduction to Petri Nets. Springer (1985)
12. R. Valk: Petri nets as token objects: An introduction to elementary object nets. Proc. of

Application and Theory of Petri Nets, Springer-Verlag, LNCS 1420 (1998) 1-25
13. R. Valk: Concurrency in Communication Object Petri Nets. In G. Agha et al. editors, Con-

current Object-Oriented Programming and Petri Nets, Springer-Verlag, LNCS 2001
(2001) 164-195

14. H. M. W. (Eric) Verbeek, A. Hirnschall, and Wil M. P. van der Aalst: XRL/Flower: Sup-
porting Inter-organizational Workflows Using XML/Petri-Net Technology. Proc. of WES
2002, Springer-Verlag, LNCS 2512 (2002) 93-108

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 376 – 388, 2005.
© Springer-Verlag Berlin Heidelberg 2005

M(in)BASE: An Upward-Tailorable Process Wrapper
Framework for Identifying and Avoiding Model Clashes

David Klappholz1 and Daniel Port2

1 Stevens Institute of Technology, Department of Computer Science,
 New Jersey, USA

d.klappholz@worldnet.att.net
2 University of Hawaii at Manoa, Department of Information

Technology Management, 2404 Maile Way, E601k, Honolulu, Hawaii, 96822
dport@hawaii.edu

Abstract. MBASE (Model-Based [System] Architecting & Software Engineer-
ing) is a framework that can be wrapped around any software development
process to deal with project failures caused by “model clashes.” Existing
MBASE guidelines have all been designed to cover large classes of projects,
and are intended to be tailored down, based on risk considerations, to the pro-
ject at hand. Experience has shown that tailoring down is quite hard to learn and
apply; based upon this observation, we are developing M(in)BASE, a minimal
version of MBASE intended to be tailored up. In this paper, we review the fun-
damentals of MBASE, discuss, in detail, the reasons for creating M(in)BASE,
and describe M(in)BASE.

1 Introduction: MBASE

Even when a sophisticated software development process is used, projects often fail.
A prime reason for this failure is unresolved, often undetected, differences among
stakeholders’ sets of assumptions – their “models” – of various aspects of the project.
MBASE [1,2,3,4,5,9,10] is an approach to identifying “model clashes” so that their
risks can be dealt with. Rather than being a development process, MBASE is a
framework that can be wrapped around any type of development process, from light-
weight Agile to heavier-weight Plan-driven.

A relatively heavy weight set of MBASE guidelines [10] has been used in USC’s
CS577 for a number of years, and a number of variants have been used in industry
and government projects [6,7,8]. All have been designed to cover a wide variety of
project types, i.e., to be more general than is required for any specific project, and to
be tailorable down, based on risk conditions, to the project at hand. MBASE’s adop-
tion has been limited for various reasons, chief among them, we believe, that perform-
ing risk-based tailoring down – especially tailoring down for use with agile processes
-- is fundamentally harder than performing risk-based tailoring up. In this paper we
review MBASE and introduce M(in)BASE, a “minimal” version of MBASE intended
to be tailored up, as required, to the project at hand.

Existing versions of MBASE start with the observation that in considering model
clashes, it is useful to divide stakeholders’ models into the following four categories:

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 377

-Success models: sets of assumptions that must be satisfied in order for the stake-
holder to consider the product and project to be a success.

-Product models: sets of assumptions about the details of the product, e.g.: the
product’s operational concept; the product’s scope; the product’s environment, i.e.,
people and other hardware/software with which the product will/should interface; the
product’s requirements, the product’s architecture / design; etc.

-Process models: sets of assumptions about the way the product will be developed
and put into operation, i.e., about the way the project will be run/managed.

-Property models: sets of assumptions about such aspects of the product or process
as cost, schedule, performance, and “ilities” such as reliability, portability, extensibil-
ity, maintainability, security, etc.; i.e., properties whose extents can be placed on ei-
ther absolute or relative scales.

Numerous examples of all four types of assumptions/models may be found in [9].

Fig. 1. MBASE Model Integration Framework

MBASE, as a process add-on framework, is defined in terms of five “invariants”
[9]. That is, a project can be an MBASE-XP project, an MBASE-Waterfall project, an
MBASE-Spiral project, etc. A project being run according development process X is
an MBASE-X project if and only if it adheres to the following principles/invariants:

-(i) the model integration framework shown in Figure 1 has been added to X.
-(ii) the process integration framework shown in Figure 2 has been added to X
-(iii) developers use the Life Cycle Objectives (LCO), Life Cycle Architecture

(LCA), and Initial Operational Capability (IOC) milestones/anchor points [13] as
stakeholder commitment points for proceeding from stage to stage of the project.

criteria
Product

evaluation
criteria

Process
entry/exit

Planning and control

Milestone content

Evaluation and
analysis

Success
Models

Product
Models

Process
Models

Property
Models

378 D. Klappholz and D. Port

-(iv) a stakeholder win-win relationship is defined and sustained, in a fashion com-
patible with X, for the purpose of dealing with model clashes, throughout the project’s
life-cycle. This means that periodically:

-success-critical stakeholders are identified-each stakeholder participates in the in-
tegration of models relevant to him/her

-models are modified, as required
-all critical stakeholders come to an agreement on the latest, updated models to be

used to further pursue the project
-(v) model integration activities are risk-driven as are contents of all artifacts pro-

duced during model integration That is, each of the following is decided through an
evaluation of its risk-reduction value:

-the number of times that stakeholders meet between anchor points
-the specific issues/models dealt with in developing project artifacts, other than

LCO-, LCA-, and IOC-mandated issues/models (see below)
-the detail with which each issue/model is addressed
-the total amount of time spent on model integration

Fig. 2. MBASE Process Integration Framework

Detailed examples of the use of the integration frameworks may be found in [9]
Regardless of the process used in a development project and regardless of whether

that process requires that models be discussed only verbally or written down to either
loose or tight specifications, it is clear that the developers must create models in the
following product- and process-related areas:

Stakeholders

Domain
modelsSuccess

models

Negotiate
mutually
satisfactory
entry and
exit
conditions

Product
models

Set
context
for

Property
models

Provide
measures

for

Constrain

Process
models

Guide
Development of

Describe
enterprise
context in

Constrain

Serve and satisfy

Provide
parameters
for

Provide
parameters
for

Constrain

Contribute to

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 379

-Operational Concept: product’s objectives and relation to organization objectives;
product’s scope; people and other software with which the product will interact; op-
erational scenarios; perhaps, the direction in which the objectives are likely to evolve
over time.

-Requirements: product’s detailed functions, perhaps prioritized; details of prod-
uct’s interfaces; necessary quality attribute (reliability, availability, maintainability,
etc.) levels

-Architecture/Design: logical and physical elements/components that will consti-
tute the product, and their relationships.

-Development Plan: the development process to be used; schedules and milestones;
individual developers’ responsibilities.

-Business Case: project rationale, including costs, value-added and return on invest-
ment estimates; process rationale, requirements satisfaction; project risk assessment.

In all current versions of the MBASE guidelines, the models to be created are or-
ganized under artifacts named Operational Concept Definition (OCD), System and
Software Requirements Definition (SSRD), System and Software Architecture Defini-
tion (SSAD), Life Cycle Plan (LCP), and Feasibility Rationale Description (FRD).

2 MBASE Guidelines

You The key to finding and eliminating model clashes is the use of the model integra-
tion and process integration frameworks; but doing so directly is far too much work
for the average software developer, even for one who understands the theoretical un-
derpinnings of the frameworks. The obvious solution to this problem is to provide the
user with:

-A (maximal) set of specific models to develop within each of OCD, SSRD,
SSAD, LCP, FRD, and CTS; that is, a set of models that cover all possible MBASE
projects, with the typical MBASE proviso that the question of how elaborate each
model should be for a specific project, or whether it need be developed at all, be
based on the risk-based principle of “if it’s risky not to do it, then do it; if it’s risky to
do it, then don’t.”

-For each pair of members of the (maximal) set of models to which a particular
model or process integration applies, a detailed description of how the members of the
pair must integrate.

Additionally, the user might be provided, for each specific model, with examples
of situations in which risk considerations dictate that the model is necessary, and how
elaborate it should be.

All of these are included in existing “MBASE guidelines,” which may, therefore,
be thought of as M(ax)Base Guidelines in the sense that they suggest that:

-one start with an assumption of maximal model construction
-one decide upon actual model construction through the use of a risk-based tailor-

ing-down process.

Given that there really can be no set of models – and model-pair integrations – that
cover all possible software development projects, the original MBASE (M(ax)BASE)

380 D. Klappholz and D. Port

guidelines were designed, more or less, to cover all foreseeable CS577 projects and
CS577 educational goals [14,15,16].

One problem with the M(ax)BASE approach is that, from 1998 to 2004, in order to
correct perceived omissions and to accommodate previously unseen types of project,
the M(ax)BASE guidelines grew from a relatively large 86 pages to an unacceptably
large 355 pages. This growth occurred in spite of a conscious effort to minimize and
reduce the size of the guidelines. The data points in figure 3 below shows the growth
of the guidelines from 1998 to 2004 The exponential curve which has been fitted to
the data points has an R2 value of 0.96. While there is no theoretical reason to believe
that this is indeed a predictor of the growth of the M(ax)BASE guidelines, if it were,
the size in 2007 would be 666 pages! We must note that there were always very good
reasons for adding to the guidelines. Each year the MBASE development team has
carefully:

-evaluated feedback from CS577,
especially problem areas and size and
quality of deliverables

-reviewed:
-current development trends
-research goals
-legacy, consistency, and support

issues such as instructional materials
and follow-on projects

-industry affiliate requests
-and many other issues.

The team has then proposed and hotly debated changes to the guidelines. Despite
earnest effort, it seems that the fundamental approach to M(ax)BASE dictates that the
guidelines will grow.

The complexity of the guidelines has grown to the point at which they are ex-
tremely difficult to follow, even with the addition of electronic templates [17], several
“deliverables management” tools [18], and a very sophisticated and elegant “Elec-
tronic Process Guide” based on the Spearmint process description system [12,19] de-
veloped at the Fraunhofer Institute. This latter fully web-based guide, supplied as a
presumed aid in using the MBASE guidelines, has over 1000 hyperlinked pages and
remains relatively unused by both CS577 students and industry. With such an explo-
sion of information it is not surprising that CS577 students do not read the entire
guidelines. In fact they resort to using only the templates and then later, adapt ar-
chived artifacts from previous years’ projects (often leaving in traces of the original
project(s)!). Given the size of the guidelines and of support materials it has become
very hard to keep everything aligned to the MBASE invariants. This latter issue
erodes confidence in achieving MBASE’s very objective – identifying and avoiding
model clashes. To make matters worse, frustration has increased as the need has
arisen to adapt to new project types (e.g. COTS-based), to new tools (e.g. Easy Win-
Win and Rational Rose), and to new processes (e.g. XP and RUP). The very coher-
ence and integrity of the guidelines has become problematic.

Growth on MBASE guidelines

y = 1E-198e0.2304x

R2 = 0.9554

0

50

100

150

200

250

300

350

400

1997 1998 1999 2000 2001 2002 2003 2004 2005

year

p

ag
es

Fig. 3. Growth of MBASE Guidelines

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 381

As it turns out, to students whose primary goal is a good grade, and for whom qual-
ity software is secondary, the maxim “if it’s risky not to do, then do” is more visible
than “if it’s risky to do, then don’t.” As a consequence, the result of students’ risk
management has translated into an alarming increase in the size of artifacts produced,
with an attendant lowering of quality (We suspect that an analog of this would hold in
industry due to contractual and productivity pressures.)

Regardless of project type, CS577 student teams have tended to produce an in-
stance of each type of model described in the guidelines, even when totally uncalled
for. For example, students often produce UML class models for the (presumed) inter-
nals of COTS products that are to be integrated into software under development --
even though source code is unavailable, and only interfaces are of any importance.

The fact that it is, apparently, harder to learn what models not to build in a given
situation than to simply build all possible models, often results in wasted effort, con-
fusion and uncertainty for all stakeholders, including IV&V teams. LCO, LCA, and
IOC reviews become less successful and less fruitful; and, worst of all, in direct oppo-
sition to MBASE’s purpose, rather than decreasing, the incidence of model clashes
often increases. Indeed, this seems to be a classic case of “if I had more time I would
have written a shorter letter” syndrome.

Because of the large number of model-pair integrations, many between a model in
one model group (OCD, SSRD, SSAD, LCP, and FRD), and a model in a different
group (see examples below), even minor changes have caused major (cascading)
breakage to the guidelines. Because of the overhead of corrections/updates and of the
attendant required updating of lecture slides, evaluation rubrics, and TA training,
CS577 instructional staff have often had no choice but to use out of date and inconsis-
tent teaching materials.

On the industry side, MBASE has been adopted by companies like Rational,
XEROX, TRW, Litton, FAA, and the Air Force CISR Center. However none of these
organizations have truly adopted MBASE in its entirety. Rather, they have taken parts
of MBASE and adapted them to their exiting process. For example, Rational has
adopted the LCO, LCA, IOC lifecycle anchor points as part of RUP [11]. Although
these appear to be examples of “tailoring down” the MBASE guidelines, they really
aren’t. Tailoring-down means reviewing each item and reducing, adapting, or remov-
ing the item if leaving it in poses a risk. Selectively picking bits of MBASE violates
the fundamental purpose of the integration framework. Recall that it is this integration
framework that is the primary means for identifying and avoiding model clashes, and
so this presumed benefit is lost by selectively picking items and using them without
regard to their original integrations.

3 M(in)BASE

The logical solution to consider for the problems created by M(ax)BASE is to create a
M(in)BASE, i.e., a minimal set of models with model-creation risk management
based upon the notion of:

382 D. Klappholz and D. Port

-starting with a minimal version of each model
-adding detail when uncertain as to the adequacy of a model,
i.e., of tailoring up rather than tailoring down.

M(in)BASE is constructed by defining the minimal set of model types needed to
embody the MBASE invariants, and adding to each relevant model pair a minimal
amount of MBASE integration detail. Thus, for example, in M(in)BASE the OCD
(Operational Concept Description) is specified as consisting of the following eight
models:

1. Introduction
2. Initiatives and Expected Outcomes (Success Model)
3. Key Stakeholders & Win Conditions (Success Model)
4. System Boundaries and Environment (Property Model)
5. System Capabilities (Product Model)
6. Key Usage Scenario Prototype(s) (Product Model)
7. Operational Stakeholders & Win Conditions (Success Model)
8. Transition, Maintenance and Support Impacts (Property Model)

Each model category (OCD, SSRD, SSAD, LCP, FRD) is defined in terms of the
milestone elements it should fulfill, e.g.:

Table 1. Models developed as part of the OCD will be used to contribute to satisfaction of the
following milestone elements

OCD Success Criteria for LCO:
Baseline operational concept, top-level
feasibility considerations, architectural
boundaries, and organization feasibility
for at least one architecture

OCD Success Criteria for LCA:
New system development project:

Reasons why the system will be built
Enhancement or modification pro-

ject: Reasons why the system was built
in the first place

• Initiatives and Expected Outcomes

• Key Stakeholders

• System Boundaries and Environ-
ment

• System Capabilities

• Operational Stakeholders

• Transition, Maintenance, and Support
Scenarios

Each individual model has a relatively concise specification; for example:

- Initiatives and Expected Outcomes (Success Model)
This section lists outcomes beneficial to the sponsoring organization expected to
result from the new system, major initiatives that will be required for the project to be
successful, and any assumptions that will have to be satisfied to achieve the desired
outcomes. This section is typically developed by starting with a list of desired

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 383

outcomes and working backwards, iteratively, to identify: additional outcomes neces-
sary to the achievement of outcomes already known to be necessary; and initiatives
whose satisfactory execution will be required to achieve the desired outcomes. One
major initiative is always, of course, the development of the hardware/software con-
stituting the new system. Other typical major initiatives are ones for dealing with
transition, maintenance, and support.

- System Boundaries and Environment (Property Model)
This section describes the system to be produced in terms of what it does and what, if
anything, it requires for its operation from other hardware systems, software systems,
and humans. The system boundary distinguishes between:

-what the project team will be responsible for developing and delivering, on the one
hand

-and, on the other hand, hardware systems, software systems, and humans with
which the developers’ system will interact, but over which the developers have no
control and for which the developers have no responsibility.

Finally, each individual model comes with an indication of Stakeholder WinWin
issues, Risk Issues, Risk Tolerance, and Model Integrations. Expanded M(in)BASE
guidelines list all required individual model integrations. As an example, model
integrations listed under Key Stakeholders & Win Conditions (Success Model)
include:

• OCD 5 System Capabilities (Product Model): Each system capability must come
from at least one key stakeholder win condition

• OCD 6 Key Usage Scenario Prototype(s) (Product Model): Each Key Usage
Scenario should relate at least one key stakeholder win condition

• SSRD 2.1 Essential Success Requirements (Success Model): Each key stake-
holders’ (short term) win conditions must be satisfied by the essential success re-
quirements

• SSAD 2 Logical Model (Product Model): For each logical model component,
there must be relevant, essential or evolutionary, success requirements

• SSAD 3 Physical Model (Product Model): For each physical model component,
there must be relevant, essential or evolutionary, success requirements

• LCP 2 Project Execution Plan (Process Model): The project execution plan must
include steps to realize all key stakeholder win conditions

• FRD 2.1.2 Benefits: Value Added and Return on Investment (ROI) (Success
Model): The benefits of achieving all key stakeholders’ win conditions must be
evaluated

• FRD 2.5 Stakeholder Concurrence (Success Model): All key stakeholders’ win
conditions must be accounted for by stakeholder concurrence

While M(ax)BASE guidelines specify that (analysis stage) use cases, a results
chain, etc., must be included as models in the OCD, the basic M(in)BASE guidelines
contain no such detail; expanded M(in)BASE guidelines, or a M(in)BASE textbook
might include the following as possible Initiatives and Expected Outcomes models:

384 D. Klappholz and D. Port

Table 2. M(in)BASE possible Initiatives and Expected Outcomes models

Model approach Degree of
formality

UML Use-case diagram where actors are initiatives, associa-
tions are contributions, uses are outcomes, notes are assump-
tions

Medium-high

The Results Chain is a useful notation for representing initia-
tives, contributions, assumptions, expected outcomes

Medium-high

The WinWin model explicitly relates stakeholder win-
conditions, issues, options, and agreements which roughly
translate into general initiatives, contributions and assump-
tions, specific initiatives, and expected outcomes

Medium

A simple two-column list of initiatives and related outcomes
with notable assumptions

Low-medium

Stand-up meeting with paragraph summary of initiatives, out-
comes and assumptions

Very low

For example, a “stand-up meeting with paragraph summary of initiatives, outcomes
and assumptions,” an extremely modest and low-cost model, is sufficient as a
M(in)BASE Initiatives and Expected Outcomes model if the developers, perhaps us-
ing XP as their process model, deem there to be little/no/acceptable risk in not elabo-
rating the model any further. Where the risk is significantly greater, a use-case model
might be indicated.

Table 3 below provides a superficial comparison of M(in)BASE with M(ax)BASE
based on their respective major sections, subsections, and numbers of pages:

Table 3. Comparison of M(in)BASE with M(ax)BASE major sections, subsections, and
numbers of pages

pages # Major sections # sub-sections* Section

M(in) M(ax) M(in) M(ax) M(in) M(ax)
OCD 7 41 8 6 8 23

SSRD 5 17 3 7 10 18

SSAD 3 128 6 5 6 20

LCP 2 30 3 5 3 15

FRD 5 18 2 5 7 12

*Note: If a major section has no subsections it is counted as one subsection

The above table is not exactly an apples-to-apples comparison as the M(ax)BASE
guidelines provide details and elaborations specific to use in CS577, however it does
underline logistical differences. That is, because tailorable-up M(in)BASE is far smaller
and far less complex than M(ax)BASE, we believe it will be considerably more success-
ful than tailorable-down M(ax)BASE because M(in)BASE should be far easier:

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 385

-to use -- subject to developers’ having a solid background in risk assessment, and
to the availability of material descriptive of standard modeling techniques and nota-
tions, from the lightest weight to the heaviest.

-to keep in line with the MBASE invariants
-to adapt to specific types of project, i.e., to perform generic tailoring up for classes

of projects which by their nature, require heavier duty modeling.
-to be adopted by both academics teaching software development and industry

developers.

4 The M(in)BASE Guidelines Project

The goals of the M(in)BASE work currently underway are to produce:

-a minimal set of model types that are general enough so that for (almost) all soft-
ware development projects, regardless of the process to be used, a set of instances can
be developed to cover the project’s modeling needs.

-a list of specific model (type)-pair integrations required to identify, and help
eliminate, all model clash types dealt with by the MBASE model and process integra-
tion frameworks.

-a compilation of actual risk issues encountered in software development projects,
of a wide range of complexities, using a wide range of development processes.

-guidelines for the degree of elaboration required for each model type, or class of
model types, based upon actual project risks.

-a compilation of examples of model instances, of various degrees of elaboration,
together with the risk-based reasoning behind the degree of elaboration to which each
was developed.

-instructional materials, including lecture slides and a textbook, to be used to teach
both students and professional software developers to adapt M(in)BASE to their pro-
jects.

We have developed initial versions of the first two items on the list above, and are
proceeding to develop the rest. Even though we are just at the start of the M(in)BASE
project, the process of developing the model types and integrations, has served to elu-
cidate at least two critical points regarding MBASE in general.

For one, it had previously been thought that all software development projects are
sufficiently prone to model clashes as to justify the overhead of using MBASE, in one
version or another. As it turns out, this is not true, because, in some cases, which we
are beginning to learn how to characterize, model clashes are so unlikely as to
counter-indicate MBASE’s overhead; i.e., there are cases in which even the most
minimal version of MBASE’s has more overhead than justifies the small amount of
risk reduction it provides. The following is an example of such a project:

-Consider a project whose goal is to develop software to convert data from the
format required by one DBMS to the format required by a different DBMS; assume
further that the company involved in this development effort is producing the data
conversion software for public sale, rather than for use in migrating an application of
its own from the first DBMS to the second one; suppose, finally, that the chosen de-
veloper has experience with both DBMS’s and that the development is projected to

386 D. Klappholz and D. Port

be completed by one developer in two to three weeks, and is needed, to capture mar-
ket sure, in a month at the latest. In this case the critical stakeholders’ business needs
are well-known up front as are technical software requirements; risks are well-
understood and of very low magnitude; the project will pass through LCO, LCA, and
IOC, but will probably reach LCO (identification of one feasible architecture) almost
upon initiation, will probably reach LCA at or shortly after the same time as it reaches
LCO, and will reach IOC a few short weeks later. In this case, the overhead of using
MBASE is almost certainly higher than necessary, and would likely delay the produc-
tion of the software or reduce its quality.

On the other hand, the following is a project for which MBASE’s overhead is
probably justified:

-Consider an e-services project to be done by a team of developers who have little
experience working with one another, and have little exposure to the application do-
main; assume further that this is the first such project on which the customer, the
owner of a medium-sized business, is embarking; assume, finally, that the best initial
estimate of the size of the development team is five people. Even given its overhead,
the use of MBASE is probably worthwhile because:

-the customer has likely thought very little about the details of the functionality re-
quired to satisfy both his/her needs and those of end users. The developers will, there-
fore, likely produce unusable software without going through a Win-Win process.

-risks relating to the customer’s inexperience with software developers and soft-
ware development, to the developers inexperience with the domain and with working
together, and to the possibility that it is infeasible to produce software that will be
usable and will satisfy the customer’s business needs within time and budget con-
straints, make it most likely to either stop the project early or succeed in the develop-
ment if all phases are risk-driven.

Starting to develop M(in)BASE has also led to a realization that not all projects are
not MBASE prospects because not all projects need go through all three of LCO, LCA,
and IOC. Examples of such MBASE non-candidates are (most) prototyping projects,
which needn’t go through IOC. Although some of MBASE’s aspects might be applica-
ble to such projects, all versions of MBASE, including the most minimal, come with
the overhead of producing and integrating models that are not even used until IOC,
resulting in clearly unnecessary overhead for projects that needn’t go that far.

Finally, the M(in)BASE project has led us to the realization that some projects are,
essentially, pre-architected and would suffer from considerable unnecessary overhead
if MBASE were to be applied. An example of this type of project is one in which the
use of specific middleware, along with, for example, specific server-end and client-
end technology is mandated from the get-go, so that the overhead of the “archi-
tecting” in MBASE is not justified.

5 Future Research

On an informal level, it would be interesting, and far easier than with M(ax)BASE, to
study the way users tailor M(in)BASE, especially with respect to their use of risk con-
siderations.

 M(in)BASE: An Upward-Tailorable Process Wrapper Framework 387

On a more formal level, the basic question that must be answered is whether
M(in)BASE will work better than M(ax)BASE; that is:

-will M(in)BASE prove to be easier to adapt to specific processes (e.g., to RUP,
XP, Spiral) than is M(ax)BASE?

-does M(in)BASE deliver on the promised benefit of reducing risk due to model
clashes?

-will more industry/government organizations adopt M(in)BASE than have
adopted M(ax)BASE?

-will organizations that adopt M(in)BASE adopt the entire framework – required
for dealing with model clashes?

On the issue of whether any version of MBASE delivers on the promised benefit of
reducing risk due to model clashes, Al Said’s USC PhD thesis [20] was a good start to
the study of this question, but suffered from the fact that the very magnitude of
M(ax)BASE made definitive conclusions extremely hard to achieve because relevant
issues are obscured by the sheer magnitude of each studied project’s documentation
of its M(ax)BASE models. M(in)BASE’s far smaller model documentation promises
to be more amenable to the required analysis, and promises to enable us to include far
more project instances in the study.

6 Summary

MBASE has proven to be valuable as a process wrapper framework for software en-
gineering courses; many of its elements have been adopted in a variety of organiza-
tions. Logistical issues arising from the rapid growth and complexity of the guidelines
have resulted in limited industry adoption and artifacts of questionable quality within
the CS577 real-project software engineering course. Furthermore, we are finding it
increasingly difficult to adapt the MBASE guidelines to new development tools and
models (e.g. COTS, XP). The original purpose of MBASE, to identify and avoid
model clashes, is difficult to assure within the current set of guidelines.

We believe the source of these problems to be the fundamental approach of “tailor-
ing down” guidelines that attempt to address a broad range of project types and model
choices. It is inherently difficult to apply the principle of “if it’s risky to do it, then
don’t” to tailoring the complex MBASE guidelines.

The M(in)BASE project attempts to address the challenges of developing a stable,
easily adopted and easily adapted version of MBASE by basing the approach on the
principle “if it’s risky not to do it, then do it” to guide in the “tailoring up” of a mini-
mal set of MBASE models to a particular project.

References

1. Boehm, Port: Escaping the Software Tar Pit: Model Clashes and How to Avoid Them.
ACM Software Engineering Notes (January 1999) 36-48,
http://sunset.usc.edu/TechRpts/Papers/usccse98-517/usccse98-517.pdf

2. Boehm, Por: Conceptual Modeling Challenges for Model-Based Architecting and Soft-
ware Engineering (MBASE). Proceedings, Conceptual Modeling (1997) 24-43,
http://sunset.usc.edu/TechRpts/Papers/usccse98-513/usccse98-513.pdf

388 D. Klappholz and D. Port

3. Boehm, Port, Egyed, and Abi-Antoun: The MBASE Life Cycle Architecture Milestone
Package: No Architecture Is An Island. World International Conference in Software Ar-
chitectures (1999) http://sunset.usc.edu/TechRpts/Papers/usccse98-510/usccse98-510.pdf

4. Boehm, Port. When Models Collide: Lesson From Software Systems Analysis. IT Profes-
sional, IEEE-CS (Janurary/February 1999) 49-56

5. Bohm, Port, Al-Said: Avoiding the Software Model-Clash Spiderweb. IEEE Computer,
Vol.33, No.11 (2000) 120-122

6. Boehm, Port, Huang, and Brown: Using the Spiral Model and MBASE to Generate New
Acquisition Process Models: SAIV, CAIV, and SCQAIV. Crosstalk (January 2002)

7. Boehm, Port. Balancing Discipline and Flexibility With the Spiral Model and MBASE.
Crosstalk (December 2001)

8. Boehm, Basili, Port, and Jain: Achieving CMMI Level 5 Improvements with MBASE and
the CeBASE Method. CrossTalk, Vol. 15, No. 5 (May 2002) 9-16

9. Klappholz, Port: Introduction to Model Based Architecting and Software Engineering
(MBASE). Advances in Computers Edited by Marvin V. Zelkowitz, Elsevier Inc., Volume
62 (2004)

10. Boehm, B., Port, D., Abi-Antoun, M. and Egyed, A.: Guidelines for Model-Based Archi-
tecting and Software Engineering (MBASE), version 2.2, USC-CSE, (Feb.2001),
http://sunset.usc.edu/Research/MBASE

11. Kruchten, P.: The Rational Unified Process. Addison-Wesley (1998)
12. MBASE Guidelines and MBASE Electronic Process Guide. USC-CSE. http://cse.

usc.edu/research/MBASE/EPG
13. B. Boehm: Anchoring the Software Process. IEEE Software, Vol.13, No.4 (1996) 73-82
14. Port, Boehm: Using a Model Framework In Developing and Delivering a Family of Soft-

ware Engineering Project Courses. 14th Conference on Software Engineering Education
and Training (CSEE&T) (February 2001)

15. Boehm B., Egyed A., Kwan J., Port D., Shah A., and Madachy R.: Using the WinWin Spi-
ral Model: A Case Study. (July 1999) (PDF)

16. B. Boehm, A. Egyed, J. Kwan, and R. Madachy: Developing Multimedia Applications
with the WinWin Spiral Model. Proceedings, ESEC/ FSE 97, Springer Verlag (1997)

17. http://cse.usc.edu/classes/cs577a_2004/guidelines/MBASEtemplates/OCD_Templatev1a.doc
18. http://cse.usc.edu/classes/cs577a_2004/coursenotes/ep/Mdm.pdf
19. http://www.iese.fhg.de/Spearmint_EPG/
20. Al-Said M.: Ph.D. Thesis, University of Southern California, Department of Computer

Science (2003)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 389 – 402, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Integrated Modeling of Business Value and
Software Processes

Raymond Madachy1,2

1 USC Center for Software Engineering,
Department of Computer Science, SAL 318,

University of Southern California, Los Angeles, CA 90089-0781
madachy@usc.edu

2 Cost Xpert Group, 2990 Jamacha Rd., #250,
San Diego, CA 92019

Abstract. Business value attainment should be a key consideration when de-
signing software processes. Ideally they are structured to meet organizational
business goals, but it is usually difficult to integrate the process and business
perspectives quantitatively. This research uses modeling and simulation to as-
sess process tradeoffs for business case analysis. A model for commercial
software enterprises relates the dynamics between product specifications, in-
vestment costs, schedule, software quality practices, market size, license reten-
tion, pricing and revenue generation. The system dynamics model allows one
to experiment with different product strategies, software processes, marketing
practices and pricing schemes while tracking financial measures over time. It
can be used to determine the appropriate balance of process activities to meet
goals. Examples are shown for varying scope, reliability, delivery of multiple
releases, and determining the quality sweet spot for different time horizons.
Results show that optimal policies depend on various stakeholder value func-
tions, opposing market factors and business constraints. Future model im-
provements are also identified.

1 Introduction

Software-related decisions should not be extricated from business value concerns.
Unfortunately, software engineering practice and research frequently lacks a value-
oriented perspective. Value-Based Software Engineering (VBSE) seeks to integrate
value considerations into current and emerging software engineering principles and
practices [1].

This macroprocess research from [2] addresses the planning and control aspect of
VBSE to manage the value delivered to stakeholders. Techniques to model cost,
schedule and quality are integrated with business case analysis to allow tradeoff stud-
ies in a commercial software development context. Business value is accounted for in
terms of return-on-investment (ROI) of different product and process strategies.

Many current practices are done in a value-neutral setting, such as standard earned-
value techniques that track cost and schedule but not stakeholder or business value.

390 R. Madachy

The latter can be considered the “real” earned value. A value-oriented approach pro-
vides explicit guidance for making products useful to people by considering different
people’s utility functions or value propositions. The value propositions are used to
determine relevant measures for given scenarios.

Two major aspects of stakeholder value are addressed here. One is the business
value to the development organization stemming from software sales. Another is the
value to the end-user stakeholder from varying feature sets and quality. Production
functions relating different aspects of value to their costs were developed and are
included in the integrated model.

It is a challenge to tradeoff different software attributes and particularly between
different perspectives such as business and software development. Software process
modeling and simulation can be used to reason about software value decisions. It can
help find the right balance of activities that contribute to stakeholder value with other
constraints such as cost, schedule or quality goals. A related approach to VBSE is the
iDAVE static spreadsheet model used to estimate the ROI of investments in software
dependability [3].

Some important elements of VBSE that this research includes are stakeholders’
value proposition elicitation and reconciliation, business case analysis, and value-
based monitoring and control. It is assumed in this modeling context that a benefits
realization analysis has been performed to substantiate a new product initiative,
though the model can clearly be used in this capacity. The stakeholder values of
profit and ROI have also already been elicited. These steps have been performed in
the field for companies in which this business case model has been applied.

2 Model Overview

The system dynamics model represents a business case for commercial software de-
velopment. The user inputs and model factors can vary over the project duration as
opposed to a static model. Inputs can be modified interactively by the user during the
course of a run and the model responds to the midstream changes. It can be used
dynamically before or during a project. Hence it is suitable for “flight simulation”
training or actual project usage to reflect actuals to-date.

The sectors of the model and their major interfaces are shown in Fig. 1. The soft-
ware process and product sector computes the staffing profile and quality over time
based on the software size, reliability setting, and other inputs. The staffing rate be-
comes one of the investment flows in the finances sector, while the actual quality is a
primary factor in market and sales. The resulting sales are used in the finance sector
to compute various financial measures.

Fig. 2 shows a diagram of the software process and product sector. It dynamically
calculates effort, schedule and defects. The staffing rate over time is calculated with a
version of Dynamic COCOMO [4] using a variant of a Rayleigh curve calibrated to
the COCOMO II cost model at the top level. The project effort is based on the num-
ber of function points and the reliability setting. There are also some parameters that
determine the shape of the staffing curve.

There is a simple defect model to calculate defect levels used in the market and
sales sector to modulate sales. Defect generation is modeled as a co-flow with the

 Integrated Modeling of Business Value and Software Processes 391

software development rate, and the defect removal rate accounts for their finding and
fixing. See [2] for more background on these standard flow structures for effort and
defects.

Fig. 3 shows the market and sales sector accounting for market share dynamics and
software license sales. The perceived quality is a reputation factor that can reduce the
number of sales if products have many defects (see the next section).

Finances

Market and
Sales

Software
Process and

Product

Staffing Rate

Product Quality

Sales Revenue

Product Specifications

Fig. 1. Model sectors and major interfaces

~

Function Points effort multiplier

cumulative effort

~

Reliability Setting

defect density

actual qualitydefects

~

defect removal rate

staffing rate

estimated total effort

learning function

manpower buildup parameter

defect generation rate

start staff

Fig. 2. Software process and product sector

392 R. Madachy

The market and sales model presented herein is a simplification of a more exten-
sive being used in industry that accounts for additional marketing initiatives and soft-
ware license maintenance sales.

The finance sector is shown in Fig. 4. Investments include the labor costs for soft-
ware development, maintenance and associated activities. Revenue is derived from
the number of license sales. Sales are a function of the overall market size and market
share percentage for the software product. The market share is computed using a
potential market share adjusted by perceived quality. The additional market share
derivable from a new product is attained at an average delay time. More details of the
overall model are provided in [2].

~

actual quality

license expiration fraction

perceived qualitychange in perceived quality

~

delay in adjusting perceptions

active licenses

license expiration ratenew license selling rate

~

market size multiplier

potential market share

potential market
share rate change

potential market share
increase due to new product

market share delay

Fig. 3. Market and sales sector

cash flow

cumulative investment

~

investment rate

cumulative revenue

revenue generation rate

average license price

ROI

~

other investments

new license selling rate

~

Staffing Rate

Fig. 4. Finance sector

 Integrated Modeling of Business Value and Software Processes 393

2.1 Quality Modeling and Value Functions

For simplification, software reliability as defined in the COCOMO II model [4] is
used as a proxy for all quality practices. It models the tradeoff between reliability and
development cost. There are four different settings of reliability from low to very
high that correspond to four development options. The tradeoff is increased cost and
longer development time for increased quality. This simplification can be replaced
with a more comprehensive quality model (see Conclusions and Future Work).

The resulting quality will modulate the actual sales relative to the highest potential.
A lower quality product will be done quicker; it will be available on the market
sooner but sales will suffer from poor quality.

Several rounds of a continuing Delphi poll of software marketing experts were
conducted to help quantify the relative sales impact of different quality levels. Now
the mapping between reliability and the relative impact to sales from the Delphi re-
sults is captured as a production function and used in the model with the latest refined
numbers.

Collectively there are two value-based production functions in the model to de-
scribe value relationships (they are illustrated in the first applied example). A market
share production function addresses the organizational business value of product
features. The business value is quantified in terms of added potential market share
attainable by the features. The relationship assumes that all features are implemented
to the highest quality. Since the required reliability will impact how well the features
actually work, the relationship between reliability costs and actual sales and is needed
to vary the sales due to quality.

The value function for actual sale attainment is relevant to two classes of stake-
holders. It describes the value of different reliability levels in terms of sales attain-
ment, and is essentially a proxy for user value as well. It relates the percent of poten-
tial sales attained in the market against reliability costs. Illustrations of the production
functions are shown in the next section.

quality

Page 1
0.00 1.25 2.50 3.75 5.00

Years

1:

1:

1:

2:

2:

2:

0

50

100

1: perceived quality 2: current indicator of quality

1
1 1

1

2 2

2

2

Fig. 5. Perceived quality trends with high and low quality product deliveries

394 R. Madachy

The market and sales sector also has a provision to modulate sales based on the
perceived quality reputation. A perception of poor quality due to many defects will
reduce the number of sales. A bad quality reputation takes hold almost immediately
with a buggy product (bad news travels fast), and takes a long time to recover from in
the market perception even after defects are fixed. This phenomenon is represented
with asymmetrical information smoothing as shown in Fig. 5 with a variable delay in
adjusting perceptions.

3 Applied Examples

Three representative business decision scenarios are demonstrated next. The first one
demonstrates the ability to dynamically assess combined strategies for scope and
reliability. The second example looks at strategies of multiple releases of varying
quality. Finally the model is used to determine a process sweet spot for reliability.

3.1 Example 1: Dynamically Changing Scope and Reliability

The model can be used to assess the effects of individual or combined strategies for
overall scope and reliability. This example will show how it can be used to change
product specifications midstream as a re-plan. Static cost models typically do not
lend themselves to re-plans after the project starts, as all factors remain constant
through time. This dynamic capability can be used in at least two ways by a decision-
maker:

• assessing the impact of changed product specifications during the course of a
project

• before the project starts, determining if and how late during the project specifica-
tions can be changed based on new considerations that might come up.

Three cases are simulated: 1) an unperturbed reference case, 2) a midstream
descoping of the reference case and 3) a simultaneous descoping and lowered re-
quired reliability. Such descoping is a frequent strategy to meet time constraints by
shedding features.

The market share production function in Fig. 6 relates the potential business value
against the cost of development for different feature sets. The actual sales production
function against reliability costs is shown in Fig. 7, and it is applied against the poten-
tial market capture. The four discrete points correspond to required reliability levels
of low, nominal, high and very high. Settings for the three cases are shown in both
production functions.

Fig. 8 shows a sample control panel interface to the model. The primary inputs for
product specifications are the size in function points (also called scope) and required
reliability. The number of function points is the size to implement given features.
The size and associated cost varies as the number of features to incorporate.

The reliability settings on the control panel slider are the relative effort multipliers
to achieve reliability levels from low to very high. These are input by user via the
slider for “Reliability Setting”. The attainable market share derived from the sales
production function in Fig. 6 is input by user on the slider “Potential Market Share
Increase”.

 Integrated Modeling of Business Value and Software Processes 395

0%

5%

10%

15%

20%

25%

0 2 4 6 8

Cost ($M)

A
d

d
ed

 M
ar

ke
t S

h
ar

e
P

er
ce

n
t

Reference Case
(700 Function Points)

Case 1 and Case 2
(550 Function Points)

Core
Features

High Payoff
Features

Features with
Diminishing Returns

Fig. 6. Market share production function and feature sets

30%

40%

50%

60%

70%

80%

90%

100%

0.9 1 1.1 1.2 1.3

Relative Effort to Achieve Reliability

P
er

ce
n

t
o

f
P

o
te

n
ti

al
 S

al
es

Low

Nominal

High

Very High

Required Reliability
Settings

Reference Case
and Case 1

Case 2

Fig. 7. Sales production function and reliability

Fig. 8 also shows the simulation results for the initial reference case. The default

case of 700 function points is delivered with nominal reliability at 2.1 years with a
potential 20% market share increase. This project is unperturbed during its course
and the 5 year ROI of the project is 1.3.

396 R. Madachy

Trend comparisons between the three cases can be visualized on Figures 8-10. Fig.
9 illustrates the initial case perturbed early to descope low-ROI features (see Fig. 6 for
the points on the production function). The scope goes down to 550 function points
and the staffing profile adjusts dynamically for it. The schedule is reduced by a few
months. In this case the potential market share increase is lowered by only two per-
centage points to 18%. With lower development costs and earlier delivery the ROI
increases substantially to 2.2.

A combined strategy is modeled in Fig. 10. The scope is decreased the same as be-
fore in Case 1 (Fig. 9) plus the reliability setting is lowered from nominal to low.
Though overall development costs decrease due to lowered reliability, the market
responds poorly. This case provides the worst return of the three options and market
share is lost instead of gained.

There is an early hump in sales due to the initial hype of the brand new product,
but the market soon discovers the poor quality and then sales suffer dramatically.
These early buyers and others assume the previous quality of the product line and are
anxious to use the new, “improved” product. Some may have pre-ordered and some
are early adopters that always buy when new products come out. They are the ones
that find out about the lowered quality and the word starts spreading fast.

A summary of the three cases is shown in Table 1. Case 1 is the best business plan
to shed undesirable features with diminishing returns. Case 2 severely hurts the en-
terprise because quality is too poor.

Fig. 8. Sample control panel and reference case (unperturbed)

 Integrated Modeling of Business Value and Software Processes 397

Page 1
0.00 1.00 2.00 3.00 4.00 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

0

8

15

10

23

35

-1

1

3

1: staffing rate 2: market share 3: ROI

1

1

1 1 1

2 2

2

2 2

3 3

3

3

3

Fig. 9. Case 1 - Descoping of low ROI features at time = .5 Years

Page 1
0.00 1.00 2.00 3.00 4.00 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

0

8

15

10

23

35

-1

1

3

1: staffing rate 2: market share 3: ROI

1
1

1 1 1

2 2
2

2 2
3 3

3

3

3

Fig. 10. Case 2 - Descoping of low ROI features and reliability lowering at time = .5 years

Table 1. Case summaries

Case Delivered
Size
(Function
Points)

Delivered
Reliability
Setting

Cost
($M)

Delivery
Time
(Years)

Final
Market
Share

ROI

Reference Case:
Unperturbed

700 1.0 4.78 2.1 28% 1.3

Case 1:
Descope

550 1.0 3.70 1.7 28% 2.2

Case 2: Descope
and Lower
Reliability

550 .92 3.30 1.5 12% 1.0

398 R. Madachy

3.2 Example 2: Multiple Releases

This example shows a more realistic scenario for maintenance and operational sup-
port. Investments are allocated to ongoing maintenance and the effects of additional
releases of varying quality are shown.

The reference case contains two product rollouts at years 1 and 3, each with the po-
tential to capture an additional 10% of the market share. These potentials are attained
because both deliveries are of high quality as seen in Figures 11-12.

A contrasting case in Figures 13-14 illustrates the impact if the second delivery has
poor quality yet is fixed quickly (Fig. 4 shows the quality trends for this case). This
results in a change of revenue from $11.5 M to $9.6M, ROI from 1.3 to 0.9.

This example is another illustration of the sensitivity of the market to varying qual-
ity. Only one poor release in a series of releases may have serious long term conse-
quences.

financials

Page 2
0.00 1.25 2.50 3.75 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

1

3

5

0

10

20

-1

1

2

0

3

6

1: revenue generationÉ 2: cumulative revenue 3: ROI 4: cumulative investÉ

1
1

1

1

2
2

2

2

3

3

3

3

4

4

4

4

Fig. 11. Reference case financials for two high quality product deliveries

sales and market

Page 1
0.00 1.25 2.50 3.75 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

0

1500

3000

200

650

1100

20

65

110

10

25

40

1: active licenses 2: new license selling É 3: license expiration rÉ 4: potential market shÉ

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 12. Reference case sales and market for two high quality product deliveries

 Integrated Modeling of Business Value and Software Processes 399

financials

Page 2
0.00 1.25 2.50 3.75 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

1

3

5

0

5

10

-1

1

2

0

3

6

1: revenue generationÉ 2: cumulative revenue 3: ROI 4: cumulative investÉ

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 13. Financials for high and low quality product deliveries

sales and market

Page 1
0.00 1.25 2.50 3.75 5.00

Years

1:

1:

1:

2:

2:

2:

3:

3:

3:

4:

4:

4:

0

1500

3000

200

600

1000

20

60

100

10

25

40

1: active licenses 2: new license selling É 3: license expiration rÉ 4: potential market shÉ

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

Fig. 14. Sales and market for high and low quality product deliveries

3.3 Example 3: Finding the Sweet Spot

This example derived from [2] shows how the value-based product model can support
software business decision-making by using risk consequence to find the quality
sweet spot with respect to ROI. The following analysis steps are performed to find
the process sweet spot:

• vary reliability across runs
• assess risk consequences of opposing trends: market delays and bad qual-

ity losses
• sum market losses and development costs
• calculate resulting net revenue to find process optimum.

The risk consequences are calculated for the different options. Only point esti-
mates are used for the sake of this example. A more comprehensive risk analysis
would consider probability distributions to obtain a range of results. Probability is

400 R. Madachy

considered constant for each case and is not explicitly used in the calculations. Only
the costs (or losses) are determined.

A set of runs is performed that simulate the development and market release of a
new 80 KSLOC product. The product can potentially increase market share by 30%,
but the actual gains depend on the level of quality. Only the highest quality will attain
the full 30%. Other parameterizations are an initial total market size = $64M annual
revenue, the vendor has 15% initial market share, and the overall market doubles in 5
years.

A reference case is needed to determine the losses due to inferior quality. The ex-
pected revenues for a sub-quality delivery must be subtracted from the maximum
potential revenues (i.e. revenue for a maximum quality product delivered at a given
time). The latter is defined as delivering a maximum quality product at a given time
that achieves the full potential market capture. The equation for calculating the loss
due to bad quality is

Bad Quality Loss = Maximum Potential Revenue with Same Timing – Reve-
nue.

(1)

The loss due to market delay is computed keeping the quality constant. To neutral-

ize the effect of varying quality, only the time of delay is varied. The loss for a given
option is the difference between the revenue for the highest quality product at the first
market opportunity and the revenue corresponding to the completion time for the
given option (assuming the same highest quality). It is calculated with

Market Delay Cost = Maximum Potential Revenue – Revenue. (2)

Fig. 15 shows the experimental results for an 80 KSLOC product, fully compressed

development schedules and a 3-year revenue timeframe for different reliability op-
tions. The resultant sweet spot corresponds to reliability=high. The total cost consist-
ing of delay losses, reliability losses and development cost is minimum at that setting
for a 3-year time horizon. Details of the intermediate calculations for the loss compo-
nents are provided in [2].

The sweet spot depends on the applicable time horizon, among other things. The
horizon may vary due for several reasons such as another planned major upgrade or
new release, other upcoming changes in the business model, or because investors
mandate a specific timeframe to make their return.

The experiment was re-run for typical time horizons of 2, 3 and 5 years using a
profit view (the cost view is transformed into a profit maximization view by account-
ing for revenues). The results are shown in Fig. 16.

The figure illustrates that the sweet spot moves from reliability equals low to high
to very high. It is evident that the optimal reliability depends on the time window. A
short-lived product (a prototype is an extreme example) does not need to be devel-
oped to as stringent reliability as one that will live in the field longer.

 Integrated Modeling of Business Value and Software Processes 401

$0

$5

$10

$15

$20

$25

$30

$35

Low Nominal High Very High

Software Reliability

C
o

st
 (

M
il

li
o

n
s)

development cost
market delay loss
bad quality loss
total cost

Fig. 15. Calculating reliability sweet spot (3-year timeframe)

$0

$20

$40

$60

$80

$100

$120

$140

$160

$180

Low Nominal High Very High

Software Reliability

P
ro

fi
t

(M
il

li
o

n
s)

2 year time horizon
3 year time horizon
5 year time horizon

Fig. 16. Reliability sweet spot as a function of time horizon

4 Conclusions and Future Work

It is important to integrate value-based methods into the software engineering disci-
pline to improve processes and maximize software utility. To achieve real earned
value, business value attainment must be a key consideration when designing soft-
ware products and processes. This work shows several ways how software business
decision-making can improve with value information gained from simulation models
that integrate business and technical perspectives.

The model demonstrates a stakeholder value chain whereby the value of software
to end users ultimately translates into value for the software development organiza-
tion. It also illustrates that commercial process sweet spots with respect to reliability

402 R. Madachy

are a balance between market delay losses and quality losses. Quality does impact the
bottom line.

The model can be elaborated to account for feedback loops to generate revised
product specifications (closed-loop control). This feedback includes:

• external feedback from user to incorporate new features
• internal feedback on product initiatives from an organizational planning and

control entity to the software process.

A more comprehensive model would consider long term product evolution and pe-
riodic upgrades. Another related aspect to include is general maintenance by adding
explicit activities for operational support.

The product defect model can be enhanced with a dynamic version of
COQUALMO [5] to enable more constructive insight into quality practices. This
would replace the current construct based on the single factor for required software
reliability.

Other considerations for the model are in the market and sales sector. The impact
of different pricing schemes and varying market assumptions on initial sales and
maintenance can all be explored. Some of these provisions are already accounted for
in a proprietary version of the model.

The model application examples were run with idealized inputs for sake of demon-
stration, but more sophisticated dynamic scenarios can be easily handled to model real
situations. For example discrete descopings were shown, but in many instances scope
will exhibit continuous or fluctuating growth over time.

More empirical data on the relationships in the model will also help identify areas
of improvement. Assessment of overall dynamics includes more collection and
analysis of field data on business value and quality measures from actual software
product rollouts.

References

1. Boehm, B., Huang, L.: Value-Based Software Engineering: A Case Study. IEEE Software,
Vol. 20, No. 2 (2003)

2. Madachy R.: Software Process Dynamics. IEEE Computer Society Press, Washington D.C.
(2005)

3. Boehm, B., Huang, L., Jain, A., Madachy R.: Reasoning about the ROI of Software De-
pendability: the iDAVE Model. IEEE Software., Vol. 21, No. 3 (2004)

4. Boehm B., Abts C., Brown W., Chulani S., Clark B., Horowitz E., Madachy R., Reifer D.,
Steece B.: Software Cost Estimation with COCOMO II. Prentice-Hall (2000)

5. Chulani S., Boehm B.: Modeling software defect introduction and removal: COQUALMO
(COnstructive QUALity MOdel). USC-CSE Technical Report 99-510, (1999)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 403 – 415, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Technology to Facilitate the Conduct of Science

Leon J. Osterweil1, Alexander Wise1, Lori A. Clarke1, Aaron M. Ellison2,
Julian L. Hadley2, Emery Boose2, and David R. Foster2

1 University of Massachusetts, Department of Computer Science,
Computer Science Building, Amherst, MA 01003
{ljo, wise, clarke}@cs.umass.edu
2 Harvard University, Harvard Forest, P.O. Box 68,

Petersham, Massachusetts 01366, USA
{aellison, jhadley, boose, drfoster}@fas.harvard.edu

Abstract. This paper introduces the concept of an analytic web, a synthesis of
three complementary views of a scientific process that is intended to facilitate
the conduct of science. These three views support the clear, complete, and
precise process documentation needed to enable the effective coordination of
the activities of geographically dispersed scientists. An analytic web also
supports automation of various scientific activities, education of young
scientists, and reproducibility of scientific results. Of particular significance, an
analytic web is intended to forestall the generation of scientific data that are
erroneous or suspect, by using process definitions to prevent incorrect
combinations of scientific results. The paper also describes experiences with a
tool, SciWalker, designed to evaluate the efficacy of this approach.

1 Introduction

1.1 A Vision and a Caution

The Internet has created the need for a new focus on the processes by which science is
done. Worldwide scientific collaborations such as Globus [1], and specific projects
such as GriPhyN [2] are beginning to use the Internet to create opportunities for
scientists to make data available to worldwide communities, thereby enabling
expedited collaborations among geographically distributed researchers. While this
creates opportunities through the broader availability of more comprehensive
scientific analyses, it also creates the need for stronger and more effective control of
dataset distribution and utilization. We believe that an essential component of this
control is definition of the processes by which datasets and other key artifacts of
science are developed, evolved, and promulgated.

If the vision of broad collaboration among geographically dispersed scientists is to
be achieved, the scientists must be sure that they have the same view and
understanding of the collaborative activity in which they are engaged. This suggests
the need for some medium that is effective in supporting clear, complete, and precise
communication about the scientific processes in which all are participating to help
assure that the collaboration will produce correct results. Another benefit of such a

404 L.J. Osterweil et al.

medium is its value as the basis for the development of definitions of scientific
processes that might be promulgated and published, thereby facilitating community
consensus and aiding in the education of younger scientists.

Whereas clear, complete, and precise process definitions can facilitate successful
coordination and community education, executable process definitions can do much
more, potentially helping define the way in which computers and communications
technologies can be harnessed to take off of the shoulders of scientists many of the
(especially more mundane and straightforward) steps of such processes. One
immediate benefit of this is the possibility that such executable definitions of
scientific processes might speed the rate of scientific discovery, by supporting
automation of tedious activities such as dataset management and communication. This
capability also offers the possibility that these processes might be used by
independent scientists to validate published scientific results, thereby facilitating the
reproducibility of results, an activity that is at the very core of the conduct of modern
science.

Such a process definition capability could address another key concern, namely
that scientific datasets might be used in misleading and incorrect ways if the precise
context in which they were created is not communicated to, and respected by, other
scientists. Scientific results are derived through increasingly complex sequences of
scientific processes, such as sampling, cleaning, transformation, data mining,
statistical inference, and evaluation. Often different processes are performed by
different scientists at different times and in different places. And, while the data
resulting from these processes is readily available, the processes themselves generally
are not. We are concerned about the resulting difficulty of independent reproduction
of scientific results, as the need for reproducibility is a bedrock requirement of
modern science, and the possibility that different scientific teams may misapply
results due to differences in their understandings of how scientific datasets have been
produced. The lack of clear understandings of the processes by which these datasets
have been produced thus stands to create less agreement, rather than more, and a
reduced basis for being able to have the kinds of careful and precise debates needed to
arrive at understandings of why differences exist, and how to resolve them.
Ultimately, we are concerned that lack of understanding of the processes used to
create datasets will inevitably cause some scientists to combine results in ways that
will lead to incorrect or misleading conclusions.

In order to avoid this situation, the processes used to generate published data and
results, including the tools and algorithms employed by those processes, must be
clearly, completely, and precisely defined, and then made readily available. The
magnitude of this task should not be underestimated. Modifications to any of the
tools, algorithms, or subprocesses used in a scientific process may be inadvertent, as
when a software package is updated or the underlying operating system is modified.
Lacking awareness of these modifications, subsequent scientific processing (e.g., that
done in order to reproduce results) may proceed under the incorrect assumption that
the original scientific process is being executed. But if changes to the process have
been made, then the original scientific process may indeed not have been repeated,
leading either to different results or to the false conclusion that confirmation of prior

 Process Technology to Facilitate the Conduct of Science 405

results has occurred (see [3] for a recent example of the impact of changing
algorithms on EPA’s particulate matter standards for air quality).

We believe that sounder and more efficient science can facilitated by the Internet,
but only if the expedited access to data that it allows is tempered by use of process
definitions capabilities of the sort that we describe in this paper.

1.2 A Strategy

To ensure that scientific datasets are adequately well documented to support effective
collaboration, education, automation, and reproducibility, and, moreover, to guard
against misuse of datasets, potentially resulting in confusion and faulty science, we
propose that every dataset generated by a research project should have attached to it
structured process metadata that formally describes the processes by which the data
were derived, including the sequence of tools, techniques, and intermediate datasets
used. The representation of such process metadata information is intuitively what we
refer to as an analytic web. In the next section we provide a more formal definition of
this notion.

In the meantime, however, we can be more specific in stating the goals in
developing the concept of an analytic web to be to:

• Facilitate scientific community understanding by providing a medium for the
clear, precise, and complete communication about scientific processes;

• Promote effective collaboration in scientific discovery by larger, and
geographically more dispersed, communities;

• Support expedited scientific activity by effective incorporation of computer and
communications technologies into scientific processes;

• Forestall the possibility that scientific datasets will be misunderstood and
misused, thereby leading to faulty scientific results.

The remainder of this paper describes our approach to creating technologies for
defining analytic webs, and our early work to evaluate this approach.

2 Formal Description of an Analytic Web

An analytic web is a formal representation of a scientific process, in the form of
structured metadata that completely and accurately describes the process, and is
sufficient to support execution of the process. Our research suggests that an effective
way to represent an analytic web is by means of a coordinated collection of three
specific types of graphs – a dataflow graph, a dataset derivation graph, and a process
definition graph – all of which were originally developed for use in defining and
controlling software development projects (e.g., [4]). In this paper we demonstrate the
use of these three graphs by applying them to the formalization of different aspects of
a specific ecological data processing process of considerable scientific interest and
importance. We argue that the analytic web represented by these three graphs makes
an important contribution to assuring the understanding, executability, and
reproducibility of this process, and to science in general.

406 L.J. Osterweil et al.

2.1 Dataflow Graphs

A dataflow graph (DFG) defines which types of datasets are acted upon by which
types of processes (tools, activities) in order to produce other types of datasets. A
DFG documents the relationships among datasets and process types, which are
inherently generic. Examples include “rainfall data”, “statistical package”, or
“interpolation via regression”. A DFG is analogous to a recipe: “combine flour, eggs,
seasonings, milk and water to make a batter”. Like a cookbook, the clarity and
comprehensibility of a DFG facilitates the reproduction of scientific processes.

In the DFG shown in Fig. 1, the rectangular nodes
represent the types of the datasets to be created and
used, the rounded nodes represent the tools,
techniques, and human activities that are to be
performed, and the edges represent the flow of
datasets into and out of these processes. Thus, this
figure specifies that “DataModelA”, an artifact of type
“Type1”, and “DataModelB”, an artifact of type
“Type2”, are both required as inputs to an activity,
called “Activity”, which then produces
“DataModelC”, an artifact of type “Type3” as its
output.

2.2 Dataset Derivation Graphs

In contrast, a dataset derivation graph (DDG) documents the instances of datasets
produced by the actions of specific tools
operating on other specific datasets. Dataset
instances, which are uniquely specified, are
the usual focus of attention in scientific
processes. Examples include “rainfall data
collected at the Harvard Forest on 1 June
2004 at hourly intervals”, “SAS version
6.1”, or “non-linear regression using nls2
[5]”. Continuing the analogy of thinking of a
DFG as a specification of a recipe, then the
DDG specifies the specific items resulting from following that recipe. This, the DDG
might specify all of the final and intermediate products generated in baking a spiced
chocolate prune cake for Jane’s 60th birthday following the Joy of Cooking 10th
edition, 1978. Reproducibility demands the documentation provided by the DDG,
namely the specific datasets and tools that were actually used.

The example data derivation graph (DDG) shown in Fig. 2 keeps track of the
specific datasets that have been used and derived by the actions of the tools specified
in a corresponding DFG. In the DDG, a clipped box represents each actual dataset
(instance) created by executing a process. Each node is connected by an edge to the
dataset(s) from which it was derived. The edge is annotated with a specification of the
specific tool instance (e.g., the exact version of a statistical routine or software

DataModelA:
Type1

Activity

input1

DataModelB:
Type2

input2

DataModelC
:Type3

output

Fig. 1. Dataflow Graph

Dataset-1
(Type1)

Dataset-2
(Type2)

Dataset-3
(Type3)

Activity-1

Fig. 2. Data Derivation Graph

 Process Technology to Facilitate the Conduct of Science 407

utility), or sub-process instance (e.g., a representation of another analytic web) used
for the derivation.

Thus Fig. 2 specifies that “Dataset-3”, an artifact of type, “Type3”, was created by
the actions of a tool recorded as “Activity-1”, using as inputs “Dataset-1”, an artifact
of type “Type1”, and “Dataset-2”, an artifact of type “Type2”.

2.3 Process Definition Graphs

The augmentation of the information in a DFG with the information contained in a
DDG does not provide sufficient documentation to always define the way in which
datasets should be, and actually are, produced. The DFG defines the nominal way in
which types of activities and tools are to be sequenced in order to produce specified
types of datasets and other artifacts. The DDG does indeed record the exact dataset
and tool instances that were actually used to produce various dataset results. But the
DFG cannot be relied upon to incorporate sufficient checks and controls to assure that
the actual instances chosen for participation in the DFG-defined process are consistent
with each other, and suitable for use in the process of generating valid scientific
results. The DFG only assures that such results are of the right type. Moreover, the
DFG is effective for defining nominal processes, and is generally ineffective for
defining how the process react when exceptional or unusual contingencies requiring
non-nominal processing arise.

The detection and handling of such incompatibilities and non-nominal situations
must be defined as part of any process if it is to be of genuine value to scientific
investigation in the real world. Scientists generally are aware of such situations, and
have appropriate remedies (although not always), but standard DFGs can make it hard
or impossible to specify such contingencies and remedies clearly and completely.
Therefore, our concept of an analytic web augments the information in a DFG with a
more complete and articulate procedural description in the form of a process
definition graph (PDG).

Fig. 3. Process Definition Graph in Little-JIL

A PDG defines the essential procedural details such as the order in which steps

must be taken, but augments this with such additional features as preconditions for
step execution, post-condition checks to determine whether or not processing has
been successful, procedures to use when various exceptional conditions occur at
various places in the process, conditions under which processing sequences are to be
either iterated or terminated, and checking to assure that artifacts used are consistent

408 L.J. Osterweil et al.

with each other and with the activities employing them. In short, the PDG specifies
the procedural flow of an analytic web, but also incorporates additional features to
assure that dataset combinations are acceptable even when the process has to deal
with exceptional conditions.

Figure 3 is a PDG specification, specified using the process definition language
Little-JIL [6]. Space does not permit a full explanation of this language. Therefore, it
must suffice to say that Fig. 3 specifies that the process “For Each Item” consists of
repeated sequential executions of the “Process Item” activity, but that errors
encountered in doing so are to be responded to by the execution of the “Fix Problem”
activity, after which the next “Process Item” activity is to be initiated. More features
of this language will be provided in the more comprehensive example presented in the
next section.

3 An Example Analytic Web

We illustrate the need for, and the application of, an analytic web through an example
drawn from the field of ecology. This example entails the processing and management
of a type of data called eddy covariance data. The eddy covariance method is a
commonly used technique for long-term measurement of the carbon exchange (e.g.,
the absorption of gases such as CO2 into living organisms, such as plants) of whole
ecosystems, and a useful tool in the study of global warming. Briefly, eddy
covariance estimates CO2 absorption by plant life such as forests from the covariance
of CO2 concentration and vertical wind velocity [7]. CO2 measurements are taken
continuously over an extended period by a structure, called a flux tower, located at a
fixed location in the midst of a forest. Due to the variability in the accuracy of the
data for a variety of reasons due to environmental conditions, researchers at Harvard
Forest use a set of processes to identify unacceptable measurements and replace them
with statistical estimates.

To identify and replace unacceptable measurements, first, they discard observed
values of CO2 flux if the wind direction is unsuitable for flux measurements. A
particular wind direction may be unsuitable because local topography in a given
direction from the flux tower creates unpredictable turbulence patterns, or because the
forest of interest does not occur over a sufficient fetch in that direction. Second, the
researchers examine the relationship between friction velocity, u* (a measure of
turbulence in meters per second, which equals the square root of vertical momentum
flux), and CO2 flux for several weeks of nighttime measurements. Flux is plotted
against u*, and a threshold value of u* (u*threshold) is identified beyond which CO2 flux
does not increase significantly. Observed values of CO2 flux are discarded if u* <
u*threshold. If data from all wind directions are suitable, the u*threshold criterion typically
results in the discarding of <50% of the nighttime observations of CO2 flux. On the
other hand, if some wind directions are unsuitable, >75% of the nighttime
observations may be rejected.

Finally, the researchers need to fill the gaps in the dataset that result from
discarding observed values of CO2 flux by estimating the values that would have
been observed if u* u*threshold. To fill these gaps, they fit regression models of the

 Process Technology to Facilitate the Conduct of Science 409

reliable observations (CO2 flux | u* u*threshold) to the measured environmental
variables. For nighttime observations, the predictor variables are soil and air
temperatures and, occasionally, soil moisture [8].

3.1 Dataflow Graph Model

The data flow graph (DFG) for the process described above is illustrated in Fig. 4.
The boxes, “Tower Data”, “Environmental Data”, “Selection Criteria”, “Aggregated
Data”, “Excluded Data”, “Rejected Data”, “Selected Data”, “Interpolated Data”, and
“Row-Filled Data” all represent types of data used in creating a usable dataset. As
models are also fixed data types, the model type, “Interpolation Model”, is also
represented as a box. Processes are represented by ovals: “Create Aggregated Data”,
“Segregate Data”, “Create Interpolation Model”, “Apply Interpolation Model”,
“Merge Datasets”, and “Revise Selection Criteria” are all types of actions that are
applied to particular types of datasets. Diamonds indicate points in which the same
dataset is used as input to more than one action or subprocess.

Of particular interest is the action, “Revise Selection Criteria”, in which the criteria
used to partition the data may be modified after examining the results of interpolating
and merging the data. Intuitively, the DFG suggests that new criteria have been
created, and that they are to be applied to previous datasets, generating new “Row-
Filled Data”. The DFG also suggests that this iteration might be continued
indefinitely, causing the successive generation of new criteria and new output data.
While this intuition is probably correct, we note that it also illustrates a key
inadequacy of the DFG, alluded to earlier. The DFG is incapable of specifying
precisely which criteria are to be applied to which datasets. Indeed, it is conceivable
that scientists may wish to apply new criteria to some previous datasets, or to all
previous datasets, or to no previous datasets. The DFG provides no guidance about
this. As we shall see, the DDG is capable of recording what datasets actually are
created, and the precise datasets and activities that had been used in doing this. But
the DDG and DFG together are still incapable specifying what should have been
done, and what perhaps would be scientifically unsound. The need for such
specification is provided in an analytic web by the PDG, as shall be seen.

Presumably it is vital that there be a precisely defined relationship between each
dataset and the model from which it was created. Relationships of this sort are quite
familiar to software configuration management practitioners, who rely upon
configuration management (CM) tools and technologies to assure needed consistency.
Up until the popularization of remote access to data, researchers were better able to
exercise informal configuration management processes in their own domains,
generally being capable of assuring consistent application of models and tools to
appropriate datasets, and thereby assuring that they could themselves reproduce the
results of their scientific investigations. However, a number of forces are encouraging
the sharing of data, models, and tools among scientists in disparate locations and
research groups, including pervasive access to the Internet, and mandates from
funding agencies such as US National Science Foundation. This sharply increases the
likelihood that a scientific investigator might access datasets remotely, and then use
incorrect or inappropriate tools or models to process these datasets. Indeed, as noted

410 L.J. Osterweil et al.

above, the ability of other scientists to reproduce published results is central and
essential to the establishment of the validity of such results. Thus, Internet access to
datasets and models should ideally expedite and facilitate such reproduction, thereby
improving the quality and the rate of scientific progress. But, configuration
management mishaps clearly increase the risk that just the opposite might happen,
with inappropriate combinations of datasets and tools causing an inability to
reproduce scientific results, adding to uncertainty.

In our example, Harvard Forest researchers are continually getting new datasets
from their flux tower, and creating new models, often based upon analysis of the
outputs from previous models. In their work they have created sizeable bodies of
“Row Filled Data” datasets, predictive models, and datasets produced by those
models. Informal internal configuration management procedures tend to assure the
scientific integrity of their results. But, Harvard Forest datasets or models are
accessible by the operators of other flux towers, increasing the opportunities for
validation of scientific results through their reproduction. Moreover, Harvard Forest
researchers access datasets generated by other flux towers in an attempt to validate or
improve their own models. In both cases, it is vital that the remote accessor of such
data have the benefit of documentation or descriptions (such as definitions of the
processes by which the datasets were created) in order to assure configuration
mismatches do not cause the risk of creating invalid scientific analyses and datasets.

To illustrate the problem, Fig. 5 depicts the state of the execution of the process
whose DFG is shown in Fig. 4, at the beginning of the second iteration. As in Fig. 2,
boxes with clipped corners denote specific dataset instances. Each clipped box
represents the dataset derived by the application of the activity from which it
emanates to the dataset(s) input to that activity.

 Fig. 4. Example Dataflow Graph Fig. 5. Example Data Derivation Graph

Fig. 5 seems to provide a clear view of how certain datasets have been created, but
the continued execution of this process will lead to the creation of increasing numbers
of instances of datasets and models of the various types depicted. Thus, with iteration,

 Process Technology to Facilitate the Conduct of Science 411

there will be a growing number of instances of “Tower Data”, “Environmental Data”
and “Interpolation Model”.

But, a process definition graph (using for example, the Little-JIL shown in Fig. 6)
enables the specification of the configuration management information needed to
ensure that specific process executions are consistent with rules or properties derived
from correct process executions. Again, without delving too deeply into the syntax
and semantics of Little-JIL (see [6] for a complete description), there are two details
of particular import in this diagram. First, a single instance of “Aggregated Data” is
used to create an instance of “Row-Filled Data”, but the ‘+’ on “Create Row-Filled
Data” permits multiple instances of “Row-Filled Data” to be created from that
instance. This specification removes ambiguity left by the DFG (note that other
specifications, resolving the ambiguity in other ways, can also be specified using a
PDG. This specification is offered only as an example). Second, the “reference” to
“Apply Selection Criteria” that appears as part of “Evaluate and Revise” ensures that
when the selection criteria are revised, they are applied to the same instance of
“Aggregated Data” as in the previous iteration, again clearing up ambiguity left by the
DFG. Without the ability to add these clarifying specifications, there would seem to
be little or no protection from the improper selection of datasets as inputs to process
activities, with the consequent production of results that may be incorrect or of
questionable validity.

Fig. 6. Example Process Definition Graph

It seems important to note at this point that others (e.g., Estublier and his
colleagues [9, 10]) have long ago noted that process definitions should be essential
components of software configuration management systems. The work we describe
here confirms that observation, and demonstrates that it extends beyond software
configuration management, and also applies to scientific dataset configuration
management.

412 L.J. Osterweil et al.

4 Experimental Evaluation Through the SciWalker Tool

To gain some experience in assessing the value of the analytic web concept, we have
developed a prototype tool, called SciWalker, as a vehicle for exploring the value of
analytic webs. SciWalker supports the creation of two of the three analytic web graph
representations (namely DFGs and DDGs). This capability is intended to demonstrate
the value of the analytic web approach in supporting clear communication among
scientific collaborators, as well as supporting education.

SciWalker also supports the execution of DFGs that it has been used to define,
supports the ability to access datasets remotely across the Internet, and makes locally
produced datasets available to others via the Internet. These capabilities are intended
to demonstrate how analytic webs can speed the development of scientific results, and
serve as facilitators for supporting reproduction of scientific results.

We performed some experiments using SciWalker to develop analytic webs that
define the carbon flux process discussed in Section 3 of this paper. This experiment
was designed to determine how readily such analytic webs could be defined and
modified, how effective they were in communicating scientific processes to other
scientists, and how easily they could be used to support remote access to datasets. A
subsequent version of SciWalker will incorporate the third type of graph (the PDG),
and will then be the basis for further experiments aimed at determining how effective
an analytic web is in preventing inappropriate or incorrect combinations of datasets
and models.

Fig. 7. Stacked DFG/DDG View

Rather than depicting DDGs independently, SciWalker depicts dataset instances as
stacks piled atop the boxes (types) in the DFG representation (Fig. 7). Our early
experience in using this depiction of instances has confirmed our expectation that this
approach is indeed helpful to working scientists in clearly showing the specific
dataset instances that have been created in successive (iterative) applications of an

 Process Technology to Facilitate the Conduct of Science 413

analytic web. The instances in SciWalker are all accompanied by specific metadata
annotations, viewed through clickable menu items that provide exact and specific
information about how they were generated. This approach to providing such key
metadata has also proven to be useful and well received.

By using SciWalker to estimate nighttime carbon exchange from eddy covariance
data, the Harvard Forest researchers were able to quickly determine the effect of
varying u*threshold on estimated nighttime carbon flux from a forest, without employing
specific statistical tools that might be inaccessible to others who are interested in
recreating or modifying their analysis. Simultaneously, the tool created a complete
audit-trail of the process that is easily accessible via the Internet. With this audit-trail,
data that were included or excluded can be easily retrieved and examined. Other
researchers have examined effects of u*threshold on estimates of carbon flux [11-13],
but not through procedures that are easily accessible or repeatable. The researchers
have indicated that SciWalker is a step forward both in ease and speed of data
processing and analysis for them as individual researchers, and also a great leap
forward in communicating their data analysis procedures to others.

While influences of u*threshold on ecosystem carbon flux estimated from eddy
covariance data have been examined in several papers, effects of other meteorological
variables have been examined less frequently. Wind direction is of particular interest,
because forest composition is rarely uniform around a flux tower. In general, one
cannot relate carbon flux to a specific type of forest without limiting the range of
wind directions that provide acceptable data for processing. As carbon exchange
estimates and statistical models of carbon exchange for one forest cannot be applied
to other forests unless the forest composition is similar in the two areas, it is often
important for researchers to partition eddy covariance data by wind direction in order
to confine measurements to a specific forest type. SciWalker seems to be a perfect
tool for supporting this, by allowing for the specification of the range of wind
direction for included versus excluded data. In the case of the Harvard Forest
estimates of carbon exchange by a hemlock forest, they included data only if the
winds were from the southwest (180-270° compass bearing) because of the relatively
small size of the hemlock forest they were studying, and the position of the flux tower
in the northeast corner of hemlock-dominated forest. Using SciWalker, they are now
examining the effects of using other ranges of wind direction, thereby including other
forest types within the eddy covariance footprint.

5 Discussion, Conclusions, and Future Directions

There is an important need to develop tools and techniques that will facilitate the
production of high quality scientific results. Internet access can clearly help, by
making important datasets more accessible to more scientists, thereby facilitating
broader collaborations. But such capabilities must be balanced by additional
capabilities for helping scientists to understand the ways in which the datasets they
access have been developed. In this paper we demonstrate that the concept of an
analytic web can be used as the basis for providing process metadata capable of
providing scientists with the information that they need in order to assure that their
use of remotely accessed datasets is safe and correct. An analytic web consists of

414 L.J. Osterweil et al.

three different graphs that together provide this capability, but also offer the promise
of facilitation of education, effective application of computer support for scientific
investigation, and catalysis of community debate about most effective scientific
methods.

Our proposal to create analytic webs as syntheses of three specific types of graphs
seems quite promising, based upon our initial work with the SciWalker prototype and
its application to eddy flux data used to estimate whether forests are sources or sinks
of CO2. In its current implementation, SciWalker incorporates only two graphs, data
flow graphs and data derivation graphs. Our preliminary use of this prototype has
indicated that these two graphs can be used effectively to support process definition,
computerization of some process steps, and reproducibility of results. In addition, our
application of SciWalker already has led to new scientific insights and interesting new
results.

Future versions of SciWalker will incorporate the PDGs necessary to support
assessment of the correctness of the use of datasets, and process reliability. It is our
goal that scientific analyses eventually be accompanied by process certification
metadata derived from the (presumably successful) application of formal process
analyzers to our process metadata. These certifications would then be usable by other
scientists to guide them away from dangerous misuse of datasets or combinations of
processes. The net result will be science that is not only more rapid and efficient, but
also more reliable and reproducible.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Award No. CCR-0205575. Any opinions, findings, and conclusions or
recommendations expressed in this publication are those of the author(s) and do not
necessarily reflect the views of the National Science Foundation.

We are also grateful to many colleagues who supported this work and contributed
key ideas that have led to our analytic web concept and our SciWalker prototype tool.
In particular, we wish to thank Ed Riseman, Al Hanson, David Jensen, Paul Kuzeja,
Howard Schultz, Bert Rawert, George Avrunin, and Mohammed Raunak for their
advice, support, encouragement, and many stimulating conversations.

References

1. Globus consortium description. http://www.globus.org/
2. GryPhyN project description. http://www.globus.org/about/news/GriPhyN.html
3. Dominici, F., A. McDermott, and T.J. Hastie, Improved Semi-parametric Time Series

Models of Air Pollution and Mortality. Journal of the American Statistical Association,
2004(99): p. 938-948.

4. Ghezzi, C., M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering. 2nd
Edition ed. 2003, Upper Saddle River, NJ: Pearson Education, Inc.

5. Huet, S., et al., Statistical Tools for Nonlinear Regression: A Practical Guide with S-Plus
and R Examples. 2nd Edition ed. 2004, New York, NY: Springer-Verlag, Inc.

 Process Technology to Facilitate the Conduct of Science 415

6. Wise, A., Little-JIL 1.0 Language Report, in Computer Science Technical Report. 1998,
University of Massachusetts: Amherst, MA.

7. Baldocchi, D.D., B.B. Hicks, and T.P. Myers, Measuring Biosphere-Atmosphere
Exchanges of Biologically Related Gases with Micrometeorological Methods. Ecology,
1998(69): p. 1331-1340.

8. Savage, K.E. and E.A. Davidson, Inter-annual Variation of Soil Respiration in Two New
England Forests. Global Biogeochemical Cycles, 2001(15): p. 227-350.

9. Belkhatir, N. and J. Estublier. Software Management Constraints and Action Triggering in
Adele Program Database. in 1st European Software Engineering Conference. 1987.
Strasbourg, France.

10. Belkhatir, N., J. Estublier, and W.L. Melo. Software Process Modeling in Adele: The
ISPW-7 Example. in Proceedings of the 7th International Software Process Workshop.
1991. San Francisco, CA: IEEE Computer Society Press.

11. Hollinger, D.Y., et al., Spatial and Temporal Variability in Forest-Atmosphere CO2
Exchange. Global Change Biology, 2004.

12. Barford, C.C., et al., Factors Controlling Long- and Short-term Sequestration of
Atomspherics CO2 is a Mid-latitude Forest. Science, 2001(294): p. 1688-1691.

13. Saleska, S.R., et al., Carbon in Amazon Forests: Unexpected Seasonal Fluxes and
Disturbance-induced Losses. Science, 2003(302): p. 1554-1557.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 416 – 432, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Process Definition Language Support for Rapid
Simulation Prototyping

Mohammad S. Raunak and Leon J. Osterweil

Department of Computer Science,
University of Massachusetts,
Amherst, MA 01003, USA

{raunak, ljo}@cs.umass.edu

Abstract. This paper suggests how an appropriately designed and architected
process definition language can be an effective aid to the rapid generation of
simulations, which are, in turn, capable of providing important insights. The
paper describes how the features of the Little-JIL process definition language
helped in the rapid generation of simulations that shed important new light on
the effectiveness of various collusion strategies in influencing the outcomes of
various auction approaches. The paper describes how Little-JIL’s approach to
modular reuse and its separation of process concerns both turn out to be of par-
ticular value in supporting rapid prototyping. The simulation results obtained
are themselves interesting, as the paper also suggests that the auction idiom is
highly relevant to resource allocation in software development. Thus, the in-
sights gained into the efficacy of various collusion approaches have particular
relevance to software process research.

1 Introduction

There is currently considerable interest in using process definitions as the basis for
important decisions about such matters as resource allocation, coordination of agents,
and procedural issues. Because of the importance of such matters, technologies that
are effective in supporting the precise, clear, and complete definition of processes
seem to have broad and important applicability. Further, it seems particularly impor-
tant to evaluate such process definitions carefully to be sure that they are correct and
effective, which can then become the basis for their systematic, iterative improve-
ment. We have long argued that software process development has a close parallel to
application software development [14, 15]. This parallelism suggests that tools and
techniques used in the latter should be expected to be applicable also to the evaluation
of processes. From this analogy we know that there are two major types of approaches
to evaluation, namely static and dynamic analysis. In earlier papers we have described
our work in the static analysis of processes [7]. This work has shown that static analy-
sis can be an effective approach to identifying defects in processes. This paper ad-
dresses a dynamic analysis approach, namely simulation.

Simulation seems to be a particularly useful approach to the evaluation of proc-
esses. Process simulations can support the quantitative determination of flow times

 Process Definition Language Support for Rapid Simulation Prototyping 417

for executions of processes, the impacts of making certain resource allocation
decisions, and the projected behavior of processes under various hypothesized loading
conditions. Various authors have previously appreciated this, and have already begun
to investigate technologies that support process simulation, and the effectiveness of
these technologies [11]. While we agree with the value of this approach, our own
work has increasingly demonstrated that it is often difficult to determine just which
simulations best provide desired insights. Indeed, our work suggests that one set of
simulation runs often raises as many questions as it answers, and inevitably leads to
the desire and need for many subsequent sets of different simulation runs. Thus, be-
cause it is often the case that the analyst is unclear about the exact process that she/he
wants to study, we have found that it is helpful to be able to rapidly create prototype
simulations as a key support for the process of rapid exploration of the questions that
arise as simulation runs suggest further sequences of elaborative simulations of proc-
esses. In grappling with the problem of how best to support the need for rapid process
simulation generation, we have concluded that the appropriate process language archi-
tecture and execution tools are very important in this task.

We note that this observation itself mirrors similar observations that have been
made by developers of simulations in application software domains. Simulations have
been shown to be valuable in providing precise answers and insights when the ques-
tions and issues are narrowly drawn. Getting the questions appropriately narrowed
down, however, can take considerable effort, often in the form of evaluation of se-
quences of preliminary simulations. Thus the value of being able to create simulations
rapidly has been previously understood [19]. This points to the value of flexible
simulation generation aids, such as the one that we will describe in this paper.

While our work seems to support the value of automated process simulation capa-
bilities, it has also shown that simulation generators can lead to simulations that are
largely interpreted, and consequently inconveniently slow. Our work has demon-
strated that, while it is helpful to have rapid simulation generators to help identify the
precise simulation that can provide results of great interest, once the simulation has
been identified, it seems important to then code the simulation in a compilable lan-
guage in order to assure that massive quantities of simulations needed for reliability of
results, can be executed in acceptably short amounts of time.

All of the above has reinforced in our minds the desirability of an executable de-
sign language for processes. In our work we used our Little-JIL process definition
language to specify simulation designs. Our Juliette interpreter was used to run these
preliminary simulations, emphasizing the value of an executable design. After suit-
able preliminary simulations, we then moved on to the need to run massive amounts
of simulations, at which time we used the Little-JIL designs as the basis for facilitated
coding of the desired simulations in Java.

In this paper we describe our work, not only emphasizing the value of an executa-
ble process definition language, but also emphasizing how the particular separation of
concerns in our language greatly facilitated the rapid generation of preliminary simu-
lations, thereby expediting the definition of the massive simulations that eventually
yielded the process analysis results that we sought.

418 M.S. Raunak and L.J. Osterweil

2 Related Work

Simulation has long been used as a powerful tool for analyzing software performance
in wide range of application areas. Simulation of software processes has also received
a lot of attention over the last twenty years, during which time a wide variety of simu-
lation approaches have been suggested and explored. Kellner et al. [11] provides a
nice overall picture of the work in software process simulation, focusing primarily on
the diversity of approaches to process simulation, addressing the different issues, and
suitability of various approaches to dealing with them. In particular, [11] talks about
eight different simulation approaches and language categories including state based
process modeling, discrete event simulation and system dynamics. [6] shows how
simulation can be of benefit in supporting software process improvement in the con-
text of such approaches as the Capability Maturity Model (CMM). [18] provides some
experience-based insights into the effectiveness of knowledge based simulation
(KBS) and discrete event simulation (DES) of processes. [13] presents the need and
usefulness of combining both discrete event and system dynamics approaches to
simulation while simulating software processes.

Although researchers have not looked at issues related to rapid simulation proto-
typing for software processes, the need has been established in other system simula-
tion domains. For example, [19] discusses the usefulness of rapid simulation and
software prototyping for the architectural design of embedded multiprocessor sys-
tems.

There is ample literature studying auctions from the various perspectives of Eco-
nomics, Management Science, Operations Research and Computer Science. Econo-
mists mainly look at the auction mechanism from the game theoretic perspective and
try to identify optimum price determination that maximizes the utility of the seller
and/or the bidder. They also try to reason about the behaviors of the bidders and their
impact on the outcome of the auctions. Although most of these analyses are based on
probabilistic models, a small but influential trend has been to study market mecha-
nisms through laboratory experiments using discrete event simulation. The work
described here is in that spirit.

Computer Scientists and Management Scientists have looked at different variations
of auctioning mechanisms for multiple items [3, 17]. Their primary objective has been
to devise auctions that are efficient in the determination of the optimal winner. Other
researchers in computer science have looked into the capturing of auction processes
with rigorous process language and statically analyzing the auctions to verify correct-
ness and completeness [7].

Identifying vulnerabilities in auctions is a very important issue for better auction
designs [12]. Some recent work attempts to identify collusive behavior of bidders by
analyzing bidding patterns [1, 2]. These efforts, however, are few in number and lim-
ited in scope. Stochastic analyses usually fall short of providing a good picture of the
outcome of an auction in a setting where there is the possibility of dynamic behaviors
of bidders, and where the opportunity for collusion is present. Researchers have opted
for empirical study based upon simulation of auction processes with actual human
bidders [8, 9, 10].

 Process Definition Language Support for Rapid Simulation Prototyping 419

3 Our Approach

The vehicle for our exploration of the value of a suitable executable process design
language and architecture was our Little-JIL process definition language [21]. One of
the key architectural features of Little-JIL is its separation of concerns [5]. In particu-
lar, the most noticeable feature of a Little-JIL process definition is its visual depiction
of the agent coordination aspect of a process (to be described in more detail shortly).
Equally important, however, are the definitions of agents and their behaviors, and
artifacts and their flows. Neither of these process concerns is explicitly represented
pictorially in Little-JIL. While this makes them less immediately noticeable, they are
no less important. Of particular importance for this research is the fact that these con-
cerns are separately defined, and separately modifiable.

To understand the importance of the separation of these concerns to the need for
rapid prototype generation, we employed Little-JIL as a vehicle for the study of proc-
esses in the domain of auctions. An auction is a form of price negotiation that is usu-
ally a highly decentralized activity. Participants in auctions are essentially distributed
agents coordinated to achieve a goal. There is a large literature addressing the enor-
mous variety of different kinds of auctions. Indeed there are probably at least
thousands of different kinds of auctions [12], all of which have somewhat different
characteristics. The different kinds of auctions have been devised in a continuing
attempt to find the most efficient ways to arrive at an accurate determination of the
fair value of a commodity.

It is important to also note, however, that much of the diversity in types of auc-
tions, and the continued lively investigation of auctions, is aimed at understanding the
effects of various kinds of collusions among bidders. While there is a considerable
amount known about how various different auction strategies may be vulnerable to, or
resistant to, different forms of bidder collusions, much more needs to be known. We
believe that simulations of various kinds of collusive activities operating in the con-
text of different kinds of auctions have the potential to yield these important under-
standings.

Our research entailed the use of Little-JIL as a vehicle for supporting the rapid
generation and execution of simulations of the different ways in which different auc-
tions responded to bidder collusions. As will be seen, the Little-JIL architecture
proved to be particularly useful in this work, as the pictorial coordination concern
proved to be effective in defining the different auction processes clearly, precisely,
and completely, while the agent definition concern, independently defined (in this
case using Java), proved quite effective in defining different collusion strategies. Our
Juliette process interpreter, drawing upon the combined coordination and agent defini-
tions, supported the simulation of the different auctions.

It is worth noting here that the selection of auction processes for this research is far
from irrelevant to software process concerns. We believe that the auction idiom, and
indeed the auction vehicle itself, especially as elaborated using notions of agent
collusion, are quite relevant to software development process concerns. We note, for

420 M.S. Raunak and L.J. Osterweil

example, that a significant aspect of the software development process involves the
allocation of resources or agents to the various development tasks. The effective de-
termination of the most effective allocation of agents (e.g. designers, programmers,
testers) might well be modeled, and indeed carried out, as an auction, where the
bidders are software engineers bidding for specific tasks. Communications among
these agents should be expected, as is the case of collusive bidders in an auction proc-
ess, although communication among software developers is generally useful in arriv-
ing at effective task assignment, in contrast to the situation in auctions. Thus, our
focus on auctions is more than simply illustrative of our ideas about process language
architecture, but also seems relevant to the development of superior software devel-
opment agent allocation strategies.

3.1 The Little-JIL Process Language

Little-JIL is a process definition language [5, 21] that, along with its interpreter Juli-
ette [4], supports specification, execution, and analysis of processes involving multi-
ple agents. In this work, we used Little-JIL to capture and simulate auction processes
and agent interactions. As noted above, the most immediately noticeable aspect of a
Little-JIL process program is the visual depiction of the coordination specification of
the process. This component of the Little-JIL process program looks initially some-
what like a task decomposition graph, in which processes are decomposed hierarchi-
cally into steps. The steps are connected to each other with edges that represent both
control flow and artifact flow. Each step contains a specification of the type of agent
needed in order to perform the task associated with that step. Thus, for example, in
the context of an auction, the agents would be entities such as the auctioneer, the
bidders, as well as, potentially, the manager setting up collusion amongst the bidders.
The collection of steps assigned to an agent defines the interface that the agent must
satisfy to participate in the process. It is important to note that the coordination speci-
fication includes a description of the external view and observable behavior of such
agents. But a specification of how the agents themselves perform their tasks (their
internal behaviors) is NOT a part of the coordination specification. The behaviors of
agents are defined in a separate specification component of the Little-JIL language.
More will be said about this shortly. But it is important to note that Little-JIL enforces
this sharp separation of concerns, separating the internal specification of how agents
carry out their work, from the specification of how they coordinate with each other in
the context of carrying out the overall process. In particular, the definition of a par-
ticular specific auction is defined separately from the definition of how the bidders
might collude with each other.

The central construct of a Little-JIL process is a step. Steps are organized into a hi-
erarchical tree-like structure. The leaves of the tree represent the smallest specified
units of work, each of which is assigned to an agent that has characteristics consistent
with those defined as part of the definition of the step. The tree structure defines how
the work of these agents will be coordinated. In particular, the agent assigned respon-
sibility for executing a parent node is responsible for coordinating the activities of the
agents assigned to execute all of the parent’s children.

 Process Definition Language Support for Rapid Simulation Prototyping 421

Fig. 1a. A Little-JIL step construct Fig. 1b. Control flow and continuation badges

Figure 1a shows the graphical representation of a Little-JIL step with its different
badges and possible connections to other steps. The interface badge is a circle on the
top of the step name that connects a step to its parent. The interface badge represents
the specification of any and all artifacts that are either required for, or generated by,
the step’s execution. Of greater importance for the work described in this paper, the
interface badge also represents the specification of any and all resources needed in
order to support the execution of the step. Chief among these resources is the single
resource designated as the step’s execution agent. Below the circle is the step name. A
step may also include pre-requisite and/or post-requisite badges, which are representa-
tions of steps that need to be executed before and/or after (respectively) this step for
the proper performance of the step’s execution. Inside the central black box of the
step structure, there are three more badges. On the left is the control flow badge,
which specifies the order in which the child substeps of this step are to be executed.
A child of a step is connected to the parent by an edge emanating from the parent and
terminating at the child. Artifact flows between the parent and child are indicated by
annotations on this edge.

On the right of the step bar is an X sign, which represents the exception handler
capabilities of the step. Attached to this badge by exception edges are any and all
handlers defined to deal with exceptions that may occur in any of the descendants of
this step. Each handler is itself a step, and is annotated to indicate the type of excep-
tion that it handles. Here too, artifact flow between the parent and the exception han-
dler step is represented by annotations on the edge connecting them. This edge also
bears an annotation indicating the type of exception handled.

In the middle of the step bar goes a “lightning sign” (not shown in Fig. 1), which
represents the message handling capabilities of the step. Attached to this badge by
message handling edges are any and all handlers defined to deal with messages that
may emanate from any step in the process definition. The message handling capability
is quite similar to the exception handling capability, but, while exception handlers
respond only to exceptions thrown from within their substep structure (a scoped capa-
bility), message handlers can respond to message thrown from anywhere (an un-
scoped capability). If there are no child steps, message handlers, or exception han-
dlers, the corresponding badges are not depicted in the step bar.

422 M.S. Raunak and L.J. Osterweil

One of the important features of the language is its ability to define control flow.
There are four different non-leaf step kinds, namely “sequential”, “parallel”, “try” and
“choice”. Children of a “sequential” step are executed one after another from left to
right. Children of a “parallel” step can be executed in any order, including in parallel,
depending on when the agents actually pick up, and begin execution of, the work
assigned in those steps. A “try” step attempts to execute its children one by one start-
ing from the leftmost one and considers itself completed as soon as one of the chil-
dren successfully completes. Finally a “choice” step allows only one of its children to
execute, with the choice of which child being made by the agent assigned to execute
the step.

The pre-requisites and post requisites associated with each step act essentially as
guards, defining conditions that need to hold true for a step to begin execution or to
complete successfully. Exceptions and handlers are control flow constructs that aug-
ment the step kinds. The exceptions and exception handlers work in a manner that is
similar in principle to the way in which they work in well known contemporary appli-
cation programming languages. Exceptions indicate an exceptional condition or error
in the process execution flow, and handlers are used to recover from, or fix, the con-
sequences of those situations. When an exception is thrown by a step, it is passed up
the tree hierarchy until a matching handler is found. There is control flow semantics
involved with handler steps to indicate how the program flow will continue once a
raised exception has been handled by the defined handler. Figure 1b shows four dif-
ferent types of continuation semantics for handlers. With these semantics, a process
definer can specify whether a step will continue execution, successfully complete,
restart execution at the beginning, or rethrow the exception for a higher level parent
step to handle.

As noted above, a complete Little-JIL process definition also contains definitions
of artifacts and resources to complement this coordination definition. Artifacts are
entities such as data items, files, or access mechanisms that are passed between parent
and child steps. They provide information required for execution of a step and can be
used to carry results of the step execution back to the parent. Again, as noted above,
the artifact definition, indeed the specification of the type model used to support arti-
fact definition, is a separate concern in Little-JIL, and is orthogonal to the coordina-
tion definition.

In an analogous way, the resource (and thus agent) definition is also separate from,
and orthogonal to, the Little-JIL coordination definition. Specifically, how an agent
carries out a particular task is independent of the coordination dictated by the process.
Of course, however, the outcome of a process is influenced by the behaviors of the
agents, which are, in turn, specified within the resource model. Consequently, the
outcome of a process is similarly affected by the way in which specific resources are
bound as agents to the various individual process steps at various points during proc-
ess execution.

3.2 Auction Processes

We opted to investigate different auction processes and combinations of different
bidder behaviors in a potentially collusive environment. In the course of our

 Process Definition Language Support for Rapid Simulation Prototyping 423

investigations of how these behaviors affected auction outcomes, we wound up mod-
eling many different types of auctions, including open-cry or ascending bid (English)
auctions, double auctions, first-price sealed-bid auctions and finally repeated sealed-
bid auctions. Space does not permit us to describe the all the details of these different
types of auctions. The interested reader can find these details in [16]. But it is impor-
tant to sketch out some of their salient properties as this helps us to explain how cer-
tain properties of Little-JIL were particularly useful in supporting the rapid creation of
prototypes of auctions of these types.

Fig. 2. An open-cry (Ascending bid/English) auction

In an ascending-bid (English) auction, the auction type that is most commonly de-
picted in movies and novels, the price is successively raised by the auctioneer until
only one bidder remains, and that bidder wins the object paying the final price that
was bid. A Little-JIL coordination definition of this type of auction is depicted in
Figure 2.

A double auction differs from an English auction in that both buyers and sellers
submit bids and offers in an auction round. The auctioneer opens this bidding, and
then periodically closes the bidding, completing a round. At the end of a round, the
auctioneer identifies matches between the bids of buyers and sellers, finalizing the
sale of items so matched. Figure 3 shows a Little-JIL coordination definition that
describes such a double auction process. As you can see “double auction” is a parallel
activity between running the auction and checking to make sure that the auctioneer
has not called a stop to the auction. The step “run double auction” has a pre-requisite
step “check auction close” that identifies whether the next round should be placed or
not.

424 M.S. Raunak and L.J. Osterweil

Fig. 3. A double auction process

The important point to note here is that there are some common activities in these
auction processes. For example, the auctioneer closes the auction after a predefined
time period. Placing of bids is common to all the auctions. The auctioneer needs to
decide on a winner by processing the bids. Because of this, one should expect that
there ought to be process modules from one auction definition that are reusable, and
reused in other auction process definitions. Little-JIL encourages and supports such
reuse, as can be seen by examining these process coordination definitions. For exam-
ple, the “accept one bid” module of the double auction process is taken “as-is” from
our ascending-bid/open-cry auction process.

Examples of more extensive successful reuse can be seen in additional auction
process definitions. Our work continued with the definition of sealed-bid auctions. In
a first-price sealed-bid auction, each bidder independently submits a single bid with-
out knowing others' bids, and the object is sold to the bidder with the highest bid. The
bidder pays his price (first price) to get the object. Auction of this type are currently
very common and popular.

A repeated sealed bid auction is an important variant of this type of auction. It is a
series of sealed bid auctions where auctioneer announces the results of the auction
after every round, and then initiates a new auction for new batch of goods or services
that are essentially identical to those just sold. Governments and large corporations
carry out much of their procurement activities through exactly this kind of repeated
sealed-bid auctions. Because of the enormous economic importance of such auctions,
they have been the subject of much analysis, much of which has focused on their
resistance, or vulnerability, to certain kinds of bidder collusion. The bidders, after
receiving the announcement of the outcome of a round, can potentially attempt to

 Process Definition Language Support for Rapid Simulation Prototyping 425

collude or decide on their bids individually. In either case, the bidders place their bids
and auctioneer collects the bids, processes them to identify the winner and announces
the winner before initializing the new round.

For space constraint, we are not showing the Little-JIL coordination definition of a
repeated sealed bid auction. However, it is important to note that this process reuses
the entire definition of a single-round sealed bid auction, in a striking demonstration
of reuse. The single round sealed bid auction, in turn, reuses some steps from the open
cry auction definition.

There are other features of Little-JIL that foster reuse and rapid prototyping, but
they require familiarity with other features of the language that we address now.
Specifically, it is important to note that some edges are annotated with cardinality
symbols, for example the agent+ notation on the edge from the “accept one bid” step
to the “place bid” step. This notation represents the resource bounded cardinality
feature of Little-JIL process descriptions. The child step of an edge containing such a
notation is instantiated once for each of the agents available as an active bidder at the
time of instantiation of that step. Thus, for example, if we specify that the agent for a
bidding step must be collusive, then one step will be created for every bidder whose
agent behavior (as defined in the resource factor of the Little-JIL process definition) is
defined to be collusive. A bidding step will be instantiated only for the collusive bid-
ders and each of them will be given the task of bidding in that step. In contrast, if a
step’s agent specification specifies only bidders, then that step will be instantiated for
all bidders, both collusive and non collusive. If an edge is annotated with ‘?’, then
that step will execute only if an agent satisfying the requested characteristics is avail-
able. Thus, the step may or may not execute at all. For example, in the repeated
sealed-bid auction process there is a collusion step connected to its parent by an edge
annotated with a “?” indicating that it will get executed only if there exists collusive
bidders in that auction round.

One net effect of these properties of Little-JIL is that a given fixed auction process
can be executed, and evaluated, against a variety of different bidder collusion scenar-
ios very straightforwardly. Indeed, the auction coordination definition may not need
to be changed at all in order to evaluate the resistance of a particular auction to a vari-
ety of collusive threats.

Conversely, it is correspondingly straightforward to evaluate the relative resis-
tances of various auctions to a fixed collusive threat. Because the code for defining
how agents will collude with each other is contained largely in the agent definition
factor of Little-JIL, it is also highly reusable across the range of different auction
processes. In our work, we have been able to plug in the agent code written to support
one auction process, and use it to support a different one, with minimal or no changes
to the agent code. Thus, Little-JIL’s separation of concerns allows us to quickly
change an overall auction process, by changing either the auction or the agent behav-
ior, but then reusing the other part with little or no change. This has enabled us to
create and evaluate a wide range of auction processes very rapidly.

3.3 Modeling Collusions

We have already noted that agent behaviors, such as collusions in an auction, are
defined in Little-JIL as part of the agent definition factor of the language. Thus, our

426 M.S. Raunak and L.J. Osterweil

repeated sealed bid auction did not explicitly model the details of the collusive behav-
ior. It is expected that these behaviors may best be defined in other languages, spe-
cifically those that are more strongly algorithmic or computational. On the other
hand, there is no reason why agent behaviors cannot be defined as Little-JIL coordi-
nation, using the power and convenience of the Little-JIL coordination language it-
self. Thus, as an example, Figure 4 shows one possible definition of collusive behav-
ior, which we have used in many of our simulations.

Fig. 4. A collusion process example

The collusion protocol presented here describes the scenario where each collusive
bidder registers with a collusion manager. While registering, the bidders submit their
valuation for the auctioned object to the collusion manager. The manager then sets up
the collusion by sending a collusion plan back to the registered bidders. The plan
includes what each of the bidders should bid in that round. It is important to note that
we indeed used Little-JIL to define a number of collusions in our preliminary auction
research, as the language’s encouragement and support of reuse facilitated the rapid
creation of prototype auctions that differed from each other only in modest perturba-
tions of collusive behavior.

Thus, for example, the strategy used by the collusion manager to decide on the in-
structed bid can, in the case of the collusion shown in Figure 4, be made independent
of both the auction process and the overall collusion strategy itself. This allows us to
quickly create a new prototype for a different type of collusion while running the
same auction and using bidders who intend to collude in the same way.

4 Experiences and Challenges

4.1 Auction Results

After a few iterations aimed at identifying the simulation that seemed to be most
promising for investigation, we zoomed into an intensive and detailed examination of

 Process Definition Language Support for Rapid Simulation Prototyping 427

the repeated sealed bid auction where bidders have the opportunity to collude. We ran
several experiments using our process simulation vehicle. Our aim in the experiments
was to see how the number of collusive bidders impacts the outcome of an auction.
We were also interested in investigating the dynamics of multiple colluding rings
operating in a repeated auction environment. We developed automated agents with
bidding strategies based on game theoretic models. We allowed for changes of behav-
ior amongst the bidders. A non-collusive bidder can become collusive and join a ring
after a few rounds of auction based on the history information made available to the
bidder. We modeled our bidders as risk neutral agents placing their bids according to
a pareto-optimal bid producing a Nash equilibrium [20]. The bidders were made in-
creasingly complex in later experiments. The bidding strategy was primarily modeled
as a decision problem influenced by a lot of factors and parameters. If there are multi-
ple colluding rings present, we allowed colluding bidders to switch rings under certain
conditions. As noted earlier, we modeled the collusion with communication amongst
the bidders through a center, the collusion manager. The center’s role was to decide
on the profit sharing mechanism of the colluding bidders and instruct participating
bidders to bid according to the prescribed strategy. Here we present a very brief, but
representative, summary of our experimental results to demonstrate the usefulness of
such a simulation study. A more detailed discussion about the modeling of the bid-
ding strategy and the results of different experiments we performed is to be presented
in subsequent papers.

In this experiment, we used a fixed number of ten non-collusive bidders participat-
ing in the auction. However, after a fixed number of rounds, we updated bidder be-
havior and made a non-collusive bidder collusive. As the auction progressed through
subsequent rounds, more and more bidders became collusive. Our object was to iden-
tify whether the collusive ring needs to achieve some kind of threshold size in a
sealed-bid auction in order to consistently be successful in rigging the auction. We
observed that with a specific auction model and bidder behaviors, the collusion starts
to take over when around 70% of the bidders participate in the collusion. In another
experiment, we have been investigating the conditions under which one dominant
colluding ring drives other rings out of competition. The initial results have shown
some interesting trends. We will present the details of our experiment setup and
evaluations in subsequent papers.

4.2 Simulation Experience

The process definition and execution framework supported by Little-JIL and Juliette
facilitated our efforts, and enabled us to execute hundreds of cycles of process defini-
tion, execution, evaluation, and evolution in a short space of time. The simulations we
developed often provided intriguing results, causing us to feel the need for validation.
Thus, one of our early activities entailed the generation of some large scale simulation
outputs that could be verified against analytic results. The validation of these early
simulation results encouraged us to go on to simulations that entailed complex, yet
realistic, collusions that are not amenable to analytic verification. These simulations
seem to add to the body of knowledge about the effectiveness of various collusions
against particular auctions.

428 M.S. Raunak and L.J. Osterweil

In order to obtain these results, we felt it was necessary to perform massive
amounts of simulation runs of various configurations of colluding bidders, against the
auction processes that we had decided to study. It was not initially obvious, however,
which type of auction, and what type of collusion, was worth this evaluation through
massive quantities of simulation runs. We felt that there was a need for the flexibility
of rapid changes of process, collusion and bidder strategies necessary in order to iden-
tify the specific auctions, collusions, and bidder behaviors that were likely to be of
most interest and value in auction research. The factoring of process coordination,
agent assignments and actual agent behavior that we leveraged out of the Little-
JIL/Juliette framework supported the separation of concerns in a process language
framework that enabled the considerable amount of exploration of this sort that we
found to be needed.

Once the specific simulations that needed to be evaluated through massive experi-
mentation became clear as the result of a considerable period of this preliminary
evaluation, the drawbacks of an interpreted language became apparent. The auctions
that we wanted to simulate extensively entailed ten or more bidders, with the process
itself consisting of more than eighty steps for every auction round. Dozens of auction
rounds were necessary.

As Little-JIL is an interpreted language, executing processes with Juliette is naturally
far slower than would be the execution of the same processes programmed in a com-
piled language. Moreover, Juliette was designed to support distributed process execu-
tion. This distributive support is accomplished through a lot of remote method invoca-
tions (rmi) which incurs large network communication time, which in turn makes the
executed process slow. With real humans in the loop for placing the bids from distrib-
uted terminals, the simulator created with this infrastructure can be sufficient to produce
realistic results. However, if one wants to focus on producing massive simulation results
in a short period of time through automated agents, automated process execution falls
short of providing that level of efficiency. In our experiments with ten bidders, each
round of sealed-bid auction took about two to three minutes to finish depending on the
number of bidders colluding. More colluding bidders result in an increased number of
total steps for that auction round. In an experiment where the number of collusive bid-
ders increases with time, the execution time for each auction also rose sharply. Toward
the end of a thirty round experiment, each auction cycle took up to six minutes on aver-
age to finish. However, we did not intend to produce massive simulation with the dis-
tributed process execution framework of Little-JIL/Juliette. At this point, we used our
process definition as the architecture of the intended simulation engine and rapidly
coded out the simulator in a compiled language, Java. The beauty of this switching was
the ability to reuse a lot of agent code. As agents were a separate concern in our process
language and were written in Java in the Little-JIL/Juliette framework, it was easy to
plug in the agent code in later simulations.

4.3 Process Language Experience

We have gathered some important insights regarding process programming in general
and Little-JIL/Juliette framework, in particular, while implementing this simulation

 Process Definition Language Support for Rapid Simulation Prototyping 429

infrastructure. We have used Little-JIL as an executable design language to create a
meta-model infrastructure to build simulators.

Little-JIL provided us with rich process notations to depict the architecture of the
simulation hiding unnecessary details. We were able to capture the behaviors of a
range of auction processes quite accurately, with relatively little effort being put into
creation of the different processes. For example, Little-JIL’s concurrency control
features were particularly useful in defining the simultaneous placing and accepting of
bids by the bidders and auctioneer respectively. Little-JIL also helps to describe cer-
tain steps succinctly. The agent bounded cardinality in place bid step succinctly, yet
effectively, selects for instantiation steps executed only by agents available to carry
out the work. Specifying different attributes of the agents allowed us to assure the
selection of the agent appropriate to perform any particular task at any particular
process execution instance.

We note (in passing, only to save space) that Little-JIL also incorporates some tim-
ing semantics. In our repeated sealed-bid auction process, we have used a deadline
construct (a clock-face on a step interface) on the place-bid step. This indicates that
the step has to be completed by the agent within a specified period of time. Otherwise
it will be retracted and a deadline expired exception will be thrown. The inclusion of
deadline semantics in the language supports the definition and evaluation of an even
richer collection of auction processes.

Juliette, the Little-JIL interpreter, takes a little-JIL process and executes it in a way
that is assured to be completely consistent with the Little-JIL semantics, through the
use of finite state machine semantics that are used to define Little-JIL and also drive
Juliette. Juliette, moreover, deals with a resource manager that is the repository of all
resources (and, therefore agents) that are available for participation in the execution of
the process. Thus, Juliette has the ability to acquire resources required to complete
each step (agents etc) incrementally, and in real time, as the process execution pro-
ceeds. Juliette also manages the numerous data that flows from step to step through-
out the process.

One shortcoming of the Little-JIL coordination language is the absence of seman-
tics to support specification of artifact flow between sibling steps. As noted above,
artifact flow in Little-JIL is defined to take place between parent and child. But this
posed a continuous problem in our auction processes, as it complicated the representa-
tion of how bids flow from bidder to auctioneer, and how results flow from auctioneer
to bidder. We have used the message passing semantics of using reactions and reac-
tion handlers in Little-JIL to represent this type of lateral dataflow in our simulated
processes. New versions of Little-JIL are due to incorporate features that would alle-
viate this shortcoming, and these features are clearly necessary to facilitate research of
the type that we have been describing.

5 Concluding Remarks

Little-JIL, a rigorous process language, has been used to define a wide range of proc-
esses. Static analyzers have been applied successfully to reason about processes de-
fined by this language. In this paper we have utilized the factored nature of the Little-
JIL language, its separation of concerns, and its flexible execution environment, to

430 M.S. Raunak and L.J. Osterweil

develop a simulation framework to perform dynamic analysis of a specific type of
distributed process, auctions and collusions in auctions. We demonstrated the utility
of an executable process language in providing support for rapid simulation prototyp-
ing. We have also presented our case for the need of quick simulation development
for identifying the right focus that needs further investigation. Our findings pointed
out the issues important for process based simulation development. We investigated a
number of simulations and finally zoomed into reasoning about auction outcomes in a
repeated sealed-bid auction scenario with the presence of collusive bidders.

Although auctions have been extensively studied analytically in Economics and
Operation Research areas, there are certain characteristics of auctions that are difficult
to study analytically. Researchers have used laboratory experiments with small num-
bers of human bidders to study some such characteristics [8, 9, 10]. In our study, we
utilized the theoretical findings of auction researchers to model automated bidders to
run large numbers of auction simulations with varied parameters. We have found that
in a repeated sealed-bid auction with risk neutral bidders, there seems to be a certain
threshold governing a collusion's effectiveness in the auction. We also identified the
effect of collusion when multiple rings of differing size are present in an auction.
These insights should help us better understand the effectiveness of collusion in auc-
tions and in turn, allow us to design better auction processes that are resistant to collu-
sive behavior.

The demonstration of auction analysis through simulation indicates the clear poten-
tial for dynamic analysis of software processes. Auction processes are economic ac-
tivities used widely for efficient resource allocation. This type of resource allocation
and task assignment are, however, also common activities in software development
processes. Like an auction environment with collusion, side communication amongst
agents in a software process and bidding for work is not uncommon at all. However,
the exact software process to study may require iterative prototyping of the process
simulation. It is therefore our contention that there is a lot of merit in using flexible
process language to produce executable simulation designs through rapid prototyping.

Acknowledgements

This research was partially supported by the Air Force Research Laboratory/IFTD and
the Defense Advanced Research Projects Agency under Contract F30602-97-2-0032,
by the U.S. Department of Defense/Army and the Defense Advance Research Projects
Agency under Contract DAAH01-00-C-R231, and by the National Science Founda-
tion under Award Nos. CCR-0204321 and CCR-0205575. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied of the Defense
Advanced Research Projects Agency, the Air Force Research Laboratory/IFTD, the
U.S. Dept. of Defense, the U.S. Army, The National Science Foundation, or the U.S.
Government.

Prof. Abhijit Deshmukh helped us a lot in guiding us towards the more interesting
auction processes to study. His valuable input allowed us to model the collusions and

 Process Definition Language Support for Rapid Simulation Prototyping 431

bidding strategies of the automated bidders. Conversations with Prof. George Avrunin
were also very helpful in this regard. Sandy Wise and Aaron Cass have been very
helpful in providing insights and advice about the Little-JIL language, and the Juliette
interpreter. Ethan Katz-Bassett and Amr Elssamadisy helped us during the simulation
modeling and implementations of the initial auction processes.

References

1. Aoyagi, M.: Bid rotation and collusion in repeated auctions. Journal of Economic Theory
Vol. 112 (1) (2002) 79-105

2. Bajari, P., Summers G.: Detecting collusion in procurement auctions. Antitrust Law Jour-
nal Vol. 70 (2002) 143-170

3. Byde, A.: A comparison among bidding algorithms for multiple auctions. Technical Re-
port, Trusted E-Services Laboratory, HP Laboratories Bristol (2001)

4. Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton Jr., S.M., Wise, A.: Logi-
cally central, physically distributed control in a process runtime environment. Technical
Report No. UM-CS-1999-065, University of Massachusetts, Department of Computer Sci-
ence, Amherst, MA (1999)

5. Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton Jr., S.M., Wise, A.: Little-
JIL/Juliette: A process definition language and interpreter. In: Proceedings of the 22nd In-
ternational Conference on Software Engineering, Limerick, Ireland (2000) 754-757

6. Christie, A.M.: Simulation in support of CMM-based process improvement. Journal of
Systems and Software, Vol. 46(2). (1999)

7. Cobleigh, J.M., Clarke, L.A., Osterweil, L.J.: Verifying properties of process definitions.
In: Proceedings of the International Symposium on Software Testing and Analysis
(ISSTA2000), Portland, OR (2000) 96-101

8. Isaac, R.M., Plott, C.R.: The opportunity for conspiracy in restraint of trade: An experi-
mental study. Journal of Economic Behavior and Organization Vol. 2 (1981)

9. Isaac, R.M, Valerie, R., Arlington W.W.: The effects of market organization on conspira-
cies in restraint of trade. Journal of Economic Behavior and Organization, Vol. 5. (1984)
191-222

10. Isaac, R.M., Walker, J.M.: Information and conspiracy in sealed bid auction. Journal of
Economic Behavior and Organization, Vol. 6. (1985) 139-159

11. Kellner, M.I., Madachy, R.J., Raffo, D.M.: Software process modeling and simulation:
Why, what, how. Journal of Systems and Software, Vol. 46(2) (1999)

12. Klemperer, P.: Auction theory: A guide to the literature. Journal of Economic Surveys,
Vol. 13(3) (1999) 227-286

13. Lakey, P.B.: A hybrid software process simulation model for project management. In:
Proceedings of the Software Process Simulation Modeling Workshop, Portland, OR
(2003)

14. Osterweil, L.J.: Software processes are software too. In: Proceedings of the Ninth Interna-
tional Conference of Software Engineering, Monterey, CA (1987) 2-13

15. Osterweil, L.J.: Improving the quality of software quality determination processes. In: R.
Boisvert, (ed.): The Quality of Numerical Software: Assessment and Enhancement.
Chapman & Hall, London (1997)

16. Milgrom, P.R., Weber, R.J.: A theory of auctions and competitive bidding. Econometrica,
Vol. 50(5). (1982) 1089-1122

17. Sandholm, T.: Algorithm for optimal winner determination in combinatorial auctions. In:
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI),
Stockholm, Sweden (1999) 542-547

432 M.S. Raunak and L.J. Osterweil

18. Scacchi, W.: Experience with software process simulation and modeling. Journal of Sys-
tems and Software (1999)

19. Thuente, D.J.: Rapid simulation and software prototyping for the architectural design of
embedded multiprocessor systems. In: Proceedings of the 19th annual conference on
Computer Science, San Antonio, Texas (1999) 113–121

20. Vickrey, W.: Counterspeculation, auctions, and competitive sealed tenders. Journal of Fi-
nance, Vol. 16 (1961) 8-37

21. Wise A.: Little-JIL 1.0 language report. Technical Report No. UM-CS-1998-024, Depart-
ment of Computer Science, University of Massachusetts, Amherst, MA (1998)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 433 – 448, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Evolving an Experience Base for Software Process
Research

Zhihao Chen1, Daniel Port2, Yue Chen1, and Barry Boehm1

1 Center for Software Engineering, University of Southern California,
Los Angeles 90089 California, USA

{zhihaoch, yuec, boehm}@cse.usc.edu
2 Information Technology Management, University Hawaii, Honolulu 96822 Hawaii, USA

dport@hawaii.edu

Abstract. Since 1996 the USC Center for Software Engineering has been
accumulating a large amount of software process experience through many real-
client project software engineering practices. Through the application of the
Experience Factory approach, we have collected and evolved this experience
into an experience base (eBASE) which has been leveraged successfully for
empirically based software process research. Through eBASE we have realized
tangible benefits in automating, organizational learning, and strategic
advantages for software engineering research. We share our rationale for
creating and evolving eBASE, give examples of how the eBASE has been used
in recent process research, discuss current limitations and challenges with
eBASE, and what we hope to do achieve in the future with it.

1 Introduction

Software processes are widely applied in development of software-intensive systems
in the commercial, aerospace, and government sectors. They tell people that what to
do, who should be doing what, when and how to build the software. While what
people most concerns are: are they effective or not, are their guidelines efficient, can
they reduce the risks, are there any best practices, do they fit the cultures ... Software
processes need to be validated, and refined in the continuous practices. On the other
hand, software process research relies on having a base of high quality empirical
process-related data collected from the planning and execution of software
development projects. It is a challenge to acquire and sanitize these data. In addition,
such data tend to be poorly structured, evolve unpredictably, and grow rapidly making
them difficult to effectively archive, manage, and subsequently access. Since 1996 the
University of Southern California’s Center for Software Engineering (CSE), and NSF
center for empirical software engineering center (CeBASE) [16] since 2000 have been
evolving a software process experience base (eBASE [1]) that are collecting graduate-
level, real-client, real-project software engineering practices from the developments
of e-service applications along with a full lifecycle of project artifacts such as Unified
Modeling Language (UML) models, cost and effort estimates, and risk reports. These
academic, governmental, and industrial software engineering activities in our center
have generated more than 30 GB of project data since 1996.

434 Z. Chen et al.

Without a doubt, eBASE has proven a boon to software process research.
Empirical models are being accumulated, so as validated guidelines for selecting
processes and technologies and the best practices. It can be used for software process
research, project decision-making and project support. We use it to support planning
of future projects. Software developers use the experience base to learn the processes,
avoid recurring mistakes, and plan and control their projects from the previous similar
projects. With the study of the data in the experience base, we try to understand the
trends in e-services projects and their effort implications, and identify sources of
effort reduction/increase. We also try to provide the guidelines for future software
project development and management. With the validated and refined software
processes, people can avoid the same mistakes, solve the recurring issues, and apply
the similar models in future projects.

eBASE has been successfully served to inform our industry and government
affiliates, including Motorola, Xerox, SAIC, NASA’s Jet Propulsion Laboratory, etc.
[2], of emerging process-related issues and to provide them with the validated and
refined software process, and guidelines in software engineering practices. That
interest extends from the science community to the government and industry
communities, and that empirical research conducted in the software engineering
empirical data can be of interest to all software-related communities, is a testament to
the efficacy of eBASE [2]. Examples of some of the process research that has been
enabled through eBASE are: empirical development activity and effort models, top-10
risks, Commercial Off-The-Shelf (COTS) activity effort models, UML model sizing
and effort, WinWin attribute conflict resolution, COTS risks, COTS project types, and
many others!

eBASE began with the modest objectives of providing project artifact examples
and helping automate and streamline project development and management. It has
evolved well beyond this into an invaluable organizational learning and strategic
research tool not only for the CeBASE but also for all software organizations. We
attribute this in part to our adoption of the Experience Factory (EF) approach [3,4,5,6]
which we will be discussed in Section 2. Also in section 2 we describe our objectives
and rationale for creating eBASE, the initiatives undertaken in its development and
their subsequent benefits. In section 3 we describe how eBASE data is collected and
organized and the experience management system (EMS) used to access eBASE data.
Section 4 provides numerous examples of process research enabled though eBASE,
followed by challenges of evolving an eBASE in Section 5 and some current work on
addressing these challenges and conclusions in Section 6.

2 eBASE Objectives, Rationale, Results and the Experience
Factory

The general objective of eBASE is to collect and enable access to a diversity of
empirical data, process information, models, process knowledge and experience
(hereafter collectively referred to as experience) arising from software development
practice in a highly accessible format. It is available primarily to the CeBASE
collaborators and secondarily to the general public. The content of the eBASE was
initially based on experience stemming from previous and current work conducted by

 Evolving an Experience Base for Software Process Research 435

CSE, for example COTS based and Defect reduction techniques. In the future we
expect collaborators of CeBASE (students, researchers, educators, and practitioners)
to collaborate in various groups and share experience within and outside those groups.
The objective for eBASE is modest enough: provide software developers with the
validated and refined software models, software processes, project knowledge, project
experiments and develop guidelines. With eBASE, project data have captured,
structured, packaged, and formalized. We have a set of methodologies governing how
to structure the data. We have processes, procedures and role governing how to
manage the data with the supporting tools.

eBASE has benefit beyond supporting automation and improving efficiency. The
improved uniformity enabled us to use eBASE to collect project statistics (see Table
1) to aid in software process improvements such as reducing project risk, improve
project productivity, review success, and client satisfaction. This enabled a kind of
organizational learning feedback and control system where new techniques, tools,
and methods were introduced and their effects could be measured in a tangible way.
For example introduction of the first Model-Based (System) Architecting and
Software Engineering (MBASE) guidelines [11] in 1997 reduced the final artifact
page count from an average of 230 to 154.

The success of our primitive eBASE inspired the strategic application of process
research. Previous experiences were used to identify key problem areas, and new

techniques were de-
veloped to address
these areas then used
in the software pro-
cesses. The re-sults
were compared to
previous measures to
see if the expected
benefits were rea-
lized. For example,
we observed that
from 1996-1998 a
high percentage of
project teams were
failing their life cycle
objectives (LCO) re-
view [7] even though
passing their life
cycle architecture
(LCA) review later.

After study of the failing projects LCO artifacts we speculated that due to the fixed
schedule, these teams were not able to discover and negotiate feasible architecture
options quickly enough to present a viable LCO. To address this we introduced
Simplifiers and Complicators [8] in 1998-1999 which resulted in a significant
reduction in the number of LCO review failures.

Table 1. Project Statistics

436 Z. Chen et al.

The infrastructure of the eBase has evolved based on the ideas of the Experience
Factory (EF) [3,4,5,6]. It is this approach that defines a framework for Experience
Management (EM). The EF fosters organizational learning (as exemplified
previously), which means that the organization manages and learns from its own
experience. The EF approach teaches the organization to observe itself, collect data
about itself, build models and draw conclusions based on the data, package the
experience for further reuse, and most importantly to feed the experience back to the
organization and for sharing it within and outside the organization. The basic
framework for EF is illustrated in Figure 1.

Initiatives

Planning context

Progress/Plan/ Goal
Mismatches

Experience Base

Analyzed experience,
Updated modelsAchievables,

Opportunities

• Org. Improvement Goals
– Goal-related questions, metrics

• Org. Improvement Strategies
– Goal achievement models

Org. Improvement Initiative
Planning & Control

• Initiative Plans
– Initiative-related questions,

metrics

• Initiative Monitoring and
Control

– Experience-Base Analysis

Org. Shared Vision &
Improvement Strategy

Project Shared Vision
and Strategy

Planning Context

Models and data

Project
experience

Org.
Goals

Project Planning and
Control

Models and
data

Fig. 1. EF Framework

The EF approach has been successfully applied to different organizational settings.
It has been applied by individual organizations for utilizing their own experience and
sharing experience within the organization, such as NASA GSFC. It has also been
applied to groups of organizations for inter-organizational sharing of and learning
from experience, such as the Software Engineering Center (SEC) consortium. The EF
approach was designed for software organizations and takes into account the software
discipline’s experimental, evolutionary, and non-repetitive characteristics.

The EF helps organizations improve their experience management by
implementing a framework for sharing experience within the organization as well as
within the community. Through the EF we have evolved the eBASE beyond our
original imitative of storing of projects on the web. These initiatives have each
resulted in numerous direct and indirect long-term benefits to software development
practices. These can be summarized within the following three areas that have been
exemplified previously:

1. Automating - Centralizing access, Remote access, Reduced printing, Easier artifact
review (grading)
2. Organizational learning - Feedback for course improvement, Uniform structure and
formatting (especially models and file structure), MBASE refinement, Difficult areas,
Historical record

 Evolving an Experience Base for Software Process Research 437

Fig. 2. eBASE Results Chain

3. Strategic application - Empirical data for process research projects, MBASE
evolution, Recognition (affiliates, other research institutions, general public, funding
orgs.), Attract new research and researchers, Attract new project clients.

Figure 2 indicates a
Results Chain [17]
based on the above
areas of benefit for
eBase. It describes
how the eBASE
initiatives relate to
intermediate benefits
and ultimately to the
longitudinal goals for
the empirical research.

Figure 2 provides
insight as to how the
benefits of eBASE
cascade and compound
from relatively modest

initiatives. Compounding benefits is a fundamental aspect of the highly iterative and
integrated EF approach. These benefits have significant and measurable. For example,
an indication of “stimulus for new research projects” is a count of the number of
projects that directly utilize eBASE. While we have not kept precise records, roughly
26 of 48 current process research projects listed on the CSE utilize eBASE in some
non-trivial way. Many of these projects have led to new eBASE initiatives (e.g. the
Experience Management System) and these will are elaborated in subsequent
sections.

3 The CSE Experience Management System (EMS)

The software projects produce a number of complex artifacts, all to be stored in
eBASE. These include:

- 1) domain models; 2) requirements; 3) architecture models (often visual in
nature such as UML class diagrams); 4) lifecycle plans (e.g. tasks, Work
Breakdown Structure, schedules); 5) business case models; 6) construction
and test plans; 7) review documents and meeting notes; 8) source code trees
9) effort reports; 10) project progress reports; 11) cost models, e.g.
COCOMO II (COnstructive COst MOdel) [20] runs. 12) prototypes; 13)
WinWin negotiations; 14) user manuals; 15) metrics; 16) project web pages.

There are multiple versions of these artifacts as they evolve through the lifecycle
(e.g. LCO, LCA, Initial Operational Capability - IOC milestones [7]). In addition,
there are no standards for how these artifacts are produced, stored, or formatted.
There are MS Word, Rose, MS project, Visio, and HTML files. Requirements are
sometimes specified in UML, others in plain text. Even the directory structure for the
project websites vary wildly. To make matters worse, we also collect and archive

438 Z. Chen et al.

course related artifacts such as project client feedback, individual student self-
evaluations, grades, lecture notes, lecture slides, course readings, development
guidelines, grading criteria, and so forth. More recently we are also collecting process
research results such as simplifier and complicators, COTS process elements, effort
analysis, risk tables, and an rapidly increasing number of others projects. With such a
diversity of artifacts, it is clearly a challenge to effectively collect, archive, and access
these artifacts for eBASE.

The Experience Management System (EMS) initiative is an attempt to provide
structure and capabilities to reign in and control the chaos of eBASE. Figure 3
presents the context and activities for the EMS.

To provide a grounded structure for the EMS, its activities and system capabilities
are formulated around the Model-Based [System] Architecting and Software
Engineering (MBASE) framework [9,10,11]. MBASE provides detailed definitions of
the anchor point milestone elements [7] and a process guide for deriving them. It has
intermediate milestones to serve as commitment points and progress checkpoints with
the set of anchor point milestones: Inception Readiness Review (IRR), Life Cycle
Objectives (LCO), Life Cycle Architecture (LCA), Initial Operational Capability
(IOC), and Product Release Review (PRR).

The software projects are (mostly) developed using MBASE framework [9,10,11].
For the EMS this provides a natural archival structure for project artifacts in terms of
the MBASE deliverables and suggests good data ingest points based on the anchor
point milestone reviews (e.g. LCO). As an example, we have EMS guidelines to
structure the project artifacts in the inception and elaboration phases (LCO and LCA
milestones) where we collect the projects:

- 1) operational concept description (OCD); 2) system and software
requirements definition (SSRD); 3) system and software architecture
description (SSAD); 4) life cycle plan (LCP); 5) feasibility rational
description (FRD); 6) project UML models; 7) project prototype; 8) win-win
negotiation report; 9) weekly progress reports; 10) risk assessments; 11)
client meeting notes; 12) project quality reports; 13) effort data on the
various development activities.;

Later in transition and maintenance phases (IOC), any new or updated project
artifacts of inception are collected. These include:

- 1) iteration plan; 2) test plan; 3) test description and results; 4) peer review
plan; 5) source code; 6) quality management plan; 7) release description; 8)
transition readiness assessment; 9) iteration assessment; 10) report, transition
plan; 11) user’s manual; 12) acceptance test plan and description; 13) support
plan, packaged tools and procedures; 14) regression test package, size report;
15) training materials; 16) close out re-port and estimation effort report.

After the collection of the data, we classify the projects into different catalogues
based on project characteristics by using different criteria. Projects are classified by
project domain, project type, and COTS type. Some project attributes like customer,
developers, number of developers, project name, team and academic period are also
added into the projects. The EMS has a search by project attribute capability which
helps researchers and students locate relevant project data quickly. The EMS also
provides full text search of all project artifacts regardless of format and file type.

 Evolving an Experience Base for Software Process Research 439

Users of the EMS also give us additional project information such as project
ratings, comments, and discussions. The system also collects a variety of usage
statistics like page visits, page traffic, country of origin, referring host, file type, page
URL, connection-from info, search keywords, OS, browsers, etc. We can easily find
out what kinds of eBASE information users are looking at and their general profiles.
Foe example, people from more than 60 countries have accessed our eBASE though
the EMS.

4 Summaries Process Research Enabled from eBASE

Now that we have discussed the background of eBASE, we turn to the primary focus
of this exposition. That is, once eBASE had been sufficiently established (e.g.
structure and capability from the EMS) and populated with data, it enables an
impressive variety of high-quality, empirically based process research. Rather than
argue the validity of this statement, we believe it is self-evident by virtue of the
numerous, non-trivial examples that we now present. Rather than detail each
particular project, we shall provide a concise summary, references, an example, and a
description of how the eBASE enabled the research.

Effort activities and distribution. The eBASE contains project effort reports for
over 100 projects. In addition to coding effort, the reports provide a host of detailed
process activity effort data such as review planning, COTS assessment, inspections,
training and preparation, client communications, and so forth. There are a limitless
number of valuable effort studies than can be made with this data. One such example

Project Support

5. Analyze

Experience Base

Generalize

Tailor

Formalize

Disseminate

1. Characterize
2. Set Goals
3. Choose Process

4. Execute Process

Project analysis
Process

modification

Data, lessons
learned

Product, lessons
learned, models

environment
characteristics

Tailorable
knowledge
consulting

Experience Management System (EMS)Project Organization

6. Package

CSE Instructional Staff as
"Managers" of Teams

Graduate
Teams

Done by project team
by CSE’S Researchers and Instructtional staff of CS 577ab

Team stakholders extract to the best of their ability

Artifacts [Project / MBASE documents,
including specifications, plans, support

material, code, manuals,], process
metrics, quality data, developer

background

Researchers,
archiveist, generated by teams and

stakeholders, manual and
(semi-) automated systems,
individuals (critiques and

lessons learned),

Instructional staff and
CSE reasearchers

Fig. 3. The EMS System

440 Z. Chen et al.

is to validate the popular RUP activity level distribution by phase illustration [12].
This diagram suggests a breakdown in the amount of effort to invest for top-level
activities such as management, requirements, coding, etc. Figure 4 was produced by
aggregating the detailed activities into representatives of the top-level RUP activities
and graphing these over the project lifecycle. We see that the software projects
generally follow the suggested Rational Unified Process (RUP) activity level
distributions. This is notable given that the software projects are generally small,
short, fixed schedule projects. To the best of our knowledge, this is the first empirical
validation of the RUP activity level distribution illustration.

Fig. 4. The software project activity level distributions

UML sizing studies. Project size measurement has been an important application of
eBASE as size is a reliable predictor of development effort, schedule, and cost [13].
There is considerable interest on utilizing UML model metrics such as number of use-

cases and class diagram
complexity for program
sizing. The EMS has
effectively helped
researchers explore the
relationship between UML
models, code size, and
effort by adapting tools
such as Code Count for use
on the project artifacts to
get counts of attributes of
use cases, sequence
diagrams and class
diagrams and correlate Fig. 5. Use-case vs. SLOC

 Evolving an Experience Base for Software Process Research 441

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1997 1998 1999 2000 2001
Year

Fig. 6. Growth of COTS Intensive Projects

them with effort from the effort reports and lines of code. Figure 5 is example of the
correlation between external Use-cases and SLOC from the projects.

To date, our sizing research has demonstrated that some of the early UML metrics
(i.e. number of high-level use cases and number of classes) are moderately well
correlated with SLOC counts for the eService projects [14]. It indicates a potential for
organizations to estimate project effort based on UML model statistics once UML
usage definitions and counting rules are more standardized.

Growth in COTS
projects. COTS has
always posed a challenge
for the projects. Despite
numerous attempts at
providing explicit COTS
process guidance, projects
that utilize a high-degree
of COTS have difficulty
adapting the MBASE
guidelines (e.g. producing
UML class diagrams for

inaccessible COTS code) and a low success rate. This trouble seemed to get worse
every year and we were not making much progress on a remedy. Our first question
was to try to get a handle on how much of a problem this was and might be in the
future. The eBASE revealed that the fraction of COTS based applications (CBA)
projects undertaken per year was growing fast (see Figure 6). By 2001 over 60% of
the projects made intensive use of COTS versus 28% in 1997. It was clear that there
was a major shift in development practice and our course guidelines had not kept pace
with this change! We also found that, indeed, industry had also been experiencing a
rapid growth in CBA projects.

COTS project types. Since CBA’s had become the majority, we had to confront our
difficulties in providing effective guidance for CBA project develop-
ment. An investigation into eBASE was con-ducted as to how effort was being

expended wi-thin COTS
projects. The idea behind
this was to try to identify
risky COTS development
areas and provide more
eff-ective means of add-
ressing these risks (under
the assumption “where
there is effort, there is
risk”). Remarkably, this
investigation revealed
that CBA’s vary widely
in how effort is expended
between COTS
assessment, tailoring, and

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Assessment Tailoring Glue Code

Fig. 7. COTS Effort Distribution in eBASE Projects

442 Z. Chen et al.

Table 2. COTS Project Activity Sequences

Effort Sequences
No

Incp. Elab. Cons. Tran.
1 A AC ATG C
2 A AT A A
3 A (TG)A G G
4 A A(TG) A(TG) G
5 AT AT T T
6 A T TG G
7 AT T T T
8 AT (AA)TG (TGC) G
9 A AT TG G

glue-code (see Figure 7). Further investigation into the eBASE reveled that these
distributions result from three main strategies for developing CBA’s: find and use
COTS products without modification to cover all desired capabilities (assessment
intensive), find and adapt COTS as needed (tailor intensive), find and integrate
multiple COTS as components in a custom built application (glue-code intensive).

The decision as to which approach to use is driven primarily by the systems
shared vision, economic constraints, and desired capabilities & priorities (DC&P’s).
We have observed these approaches will differ considerably in regards to the
development focus, critical activities, and project risks. In particular, we have
observed that, the particular way that the MBASE guidelines have to be adapted
depends on the primary COTS use strategy employed (e.g. assessment intensive) and
is proportional to the intensity of effort within each of the CBA development
activities (assessment, tailoring, and glue-code). We have also observed that there are
considerably different risks in these areas and strategic guidance on the management
of these risks is critical to a successful project. Trying to “force-fit” a project of one
type into a general process was extremely risky. We have experienced many examples
of this, even within our process research. We found that the initial hypothesis for our
Constitutive COTS Cost Model (COCOTS) [18], that CBA effort is proportional to
glue code size, was false when 4 of the first 6 the CBA’s turned out to be A- and T-
type projects, with a good deal of effort and not much glue code. As a result, we had
to come up with different estimators for the A and T effort.

COTS activity sequences. To
address the COTS process risk
issue raised above, a further
investigation into the eBASE was
made to analyze the weekly
progress reports and the weekly
risk reports to get the specific
sequence in which COTS ass-
essment (A), tailoring (T), glue-
code (G), and custom code (C)
effort was expended. Table 2
indicates that CBA’s are even
more unique than previously

thought. Even projects with similar strategies and effort distributions had unique
COTS “signatures” as to how COTS effort was expended. This demonstrated
conclusively that there can be no “one size fits all” COTS development process. Each
particular CBA project needs to “compose” a process that manages its particular
COTS risks to its particular degree.

Compsable COTS processes. Our experience with CBA projects shows that standard
software development process, e.g., risk-driven spiral development, risk-driven,
WinWin spiral development, or MBASE cannot be used without, often-times severe,
modification to the process. Using eBASE data USC-CSE has developed a set of
project-motivated composable process elements, in terms of the COTS (A)(G)(T)
activities, for developing CBA's as well an overall decision framework for applying
the process elements. Figure 8 shown below illustrates this framework (each process

 Evolving an Experience Base for Software Process Research 443

element has a more detailed illustration not shown). It has been used as a basis for
guiding students for whom the standard process guidelines don’t apply to aid them in
the successful planning and execution of their COTS-based projects. As has been the
case with the results of other empirically-based research conducted using eBASE,
data is collected from each new offering of the course and is used to improve both the
(relatively new) process elements and the framework.

Simplifiers and Complicators and High Level Architectures. In his seminal work,
“The Two Cultures”, C.P. Snow found that science and technology policymaking was
extremely difficult because it required the combined expertise of both scientists and
politicians, whose two cultures had little understanding of each other's principles and
practices.

Fig. 8. CBA Effort Decision Framework

During the first three years of the center for software engineering, over 50 real-
client requirements negotiations were conducted for digital library applications
projects. Most projects involved professional librarians as clients and 5-6 person
teams. It was found that their two-cultures problem is one of the most difficult
challenges to overcome in determining a feasible and mutually satisfactory set of
requirements for a software development project.

When the cause of the problem finally started to hit home, we started
experimenting with expectations management and domain-specific lists of
"Simplifiers and Complicators" and high-level architectures – derived through use of
the eBASE by analyzing previous years’ project documentation, including weekly
effort and top-n risk reports -- as a way to address the two-cultures problem for
software requirements within the overall digital library domain [8].

Figure 9 shows a small part of the table of developer-side Simplifiers,
Complicators, and High-Level Architectures (Simple Block Diagrams). Client-side
tables were also developed, and they are updated as the eBASE grows – by about 20

444 Z. Chen et al.

T y p e o f
A p p l ic a t io n

S im p l e B lo c k
D ia g r a m

E x a m p le
P r o j e c t

N o s .

S im p l i f ie r s C o m p l ic a t o r s

M u l t i m e d i a A r c h iv e

1 , 2 , 3 , 4 , 7 , 1 2 ,
1 3 , 1 4 , 1 5 , 1 6 ,
1 7 , 1 8 , 2 1 , 2 4 ,
2 5 , 2 6

• U s e s ta n d a rd
q u e ry la n g u a g e s

• U s e s ta n d a rd o r
C O T S s e a r c h
e n g in e

• U n i fo rm m e d ia
f o rm a ts

• N a tu ra l la n g u a g e
p r o c e s s in g

• A u t o m a t e d
c a ta lo g in g o r
i n d e x i n g

• D ig i t i z in g la r g e
a r c h iv e s

• D ig i t i z in g
c o m p le x o r f r a g i l e
a r t i f a c t s

• R a p id a c c e s s to
l a r g e A r c h iv e s

• A c c e s s t o
h e t e r o g e n e o u s
m e d ia c o l l e c t i o n s

• A u t o m a t e d
a n n o t a t i o n ,
d e s c r ip t io n , o r
m e a n in g s t o
d i g i t a l a s s e t s

• In t e g r a t io n o f
l e g a c y s y s te m s

S e le c t iv e D is s e m in a t i o n
o f In f o rm a t i o n

 N e w l i b r a r y
m a t e r i a l
n o t i f ic a t i o n

• U s e o f e x i s t in g o r
s t a n d a r d
in f o r m a t io n b a s e

• W e l l d e f in e d
d is t r ib u t io n p o i n ts

• C O T S n o t i f ic a t io n
a n d e v e n t
p ro c e s s i n g

• W W W / i n te r n e t
b a s e d

• R e s t r i c te d
in t e r e s t s
v o c a b u la r y a n d
f i l t e r in g s t ru c tu r e s

• S in g le
in f o r m a t io n b a s e

• V o la t i le o r i l l -
d e f i n e d in t e re s t o r
f i l t e r in g c r i t e r ia

• C o m p le x
d i s t r ib u t i o n

• M u l t i p le
d i s t r ib u t i o n
f o r m a t s

• H e t e ro g e n e o u s
i n f o rm a t io n
s o u r c e s

• C o m p le x f i l t e r
r e a s o n in g

• A u t o m a t e d
i n t e re s t u p d a t e

M M a s s e t
in f o

C a ta lo g

M M
A r c h i v e

Q u e r y

M M a s s e t U p d a t e

F i l t e r

In f o
B a s e

I n te re s t

N e w
a s s e t s

N e w a s s e t
n o t i f ic a t io n

Q u e r y U p d a te
N o t i f ic a t io n

N e w

Fig. 9. Sample entries from the Simplifiers and Complicators Catalog

projects per academic year, using the student and client project critiques (specific
questions regarding simplifiers and complicators are asked). They are taught as a
critical part of the requirements engineering aspect of the software engineering
education.

WinWin negotiation
results. We plowed through
the WinWin negotiation
files within eBASE
to determine which
stakeholder types were
most concerned with which
quality attributes, and how
frequently various attribute
conflicts were raised as
Issues and how they were
resolved as Options. This
served as the basis for the
Quality Attribute Risk
and Conflict Consultant
(QARCC) [19] tool. A
sample of this analysis is
shown in Figure 10.

Risk Management. A critical aspect in the planning and execution of software
development projects is the identification of risks and their management/mitigation.

Fig. 10. Quality attribute and stakeholder conflicts

 Evolving an Experience Base for Software Process Research 445

The subject is covered in every general Software Engineering textbook such as and is
taught in virtually every Software Engineering education. Nevertheless,
understanding and identifying risks is difficult to teach and difficult to learn. Every
few years Prof. Barry Boehm updates and disseminates a list of the top-10 software
development risks based on industry surveys and software engineering practice data.
The latest list is discussed in each project, and all developers are required to submit,
on a weekly basis, top-n risk reporting forms of the form shown below to the eBASE.
(The list shown is from Asian Film Database project.)

Table 3. Top-5 risk from Asian Film Database project

Weekly Ranking Risk Items
Current Previous #

Weeks

Risk Resolution Progress

COTS
availability

1 1 5 Performed multilingual natural language
processing COTS survey. Applied for
academic discount.

Personnel
shortfalls

2 4 4 Two members are not available for this
week. Other team members will put extra
effort this week.

Effective access
for Asian Films

3 3 3 Performed an initial analysis on efficient
storage management techniques. Will need
to do look more into this matter in the
following weeks.

Digitizing Indian
Films

4 2 3 Due to its fast growing rate, there is a need
for additional effort to digitize Indian films.
Ask staff to assign a work study for this
task.

Storage space 5 5 2 Plan for additional budget for more storage
space to store. Discuss alternatives,
tradeoffs with weekly customer reviews.

Without the top-10 lists as a guide, most Computer Science students and most
beginning software developers would be at a loss to get started in identifying the top
risks in their own projects; more advanced software developers would likely miss
risks of novel types as they arise as a result of changing times. The published top-10
risk lists are developed, each year, through a process that involves analyzing top-n
lists from the most recent offering of the latest projects in eBASE, sending a summary
to CeBASE collaborators as suggestions, and reviewing their responses.

5 Challenges in Evolving the EMS

Our experience base is not only a knowledge base for software engineering research.
Experience is explicit knowledge underlying processes, products, and technologies,
which built up through individual learning from the experience of the people
involved; knowledge is used in previously unknown contexts with some certainty and
experience describes events in one specific context that can only be used carefully
[5,6]. Here we define “Knowledge” describes the facts. “Experience” describes how
to use those facts. People could have that kind of knowledge but they perhaps still
cannot solve the problems as they maybe do not know how to apply them. They have
to use the knowledge in different circumstance, and in different issues to learn what

446 Z. Chen et al.

the right way to apply the knowledge is. When they find it, it can be called
experience. To the organization, experience stands more value than knowledge.

While we have realized a great deal of benefit from our eBASE, we face many
challenges moving forward. Some of these challenges include:

Everything keeps changing
Change is, of course, inevitable and unstoppable. However, consistency, stability, and
controlled repeatability are the hallmarks of quality research. This is difficult to
achieve within eBASE when so many uncontrollable variables are in play, some
minor, others insurmountable. For example, the milestone review dates for each
semester and each year vary between 1 to 3 weeks. The effort reporting categories
quite naturally have evolved since 1996 as new development practices come into
fashion (e.g. COTS, UML, and Extreme Programming - XP). New software tools and
faster, cheaper hardware are utilized every year making baselines difficult to establish
(e.g. some things that used to take a lot of time and effort no longer do). Before 2000,
effort data was in HTML format, now it’s stored in a DB table. The MBASE
guidelines are updated and revised annually, sometimes making radical changes to the
structure, format and process. New practices are introduced (simplifiers and
complicators, RUP, XP, etc,). An unforeseen challenge is that our project client base
is rapidly changing. Not only are the client project domains more diverse, our client
base is also maturing. That is, some clients have become “veterans” who have a
significant impact on the projects they are involved in and the operation of the course.
More recently, the number of new projects has had a tremendous increase (from about
25 to over 50). The impact of this is significant on the challenge to uniformity. It is
difficult to acquire enough quality, real-client projects, leaving us to create “proxy”
projects or double-up some projects (i.e. run the same one with multiple teams).

Missing needed information
New information needs to be added into the experience base such as course schedules
(they are in different places), guideline changes, new practices, team composition,
size and attrition data, expanded grade information, research projects and results.

The structure is awkward
There is no standardized structure for the representation of the diverse experience data
we generate and collect. In particular, there is increasingly use of diverse multi-media
information such as video, audio, and dynamic HTML. In addition, there is a high-
degree of dependencies between and within experience data, so adding new structure
causes a lot of breakage and re-work. It is impossible to anticipate all possible
evolutions. These problems tend to cause the data to be “blobbed” together is a weak,
yet general format. This makes the data difficult to mine (i.e. correlate, operate,
summarize, query, etc.).

There are limitations from current technologies
The evolution of EMS depends a lot in AI, database, and language technologies. The
effective representation, archival, and mining of the kind of data we collect for
eBASE is a highly active research area.

Most experience base researchers are consumers not contributors
They use the data and keep their results private. New incentives need to be introduced
to encourage EMS users to contribute to eBASE. Researchers leverage the eBASE

 Evolving an Experience Base for Software Process Research 447

data to find and publish valuable results. Data providers seldom get rewarded in this
or any other meaningful way.

Other
There are a host of “annoying” difficulties such as problems with schema migration;
variable numbers of fields per record; changing data definitions; the lack of good
project metadata; and the lack of good front-end capabilities for eBASE exploration
and data mining.

We are still working on how to provide more convenient ways for researchers and
developers to use the experience base, and how to provide more valuable data to
people. A long way still needs to go. Fortunately, we are making progresses.

6 Conclusion and Discussion

From a modest beginning, we have evolved and eventually realized great benefit from
an eBASE of the software project experiences. These benefits go well beyond
technology supported automation such as centralized access to project data. The EF
approach has directed the evolution and use of eBASE to achieve benefits within
organizational learning and strategically beneficial software process research. Every
year it becomes more important and essential to the objectives and activities of
software engineering education and practices. Software development experiences are
a very valuable organizational resource and should be made easily accessible to all. In
particular, process experience needs to be institutionalized as “corporate memory”
where it can expand and evolve without critical dependence of any individual (this is
particularly important in an academic environment where students are continuously
entering and graduating).

But some of the most basic questions are unanswered:

• How do we create a truly useful Experience Base?
• How do we enable people to collaborate and share experience?
• What do different user groups (researchers, educators, practitioners)

need in terms of tools processes and experience in order to do their work
in a more efficient way?

We are still working on how to provide more convenient ways for researchers and
developers to use the eBASE, and how to infuse it with more valuable data.
Furthermore, if we want to apply EMS concept to the industry, we still need to
determine an effective, general, powerful representation of experience.

References

1. http://ebase.usc.edu/index.html
2. http://sunset.usc.edu/affiliates/general/index.html
3. Basili , V., Caldiera, G., McGarry, F., Pajerski, R., Page., G., Waligora, S.: The software

engineering laboratory: an operational software experience factory. International
Conference on Software Engineering archive. Proceedings of the 14th international
conference on Software engineering table of contents, Melbourne, Australia; ISBN:0-
89791-504-6 (1992) 370 - 381

448 Z. Chen et al.

4. Basili, V. R., Caldiera, G., Rombach, D. H.: The Experience Factory. Encyclopaedia of
Software Engineering -2 Volume Set (1994) 469-476

5. Althoff, K.-D., Decker, B., Hartkopf, S., Jedlitschka, A., Nick, M. & Rech, J.: Experience
Management: The Fraunhofer IESE Experience Factory. In P. Perner (ed.), Proc. Industrial
Data Mining Conference, Leipzig, 24.-25 (July 2001), Institut für Bildverarbeitung und
angewandte Informatik

6. Rech, J., Decker, B. & Althoff, K.-D.: Using Knowledge Discovery Technology in
Experience Management Systems. Proc. Workshop "Maschinelles Lernen (FGML01)",
GI-Workshop-Woche "Lernen - Lehren - Wissen - Adaptivität (LLWA01)" (2001),
Universität Dortmund

7. Boehm, B.: Anchoring the Software Process. IEEE Software (July 1996) 73-82.
8. Boehm, B., Abi-Antoun, M., Port, D., Kwan, L.: Requirements Engineering, Expectations

Management, and the Two Cultures. International Conference on Requirements
Engineering (June 1999). http://sunset.usc.edu/TechRpts/Papers/usccse98-518/usccse98-
518.pdf

9. Boehm, B., Port, D.: Escaping the Software Tar Pit: Model Clashes and How to Avoid
Them. ACM Software Engineering Notes (January 1999) 36-48

10. Boehm, B., Port, D.: When Models Collide: Lessons from Software Systems Analysis.
IEEE IT Professional (January/February 1999) 49-56

11. Boehm, B., Port, D., Abi-Antoun, M., and Egyed, A.: Guidelines for the Life Cycle
Objectives (LCO) and the Life Cycle Architecture (LCA) deliverables for Model-Based
Architecting and Software Engineering (MBASE). USC Technical Report USC-CSE-98-
519 (1998)

12. Kruchten, P.: The Rational Unified Process (2nd ed.). Addison-Wesley (2000)
13. R. Park: Software Size Measurement: A Framework for Counting Source Statements.

CMU/SEI-92-TR-20 (1992), Software Engineering Institute, Pittsburgh, PA
14. Chen, Y. , Boehm, B., Madachy, R., Valerdi, R.: An Empirical Study of eServices

Product UML Sizing Metrics. ACM-IEEE International Symposium on Empirical
Software Engineering (August 2004)

15. Boehm, B., In, H.: Aids for Identifying Conflicts Among Quality Requirements.
Proceedings, ICRE-96 and IEEE Software (March 1996)

16. Boehm, B., Basili, V., Port, D., and Jain, A.:Achieving CMMI Level 5 Improvements with
MBASE and the CeBASE Method. CrossTalk, vol. 15, no. 5 (May 2002) 9-16

17. Thorp, J.: The Information Paradox: Realizing the Business Benefits of Information
Technology. Mcgraw-Hill (February 1999)

18. http://sunset.usc.edu/research/COCOTS/
19. Boehm, B., In, H.: Cost vs. Quality Requirements: Conflict Analysis and Negotiation

Aids. Software Quality Professional, Vol. 1, No. 2 (March 1999) 38-50
20. Boehm, B., Abts, C., etc: Software Cost Estimation With COCOMO II. Prentice-Hall,

ISBN 0-13-026692-2 (2000)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 449 – 462, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Experiences in Discovering, Modeling, and Reenacting
Open Source Software Development Processes

Chris Jensen and Walt Scacchi

Institute for Software Research, University of California, Irvine
Irvine, CA 92697-3425, USA

{cjensen, wscacchi}@ics.uci.edu

Abstract. Process discovery has been shown to be a challenging problem
offering limited results. This paper describes a new approach to process
discovery that examines the Internet information spaces of open source
software development projects. In particular, we examine challenges, strengths,
weaknesses and findings when seeking to discover, model, and re-enact
processes associated with large, global OSSD projects like NetBeans.org. The
longer-term goal of this approach is to determine the requirements and design
of more fully integrated process discovery and modeling mechanisms that can
be applied to Web-based, open source software development projects.

1 Introduction

The goal of our work is to develop new techniques for discovering, modeling,
analyzing, and simulating software development processes based on information,
artifacts, events, and contexts that can be observed through public information sources
on the Web. Our problem domain examines processes in large, globally dispersed
open source software development (OSSD) projects, such as those associated with
the Apache Web server [16], Mozilla web browser [24], GNOME [9], and integrated
development environments like NetBeans [18] and Eclipse [4]. The challenge we face
is similar to what prospective developers or corporate sponsors who want to join a
given OSSD project face in trying to understand how software development processes
and activities are accomplished. As such, our efforts should yield practical results.

OSSD projects do not typically employ or provide explicit process models,
prescriptions, or schemes other than what may be implicit in the use of certain OSSD
tools for version control and source code compilation. In contrast, we seek to
demonstrate the feasibility of automating the discovery of software process
workflows via manual search and analysis methods in projects like NetBeans by
analyzing the content, structure, update and usage patterns of their Web information
spaces. These spaces include process enactment information such as informal task
prescriptions, community and information structure and work roles, project and
product development histories, electronic messages and communications patterns
among project participants ([5], [26], [29]). Likewise, corresponding events that
denote updates to these sources and other project repositories are also publicly
accessible. Though such ethnographic discovery approaches net a wealth of

450 C. Jensen and W. Scacchi

information with which to model, simulate, and analyze OSSD processes, they are
limited by a lack of scalability when applied to the study of multiple OSSD
development projects (cf. [13]). Subsequently, it suggests the need for a more
automated approach to that can facilitate process discovery.

In our approach, we identify the kinds of OSSD artifacts (e.g. source code files,
messages posted on public discussion forums, Web pages, etc.), artifact update events
(e.g. version release announcements, Web page updates, message postings, etc.), and
work contexts (e.g. roadmap for upcoming software releases, Web site architecture,
communications systems used for email, forums, instant messaging, etc.) that can be
detected, observed, or extracted across the Web. Though such an approach clearly
cannot observe the entire range of software development processes underway in an
OSSD project (nor do we seek to observe or collect data on private communications),
it does draw attention to what can be publicly observed, modeled, or re-enacted at a
distance. That is the focus of our effort.

Our approach relies on use of a process meta-model to provide a reference
framework that associates these data with software processes and process models
[15]. As such, we have been investigating what kinds of processing capabilities and
tools can be applied to support the automated discovery and modeling of selected
software processes (e.g., for daily software build and periodic release) that are
common among many OSSD projects. The capabilities and tools include those for
Internet-based event notification, Web-based text data mining and knowledge
discovery, and previous results from process discovery studies. However, in this
study, we focus on identifying the foundations for discovering, modeling, and re-
enacting OSSD processes that can be found in a large, global OSSD project using a
variety of techniques and tools.

2 Related Work

Event notification systems have been used in many contexts, including process
discovery and analysis ([3], [30]). However, of the systems promising automated
event notification, many require process performers to obtain, install, and use event
monitoring applications on their own machines to detect when events occur. While
yielding mildly fruitful results, this approach is undesirable for several reasons. This
includes the need to install and integrate remote data collection mechanisms with
local or project-specific software development tools, and it is unclear who would take
on such effort within an existing OSSD project.

Prior work in process event notification has also been focused on information
collected from command shell histories, applying inference techniques to construct
process model fragments from event patterns (object and tool invocations) [8]. They
advise that rather than seeking to discover the entire development process from
enactment instances, to instead focus on creating partial process specifications that
may overlap with one another. This also reflects variability in software process
enactment instantiation across iterations. This imparts additional inconvenience on
project developers, and relies on her/his willingness to use the particular tools that
monitor and analyze command shell events (which can become intractable when a
developer uses tools or repository services from remote networked systems). By

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 451

doing so, the number of process performers for whom data is collected may be
reduced well below the number of participants in the project due to privacy concerns
and the hassles of becoming involved. While closed source software engineering
organizations may mediate this challenge by leveraging company policies, OSSD
projects lack the ability to enforce adoption of such event-capture technology.

Cook and Wolf [3] utilize algorithmic and statistical inference techniques to model
processes where the goal was to create a single, monolithic finite state machine
(FSM) representation of the process. However, it is not entirely clear that a single
FSM is appropriate for modeling complex processes. Similarly, other FSM-related
process representation schemes such as Petri-Net based FUNSOFT [6] offered a wide
variety of activity and state-chart diagrams. It appears however that these
representations may lack scalability when applied to a process situated within a global
organizational context involving multiple tools, diverse artifact types, and multiple
development roles across multiple networked sites of reasonable complexity, which is
typical of large OSSD projects (cf. [9]).

Last, while process research has yielded many alternative views of software
process models, none has proven decisive or clearly superior. Nonetheless,
contemporary research in software process technology, such as Lil Jil [2], [21] and
PML [19] argues for analytical, visual, navigational and enactable representations of
software processes. Subsequently, we find it fruitful to convey our findings about
software processes, and the contexts in which they occur, using a mix of both
informal and formal representations of these kinds [28]. We employ this practice here.

3 Problem Domain

We are interested in discovering, modeling, simulating, and re-enacting software
development processes in large, Web-based OSSD projects. Such projects are often
globally distributed efforts sometimes involving tens, hundreds, or thousands of
developers collaborating on products constituting thousands to millions of source
lines of code without meeting face-to-face, and often without performing modern
methods for software engineering ([26], [27]). Past approaches have shown process
discovery to be difficult, yielding limited results. However, the discovery methods we
use are not random probes in the dark, nor do they simply apply prior approaches.
Instead, we capitalize on contextual aids offered by the domain. Some of these
include:

• Web pages, including project status reports and task assignments, may be
viewed and classified (informally) as object types.

• Asynchronous communications among project participants posted in threaded
email discussion lists, which address process activities indicated by process
identifier keywords (e.g., design, release, testing, etc.)

• Transcripts of synchronous communication via Internet chat (cf. [5]).
• Software problem/bug and issue reports, which reveal information on software

bug reporting and maintenance/repair processes
• Testing scripts and results, which highlight project-based software testing

practices

452 C. Jensen and W. Scacchi

• Community newsletters, which highlight project milestone events (e.g., system
releases, turnover of core developers in the projects)

• Web accessible software product source code directories and repositories, which
carry timestamps and other identifiers indicating when source code objects were
checked in/out, and versioning information.

• Software system builds (executable binaries) and distribution packages, which
are constructed and released on a periodic basis (daily, candidate (alpha, beta),
and final release (distribution version)

• OSS development tools in use in an OSSD project (e.g., concurrent version
system (CVS), GNU compiler collection (gcc), bug reporting (bugzilla) (cf. [10])

• OSS development resources, including other software development artifacts and
process fragment descriptions (e.g., How-To guides, lists of frequently asked
questions (FAQs), etc.) [26]

Each OSSD project has locally established methods of interaction, communication,
leadership, and control [14], whether explicit or implicit ([26], [27]). These
collaboration modes yield a high amount of empirically observable process evidence,
as well as a large degree of unrelated data. However, information spaces are also
dynamic. New artifacts are added, while existing ones are updated, removed,
renamed and relocated, else left to become outdated. Artifact or object contents
change, and project Web sites get restructured. In order to capture the history of
process evolution, these changes need to be made persistent and shared with new
OSSD project members. While code repositories and project email discussion
archives have achieved widespread use, it is less common for other artifacts, such as
instant messaging and chat transcripts, to be archived in a publicly available venue.
Nonetheless, when discovering a process in progress, changes can de detected through
comparison of artifacts at different time slices during the development lifecycle. At
times, the detail of the changes is beneficial, and at other times, simply knowing what
has changed and when is all that is important to determining the order (or control flow
sequence) of process events or activity. To be successful, tools for automated process
discovery must be able to efficiently access, collect, and analyze the data including
areas of the project Web space such as public email/mailing list message boards, Web
page updates, notifications of software builds/releases, and software bug archives in
terms of changes to the OSS information space [26], [27].

To prove the viability of our process discovery approach, we demonstrate it with a
case study. For this task, we examine a selected process in the NetBeans project,
which is developing an open source IDE using Java technology1. The “requirements
and release” process was chosen for study because its activities have short duration,
are frequently enacted, and have a propensity for available evidence that could be
extracted using automated technologies. The process was discovered, modeled
informally and formally, then prototyped for analysis and reenactment. The full
results of our initial case study may be found elsewhere [22]. The discussion of our
process discovery and modeling methods and results follows next.

1 The NetBeans project was started in 1996, and SUN Microsystems began project sponsorship

in 1998. At present, more than 60 companies are participating in the project through their
developers. In 2004, the project passed the threshold of more than 100K developers
contributing to the project.

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 453

4 Process Discovery and Modeling

Discovery of open source software processes relies on several data models. Firstly,
we need to determine what aspects of the process we wish to discover, defined by our
process meta-model. This meta-model is neither specific to our domain (OSSD
processes), nor software processes. To capture OSSD software processes, we need a
means of setting the problem domain within the terms of the meta-model. Such is the
task of the reference model. Once this is done, we may begin looking for instances of
processes within a corpus, in this case the OSSD project Web repository.

The meta-model we use is that of Mi and Scacchi [15]. It provides us with a
vocabulary to describe the processes we examine. Our meta-model defines processes
hierarchically: processes are composed of tasks (sets of related actions) and atomic
actions. The hierarchy may be further divided (e.g. sub-processes, subtasks, and so
forth) to achieve an arbitrary degree of decomposition. Each activity is defined in
terms of process entities: agents that participate in the process activity, tools used by
those agents in the performance of the activity, and resources that are the product of
and are consumed by performance of the activity (see Figure 1). We find these to be
a minimal set of entities necessary to describe a process. This meta-model is
augmented with control-flow grammar in the process markup language (PML) [19]
we use to formally represent software processes to show the order in which activities
and instantiated.

Unlike Cook and Wolf’s approach, we apply a priori knowledge of software
development for discovering processes. Accordingly, we use a reference model [11]
to help identify possible indicators (e.g., developer roles, probable tool types, input
and output objects) that a given activity has occurred. We do this by creating a
taxonomy of the process entities within the problem domain. Thus, we enumerate the
types of tools (and resources, activities, and agents-roles) we expect to find referenced
in the project corpus (e.g. “email client”) as well as instances of those tools (e.g.
“Mozilla Thunderbird”). This framework provides a mapping between the tool,
resource, activity, and role names discovered in the community Web with a
classification scheme of known tools, resources, activities, and roles used in open
source communities. The instances are necessary for discovering process entities
used within the corpus while types and genericity/hierarchy aid us in abstracting the
instance data into a more general process model spanning multiple enactments.

Although we would like to achieve some degree of automation in discovering open
source software development processes, it is unreasonable to assume that a complete
solution is possible due to the heterogeneity of data available within and across
project information corpora. Instead, we seek to automate as much as possible in
order to ease the effort inherent to the task. To this end, our methodology
incorporates general information gathering independent of document type, augmented
by some analysis techniques specific to the type and structure of the data available.
Thus we automate the tasks that are easy to automate and provide value to make the
effort worthwhile. And, we do manually tasks for which automation is either too
difficult or does not provide payoff to validate effort required.

454 C. Jensen and W. Scacchi

Fig. 1. Software process meta-model (cf. [15])

We use indexing at the core to do much of the legwork of general information
gathering. We use this index to identify actions, tools, resources, and agents within
artifacts in the corpus. These are correlated across artifacts according to usage and
update information available. While we are able to tune the reference model to
contain instance values of actions, resources, and tools (e.g. “submit defect report”,
“x-test-results”, and “Issuezilla,” respectively), identifying process agents by proper
names a priori is not possible. Such identification requires document specific analysis
techniques. These include parsers for extracting names, user handles, and email
addresses from threaded mailing lists, chat logs, defect reports, and versioning
repositories. Once extracted, they are looked up in the index and added to the action-
tool-resource tuples already identified. Such document specific analysis may also be
used to uncover heretofore-unknown instances of other process entities (i.e. actions,
resources, and tools) in similar fashion and is essential to obtaining accurate
timestamps in documents that aggregate multiple software artifacts (e.g. threaded
mailing lists containing multiple messages within a single system file).

Document specific analysis provides rich results with a cost. There are many types
of data and standards for document structure even for a single type of data and these
vary highly across OSSD projects. As a result, a broad array of tools specifically
tuned for each project corpus is required to obtain rich results. Such an array is
painstaking to develop, although available off-the-shelf partial solutions ease this
burden. Further, integrating large result sets from multiple data sources into a single
process model of any degree of formality is a complex task in itself. Our reference
model can suggest process entity tuples that are related and the temporal information we
are able to extract provides a timeline of activities. However learning activity control
flow and asserting an activity hierarchy remain somewhat an art as opposed to a science.

The discovery of processes within a specific OSSD project begins with a cursory
examination of the project Web space in order to ascertain what types of information
are available and where that information might be located within the project’s Web
site. Structure and content of the project Web space give us an idea of what happened
in terms of process actions, agents, tools, and resources, whereas artifact usage and
update patterns tell us when process activities happened as noted above.

To situate the process within its organizational context, we look for modes of
contribution within the development process. The modes of contribution (development

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 455

roles) can be used to construct an initial set of activity scenarios, which can be
described as use cases for project or process participation.

Though best known as a tenet of UML, use cases can serve as a notation to model
scenarios of activities performed by actors in some role that use one or more tools to
manipulate artifacts associated with an enterprise process or activity within it ([7],
[29]). The site map also shows a page dedicated to project governance hyperlinked
three layers deep within the site. This page exposes the primary member types, their
roles and responsibilities, which suggest additional use cases. Unlike those found
through the modes of contribution, the project roles span the breadth of the process,
though at a higher level of abstraction. Each use case can encode a process fragment.
In collecting use cases, we can extract out concrete actions that can then be assembled
into a process description to be modeled, simulated, and enacted.

When aggregated, these use cases can be coalesced into an informal model of a
process and its context rendered as a rich hypermedia, an interactive semi-structured
extension of Monk and Howard’s [17] rich picture modeling construct. The rich
hypermedia shown in Figure 2 identifies developer roles, tools, concerns, and artifacts
of development and their interaction, which are hyperlinked (indicated as underlined
phrases) to corresponding use cases and object/role descriptions (see Figure 3). Such
an informal computational model can be useful for newcomers to the community
looking to become involved in development and offers an overview of the process and
its context in the project, while abstracting away the detail of its activities. The use
cases also help identify the requirements for enacting or re-enacting the process as a
basis for validating, adapting, or improving the process.

Fig. 2. A hyperlinked rich hypermedia of the NetBeans requirements and release process [22]

456 C. Jensen and W. Scacchi

Fig. 3. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding
use case

A critical challenge in reconstructing process fragments from a process enactment
instance is in knowing whether or not the evidence at hand is related, unrelated, or
anomalous. Reliability of associations constructed in this fashion may be strengthened
by the frequency of association and the relevance of artifacts carrying the association.
If text extraction tools are used to discover elements of process fragments, they must
also note the context in which are located in to determine this relevance. One way to
do this is using the physical structure of the project’s Web site (i.e. directory
structure), as well as its logical structure (referencing/referenced artifacts). In the
NetBeans quality-assurance (Q-Build) testing example, we can relate the “defects by
priority” graph on the defect summary page2 to the defect priority results from the Q-
Build verification. Likewise, the defect tallies and locations correlate to the error
summaries in the automated testing (XTest) results3. By looking at the filename and
creation dates of the defect graphs, we know which sets of results are charted and how
often they are generated. This in turn identifies the length of the defect chart
generation process, and how often it is executed. The granularity of process
discovered can be tuned by adjusting the search depth and the degree of inference to
apply to the data gathered. An informal visual representation of artifacts flowing
through the requirements and release process appears in Figure 4.

These process fragments can now be assembled into a formal process modeling
language description of the selected processes. Using the PML grammar and process
meta-model, we created an ontology for process description with the Protégé-2000
modeling tool [20]. The PML model builds from the use cases depicted in the rich
hypermedia, then distills them a set of actions or sub-processes that comprise the
process with its corresponding actor roles, tools, and resources and the flow sequence
in which they occur. A sample PML description that results appears in Figure 5.

2 http://qa.netbeans.org/bugzilla/graphs/summary.html as of March 2004.
3 http://www.netbeans.org/download/xtest-results/index.html as of March 2004.

Test Builds

• The QA team tests the latest nightly
builds every Friday

• QA team executes a set of manual
tests on the builds as well as some
sanity checks

• Test results are categorized as
– Bug Types

• User Constraint:
– The tests depend on the manual

tests specification
• System Constraint:

– Not all bugs may be identified

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 457

5 Process Reenactment for Deployment, Validation, and
Improvement

Since their success relies heavily on broad, open-ended participation, OSSD projects
often have informal descriptions of ways members can participate, as well as offer
prescriptions for community building [26]. Although automatically recognizing and
modeling process enactment guidelines or policies from such prescriptions may seem
a holy grail of sorts for process discovery, there is no assurance that they accurately
reflect the process as it is enacted. However, taken with the discovered process, such
prescriptions begin to make it is possible to perform basic process validation and
conformance analysis by reconciling developer roles, affected artifacts, and tools
being used in modeled processes or process fragments (cf. [1], [23]).

As OSSD projects are open to contributions from afar, it also becomes possible to
contribute explicit models of discovered processes back to the project under study so
that project participants can openly review, independently validate, refine, adapt or
otherwise improve their own software processes. Accordingly, we have contributed
our process models and analyses of the NetBeans requirements and release process in
the form of a public report hosted (and advertised) on the NetBeans.org Web site4.

Fig. 4. NetBeans Requirements and Release process flow graph [22]

Process re-enactment allows us to recreate, simulate, or prototype process
enactments by navigationally traversing a semantic hypertext (i.e., PML)
representation of the process [19], [25]. These re-enactment prototypes are
automatically derived from a compilation of their corresponding PML process model,
and the instantiation of the complied result in a Web-based run-time (enactment)

4 See http://www.netbeans.org/community/articles/index.html, as of May 2003.

458 C. Jensen and W. Scacchi

environment [19]. One step in the process modeled for NetBeans appears in Figure 6,
drawn from the excerpt shown in Figure 5. In exercising repeated simulated process
enactment walkthroughs, we have been able to detect process fragments that may be
unduly lengthy, which may serve as good candidates for downstream process
engineering activities such as streamlining and process redesign [25]. Process re-
enactment also allows us, as well as participants in the global NetBeans project, to
better see the effects of duplicated work. As an example, we have four agent types
that test code. Users may carry out beta testing from a black box perspective, whereas
developers, contributors, and SUN Microsystems QA experts may perform more in-
depth white-box testing and analysis, and, in the case of developers and contributors,
not merely submit a report to the IssueZilla issue tracking system,5 but may also take
responsibility for resolving it.

sequence Test {
 action Execute automatic test scripts {
 requires { Test scripts, release binaries }
 provides { Test results }
 tool { Automated test suite (xtest, others) }
 agent { Sun Java Studio QA team }
 script { /* Executed off-site */ } }
action Execute manual test scripts {
 requires { Release binaries }
 provides { Test results }
 tool { NetBeans IDE }
 agent {users, developers, Sun Java Studio developers, QA team}
 script { /* Executed off-site */ } }
iteration Update Issuezilla {
 action Report issues to Issuezilla {
 requires { Test results }
 provides { Issuezilla entry }
 tool { Web browser }
 agent{users, developers, Sun Java Studio developers, QA
team}
 script {

Navigate to
Issuezilla

Query Issuezilla

<ahref=http://www.netbeans.org/issues/enter_bug.cgi>
Enter issue } }

Fig. 5. A partial PML description of the testing sequence of the NetBeans release process

We are also able to detect where cycles or particular activities may be problematic
for participants, and thus where process redesign may be of practical value [25].
Process re-enactment prototypes are a useful means to interactively analyze whether
or how altering a process may lead to potential pitfalls that can be discovered before
they lead to project failure. Over the course of constructing and executing the
prototype we discovered some of the more concrete reasons that there are few

5 See http://www.netbeans.org/kb/articles/issuezilla.html, as of March 2004.

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 459

volunteers for the release manager position. The role has an exceptional amount of
tedious administrative tasks that are critical to the success of the project.

Between scheduling the release, coordinating module stabilization, and carrying
out the build process, the release manager has a hand in almost every part of the
requirements and release process. This is a good indication that downstream activities
may also uncover a way to better distribute the tasks and lighten her/his load. The
self-selective nature of OSSD project participation has many impacts on their
development process. If any member wishes not to follow a given process, the
process enforcement is contingent on the tolerance of her/his peers in the matter,
which is rarely the case in corporate development processes. If the project proves
intolerant of the alternative process, developers are free to simply not participate in
the project's development efforts and perform an independent software release build.

Fig. 6. An action step in a re-enactment of the NetBeans requirements and release process,
specified in Figure 5

6 Conclusion

Our goal is to obtain process execution data and event streams by monitoring the Web
information spaces of open source software development projects. By examining
changes to the information space and artifacts within it, we can observe, derive, or
otherwise discover process activities. In turn, we reconstitute process instances using
PML, which provides us with a formal description of an enactable, low-fidelity model

460 C. Jensen and W. Scacchi

of the process in question that can be analyzed, simulated, redesigned, and refined for
reuse and redistribution. But this progress still begs the question of how to more fully
automate the discovery and modeling of processes found in large, global scale OSSD
projects.

Our experience with process discovery in the NetBeans project, and its
requirements and release process, and our case studies discovering, modeling, and
reenacting processes used in the Mozilla and Apache HTTPD projects suggest that a
bottom-up strategy for process discovery, together with a top-down process meta-
model, can serve as a suitable framework for process discovery, modeling and re-
enactment. As demonstrated in the testing example, action sequences are constructed
much like a jigsaw puzzle. We compile pieces of evidence to find ways to fit them
together in order to make claims about process enactment events, artifacts, or
circumstances that may not be obvious from the individual pieces. We find that these
pieces may be unearthed in ways that can be executed by software tools that are
guided by human assistance [12].

Our approach to discovery, modeling, and reenactment relies on both informal and
formal process representations. We constructed use cases, rich pictures, flow graphs
as informal but semi-structured process representations which we transformed into a
formal process representation language guided by a process meta-model and support
tools. These informal representations together with a process meta-model then
provide a scheme for constructing formal process descriptions. Thus demonstration of
a more automated process discovery, modeling, and re-enactment environment that
integrates these capabilities and mechanisms is the next step in this research.
Additionally, we have applied this strategy towards socio-technical OSSD process as
well as processes spanning OSSD organizations and seek new process to discover,
model, and reenact.

Finally, it is important to recognize that large OSSD projects are diverse in the
form and practice of their software development processes. Our long-term goal in this
research is to determine how to best support a more fully automated approach to
process discovery, modeling and re-enactment. Our study provides a case study of a
real-world process in a complex global OSSD project to demonstrate the feasibility of
such an approach. Subsequently, questions remain as to which OSSD processes are
most amenable to such an approach, which are likely to be of high value to the host
project or other similar projects, and whether all or some OSSD projects are more/less
amenable to such discovery and modeling given the richness/paucity of their project
information space and diversity of artifacts. As government agencies, academic
institutions and industrial firms all begin to consider or invest resources into the
development of large OSS systems, then they will seek to find what the best OSSD
processes are, or what OSSD practices to follow. Thus discovery and explicit
modeling of OSSD processes in forms that can be shared, reviewed, modified, re-
enacted, and redistributed appears to be an important topic for further investigation,
and this study represents a step in this direction.

Acknowledgements

The research described in this report is supported by grants from the National Science
Foundation #0083075, #0205679, #0205724, and #0350754. No endorsement

 Experiences in Discovering, Modeling, and Reenacting OSSD Processes 461

implied. Mark Ackerman at the University of Michigan Ann Arbor; Les Gasser at the
University of Illinois, Urbana-Champaign; John Noll at Santa Clara University; and
Margaret Elliott at the UCI Institute for Software Research are collaborators on the
research described in this paper.

References

1. Atkinson, D.C. and Noll, J. 2003.. Automated Validation and Verification of Process
Models, Proc. 7th Intern. IASTED Conf. Software Engineering and Applications,
November.

2. Cass, A.G., Lerner, B., McCall, E., Osterweil, L. and Wise, A. 2000. Little JIL/Juliette: A
process definition language and interpreter. Proc. 22nd Intern. Conf. Software
Engineering, 754-757, Limerick, Ireland, June.

3. Cook, J. and Wolf, A.L. 1998. Discovering Models of Software Processes from Event-
Based Data, ACM Trans. Software Engineering and Methodology, 7(3), 215-249.

4. Eclipse Web Site, 2005. http://www.eclipse.org
5. Elliott, M. and Scacchi, W., Free Software Development: Cooperation and Conflict in A

Virtual Organizational Culture, in S. Koch (ed.), Free/Open Source Software
Development, Idea Publishing, Hershey, PA, 2004.

6. Emmerich, W. and Gruhn, V., FUNSOFT Nets: a Petri-Net based Software Process
Modeling Language, Proc. 6th ACM/IEEE Int. Workshop on Software Specification and
Design, Como, Italy, IEEE Computer Society Press, 175-184, 1991.

7. Fowler, M. and Scott, K. 2000. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Second Ed. Addison Wesley:

8. Garg, P.K. and Bhansali, S. 1992. Process programming by hindsight. Proc. 14th Intern.
Conf. Software Engineering, 280-293.

9. German, D., 2003. The GNOME project: A case study of open source, global software
development, Software Process—Improvement and Practice, 8(4), 201-215.

10. Halloran, T., and Scherlis, W. 2002. High Quality and Open Source Software Practices,
Proc. 2nd Workshop on Open Source Software Engineering, Orlando, FL, May.

11. Jensen, C. and Scacchi, W. 2003.Applying a Reference Framework to Open Source
Software Process Discovery, in Proc. 1st Workshop on Open Source in an Industrial
Context, OOPSLA-OSIC03, Anaheim, CA October..

12. Jensen, C. and Scacchi, W. 2004. Data Mining for Software Process Discovery in Open
Source Software Development Communities, submitted for publication.

13. Jensen, C. and Scacchi, W. 2005, Process Modeling across the Web Information
Infrastructure, Software Process—Improvement and Practice, (to appear).

14. Jensen, C. and Scacchi, W. 2005b, Collaboration, Leadership, Control, and Conflict
Negotiation in the NetBeans.org Open Source Software Development Community, Proc.
38th Hawaii Intern. Conf. Systems Sciences, Kona, HI.

15. Mi, P. and Scacchi, W. 1996. A Meta-Model for Formulating Knowledge-Based Models of
Software Development, Decision Support Systems, 17(4), 313-330.

16. Mockus, A., Fielding, R., and Herbsleb, J., 2002.Two Case Studies in Open Source
Software Development: Apache and Mozilla, ACM Trans. Software Engineering and
Methodology, 11(3), 309-346.

17. Monk, A. and Howard, S. 1998. The Rich Picture: A Tool for Reasoning about Work
Context. Interactions, 21-30, March-April.

18. NetBeans Web Site, 2005. http://www.netbeans.org

462 C. Jensen and W. Scacchi

19. Noll, J. and Scacchi, W. 2001. Specifying Process Oriented Hypertext for Organizational
Computing. J. Network and Computer Applications 24 39-61.

20. Noy, N.F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R.W. and Musen, M.A. 2001.
Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent Systems, 16(2), 60-71.

21. Osterweil, L. 2003. Modeling Processes to Effectively Reason about their Properties, Proc.
ProSim’03 Workshop, Portland, OR, May 2003.

22. Oza, M., Nistor, E., Hu, S. Jensen, C., and Scacchi, W. 2002. A First Look at the Netbeans
Requirements and Release Process, http://www.ics.uci.edu/cjensen/papers/FirstLook
NetBeans/

23. Podorozhny, R.M., Perry, D.E., and Osterweil, L. 2003, Artifact-based Functional
Comparison of Software Processes, Proc. ProSim’03 Workshop, Portland, OR, May 2003.

24. Reis C.R. and Fortes, R.P.M. 2002. An Overview of the Software Engineering Process and
Tools in the Mozilla Project, Proc. Workshop on Open Source Software Development,
Newcastle, UK, February

25. Scacchi, W., 2000. Understanding Software Process Redesign using Modeling, Analysis,
and Simulation, Software Process—Improvement and Practice, 5(2/3), 183-195.

26. Scacchi, W., 2002. Understanding the Requirements for Developing Open Source
Software Systems, IEE Proceedings—Software, 149(1), 25-39.

27. Scacchi, W., 2004, Free/Open Source Software Development Practices in the Game
Community, IEEE Software, 21(1), 59-67, Jan-Feb. 2004.

28. Scacchi, W., Jensen, C., Noll, J. and Elliott, M., 2005, Multi-Modal Modeling, Analysis,
and Validation of Open Source Software Development Processes, Proc. 1st Open Source
Software Conference, Genova, IT (to appear).

29. Viller, S., and Sommerville, I., 2000. Ethnographically Informed Analysis for Software
Engineers, Intern. J. Human-Computer Interaction, 53, 169-196.

30. Wolf, A.L. and Rosenblum, D.S. 1993. A Study in Software Process Data Capture and
Analysis. Proc. Second Intern. Conf. on the Software Process, 115-124.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 463 – 473, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Application of the V-Modell XT – Report
 from a Pilot Project

Marco Kuhrmann1, Dirk Niebuhr2, and Andreas Rausch2

1 Technische Universität München, Software & Systems Engineering, Boltzmannstr. 3,
D-85748 Garching b. München, Germany

kuhrmann@in.tum.de
2 Technische Universität Kaiserslautern, FB Informatik – AG Softwarearchitektur,

Gottlieb-Daimler-Straße D-67653 Kaiserslautern, Germany
{niebuhr, rausch}@informatik.uni-kl.de

Abstract. The new V-Modell XT has replaced the well-known V-Modell 97 as
obligatory development process standard IT-projects of Germany’s government
and military service. During the development of the V-Modell XT a wide Beta-
test phase was planned, enabling the project partners to make first experiences
in practical use. Furthermore, the pilot projects enable all participants to come
closer to the new standard and learn more about its strengths and weaknesses.
After having a short look at the new concepts of the V-Modell XT, we present
some experiences made during the pilot project “Development of the WiBe
software” for the German Department of the Interior. We will present some ex-
periences we made and provide some quantitative data of products created dur-
ing the project.

1 Introduction

During the past years, IT-projects became more and more complex and extensive.
Looking at the high degree of IT-systems penetration [1] of the every-day life, it
becomes more important that IT-systems work accurately. A malfunction of a coffee-
maker is quite annoying but tolerable, dysfunctions like the failed lift-off of the
Ariane V-Rocket or miss-leaded Patriots during the 2nd Gulf War are certainly not
acceptable. To avoid errors in such dimensions, a clearly-structured, well-defined
modell for (software) development processes is required [4]. The Chaos Report [2] by
“The Standish Group” e.g., lists criteria that can improve the chances of finishing IT-
projects successfully. Modells like the new V-Modell XT [6] pay attention to these
suggestions and support IT-projects from start to finish.

During the development of the new V-Modell XT in the WEIT-project, a wide beta
test gathering phase was planned for collecting experiences in pilot projects using the
V-Modell XT. In this paper, we want to present our results and experiences we made
during the first phases of the WiBe-project, which is the first one developed accord-
ingly to the V-Modell XT in cooperation with BMI/KBSt (http://www.kbst.bund.de).
Thereby, we point out what our main goals are and how to achieve them using the

464 M. Kuhrmann, D. Niebuhr, and A. Rausch

V-Modell XT. We also provide some quantitative data like the number of products
created during the project or the number of products for certain milestones to show
the efficiency of the V-Modell XT. We also want to outline some complications we
encountered during the project.

2 The V-Modell XT – Overview

The new V-Modell XT is a unitised modell for (software) development processes
[3, 5, 6], which can be customised for specific project requirements.

It doesn’t focus on the question how something should be done anymore, but on
the point what has to be available at a fixed deadline and in what quality. It clearly
defines “Who” has to do something, “What” someone has to do, “When”, “How”,
and “Using what” someone has to do it. The “Who”-dimension is defined by a Role-
Modell, the “When”-dimension by an Activity-Modell, the “What”-dimension by a
Product-Modell and the “Using what”-dimension contains references to tools, meth-
ods and other related standards. We will briefly discuss the basic concepts now.

Products
Products are the ultimate centre of the V-Modell XT – they are the central points of
interest [6] and represent the project results. Products can be documents like the Pro-
ject Manual, codes or the System itself. Provisional results are products as well, e.g. a
document that still is in development.

Products can be classified into initial, dependent and external products. All prod-
ucts created in a particular project are logically grouped by content dependencies
(Product Groups). A certain product can be divided into several topics so that simul-
taneous development and management of a product is supported as well. All products
of a project are stored and managed in a Product Repository/Library.

To get a maximum quality of all products, the V-Modell XT defines a lot of meas-
ures for Quality-assurance. Regarding the products, there are, for example techniques
based on a Product-State-Modell or a Consistency-Modell [6].

Activities
The relation between activities and products is quiet simple: Each product is finished
by one activity [6].

As a sample, the Project Manual (product) is created by the activity “create the
Project Manual”. Because of the tight coupling between products and activities, there
are no activities defined in the V-Modell XT that work on other things than products.

Compared to other process models, the V-Modell XT doesn’t know logical orders
or orders in time. This for example means that there no input-products for an activity
are defined. Every activity is focused on only one product.

Similar to products, activities can be logically grouped into Activity Groups. Thus a
topic is created by a so called Sub Activity in this modell.

Roles
A role in the V-Modell XT is a concept, which clearly defines the responsibilities for
certain products. Furthermore they describe the competences the people, who will
assigned to a role, should have.

Application of the V-Modell XT – Report from a Pilot Project 465

At first, a role is independent from a particular organisation structure. During the
project’s set-up, the V-Modell XT roles are assigned to participating persons while
planning the project. One role should always be assigned to one person [3, 6]. Exactly
one role is responsible for a product’s creation but can be supported by other partici-
pating roles for a concurrent development. Compared to other process models, e.g. the
V-Modell 97 or the RUP, where roles are more assigned to activities than to products,
this is a novelty.

Process Module
A process module focuses on a concrete problem within the V-Modell XT [6]. Each
process module is a self-contained unit which can be used, changed and extended
independently from other process modules.

The process module is a component-like concept, which breaks off the monolithic
architecture of the V-Modell 97. It contains all relevant products, activities and roles,
necessary to solve the associated task [5]. Process modules have to be processed com-
pletely1, meaning that all relevant products have to be created and all relevant activi-
ties have to be executed.

Project Types
The V-Modell XT defines three types of projects – one development modell for a
client and one for an agent. Furthermore a quality modell for organisations is defined
[5, 6] as well. A project type encapsulates what process modules have to be used in a
particular project.

Strategies for Project Operation
Strategies for project operation (SPO) define in detail, in which order decision points
(quality gates for products of a project stage, comparable with a milestone) have to be
met within a project [6].

Fig. 1. SPO Placing of orders and realization of system development projects (client)

More than one strategy for project operation can exist for a project type. The SPO
“Placing of orders and implementation of system development projects (client)” is
mentioned as an example in Fig. 1. A SPO clearly defines the order of building cer-
tain products. Compared to other process modells, this is a novelty.

Tailoring
Tailoring is one of the most important concepts of the V-Modell XT. It enables a
project manager to trim the V-Modell XT to fit a specific project’s characteristic so
that only the necessary products have to be created and no unnecessary activities are
executed [5, 6].

1 “Completely” refers to the result of the Tailoring and further adaptations.

466 M. Kuhrmann, D. Niebuhr, and A. Rausch

Fig. 2. Tailoring mechanism and subsetting

Let us give an example: Process modules for hardware development are not neces-
sary for the development of a software system and are, thus, redundant.

At the beginning, a project can be characterized by several so called project attrib-
utes. Based on these attributes, necessary activities and products for the specific pro-
ject are identified [6].

The resulting, project-specific V-Modell XT (left side of Fig. 2) in general consists
of a subset (see right side of Fig. 2) of the available process modules of the complete
model. Furthermore a SPO, a set of roles and the required products are fixed after the
Tailoring. Thus only project relevant products will be filled out and only necessary
activities will be executed within a project.

Compared to the V-Modell 97 an initial project-plan is exportable after the Tailor-
ing, too!

3 The Pilot Project WiBe 4.0

At first, we present the initial setting for the WiBe pilot: There already exists software
supporting the process of making economic decisions described in the WiBe 4.0 busi-
ness concept [7]. This software is installed on about 900 computers and is used every
time a project exceeds a fixed budget. The existing software shows weak points in
dealing with modern requirements. Aspects we considered as difficult are:

− Technical problems: missing network and multi-user capabilities, incompatibilities
with modern software like Windows XP

− Functional problems: the new version of the business concept economic decisions
are based on is not supported by the old software system

Another goal is to become independent of a particular software provider. Due to the
BMI/KBSt not owning the old software code, the new software should be available as
source code as well. After deciding to develop new software for WiBe, the BMI/KBSt
and the V-Modell XT team initiated this project as a pilot.

Application of the V-Modell XT – Report from a Pilot Project 467

The following paragraphs report of this pilot project and will give some impres-
sions of the practical application of the V-Modell XT. With developing the new Wi-
Be 4.0 software, we wanted to address topics like the integration of the new business
concept, network and multi-user capabilities as well as the redesign of the technical
architecture and paying more attention to ergonomic questions. Furthermore, we
wanted to order a software system which is completely owned by the client after fin-
ishing the project including all codes and documents.

3.1 Realising the Project Using the V-Modell XT

In this project we are in the role of the client. Our team consists of employees of the
BMI/KBSt, the TU Kaiserslautern and the TU Munich. This project is tool-supported
by in-Step V-Modell XT Edition made available by microTOOL GmbH Berlin
(http://www.microtool.de).

Kick-Off and Project’s Tailoring
The project’s type is system development project (client). During the Kick-Off, the
first step was the Tailoring for gaining the required process modules and products.

Fig. 3. Project-specific Tailoring for IT-WiBe

In Fig. 3 the Tailoring for WiBe is shown. The Tailoring result has to be docu-
mented in the Project Manual. All decisions for or against a particular project attribute
should be documented there. The Tailoring provides a so called application profile,
consisting of a project type, a set of process modules and a strategy for project opera-
tion2. For the current project WiBe the selected project modules are:

− “Project Management”, “Quality Assurance”, “Configuration Management”, and
”Problem and Change Management”,

− “Requirements Specification”
− “Placing of Orders, Project Monitoring and Finishing (client)”.

2 As the project is of the type system development project (client), the strategy for project

operation is already fixed, as at the moment only the SPO Placing of orders and realization of
system development projects (client) is provided for this project type.

468 M. Kuhrmann, D. Niebuhr, and A. Rausch

The elements listed in the first item are the obligatory ones of the V-Modell XT
that are selected in every project per se (the so called V-Modell XT core [6]). The
default-selection of the core elements ensures a minimum level of quality in each
project.

Planning the Project
The V-Modell XT doesn’t dictate a fine-grained process model. The type of the pro-
ject and the strategy for project operation only define the order of reaching the pro-
ject’s decision points and what products have to be finished by then [6].

As we have mentioned before, an initial project-plan can be derived from the Tailor-
ing. This initial plan only sketches the coarse time frame. The next step in our project
was to plan the project in detail (assigning roles, activities, setting deadlines etc.)

Fig. 4. Planning the WiBe project using a supporting tool (German UI-version)

The supporting tool we chose delivers capabilities to assign dates to process mod-
ules and decision points as shown in Fig. 4.

An Example: Basically there is no statement how to create the Specification Sheet,
but when it has to be finished and who is responsible for it. So at first the project man-
ager should assign a responsible person who has a corresponding role and should
define a deadline, when this specific document has to be built. Detailed planning a
project means to plan a particular phase of the project. In our pilot we have planed
only the current phase and the following one.

The project manager and the steering committee now can prepare, start or finish
certain project’s stages. As shown in Fig. 4, the project can be realised using an activ-
ity-oriented approach The activity “create Requirements (Specification Sheet)” for

Application of the V-Modell XT – Report from a Pilot Project 469

example can only change its state to finished if a corresponding Quality-assurance
process (activity “test Requirements (Specification Sheet)”) has been carried out with
a successful result as well. This is only one possible view on the project. A product-
oriented approach is possible as well, e.g. the decision point project defined can only
be reached if the product Project Manual is in the state finished.

To give a short impression of our project, we will give a short overview of how we
specified the requirements in the pilot project in the following section.

Requirements’ Specification
The requirements specification is now one of the core responsibilities of the client in
the V-Modell XT [4, 6]. It provides rules and templates showing, how to structure re-
quirements. On the other hand it is flexible enough to give a wide range of project-
specific customization.

According to the WiBe project we used this fact for a specific Use Case-based re-
quirements engineering process which is shortly described in Table 1.

Table 1. Requirements engineering process in WiBe

Task Description
Functional analysis of the bu-
siness concept

− business concept in cooperation with the
principal

− core functionalities and other points of inte-
rest

Analysis of user interaction
with the existing application

− user interaction
− work flow and dialog/mask flow

Decomposition of the applica-
tion’s main tasks and Use
Case assignment

− identifying and grouping of the tasks
− building the application’s core components
− Use Case assignment for the components

Use Case and activity descrip-
tion

− Refinement of the Use Cases and their
detailed description

− Description of the activities

Thus we extracted the requirements for the system step by step. The Specification
Sheet as well as the single topics were permanently reviewed in a concurrent running
review process. The reviews were made internally by the project members as well as
externally by participating industrial partners3. The Quality-assurance documents like
test specifications or test protocols that have been created during these reviews are not
a part of the particular product. They have to be managed separately in the product
repository.

According to the V-Modell XT, the Specification Sheet does not only consist of
functional and non-functional requirements. There is a lot of context information as

3 Several industrial partners were involved in development of the V-Modell XT. As the WiBe

project was set up as a pilot project, reviews for core products were carried out partly by tho-
se partners, which had been involved in the development of the correspondent part of the V-
Modell XT.

470 M. Kuhrmann, D. Niebuhr, and A. Rausch

well, which both gives the potential agent a feeling for the project’s background and
has to be taken into account as well. On the other hand, the client is forced to review
the requirements with the focus: “Is the system realizable the way I want to?”

This information is structured by the predefined topic-structure of the Specification
Sheet provided by the V-Modell XT product reference. An example for this context
information is the topic “sketch of complete lifecycle and system architecture”.

The Big Picture and the Project’s Results
At this point, we want to give an overview about the results we obtained until the deci-
sion point “project announced” on the client’s side and look a little bit forward as well.

Fig. 5 shows the first four decision points, together with their associated products.
The topics every product consists of are not shown in detail here, but sketched. As
you can see, the number of documents to be built up to this point is quite small (just 7
documents). Only the products relevant for the decision points listed in the Figure.

Fig. 5. The big picture: WiBe state until decision point: project announced

Not listed are organisational documents or documents for quality assurance: for
almost every document shown here, at least two further documents exist – at least one
test specification and a test protocol. Organisational documents are the ones that are
related to the regular project meetings like an action item list or protocols.

These products are defined in the core process modules of the V-Modell XT and
will occur in every V-Modell XT-based project.

Looking Forward
To put it all in a nutshell let us give you some quantitative data, now. Currently, the
project has passed the next decision point project engaged.

Up to this point the project team has created about 220 documents at all. This num-
ber lisits all documents, including action items, risks, meeting protocols and so on.
Many of these documents are the project manager’s all day work. The number of
relevant documents is much smaller. At least 15-20 core documents like the Project
Manual have to be created. Compared to the V-Modell 97, there is just one area, the
client has to invest more resources: the requirements engineering phase. During this
phase we created about 55 Use Case descriptions, which were unified in the Specifi-
cation Sheet to one document.

Application of the V-Modell XT – Report from a Pilot Project 471

In Fig. 6 we want to point out this statement again. As you can see, only eight
documents, excluding project management ones, are needed to pass all three sketched
process stages.

Fig. 6. Documents for some decision points

Customisation of the V-Modell XT
One of the most important features of the V-Modell XT is that every customer can
build a specialised version which meets his requirements as good as possible.

This enormous flexibility was used in the WiBe project for customisation as well.
In Table 2 we summarised some customisations. These customisations were discussed
and decided within the project meetings and had of course to be documented in the
project manual.

As an example for this, we will give you a few more details about the product Pro-
ject Advance Decision. A Project Advance Decision is used for a well-defined break
between particular project stages, so that the next one can be entered. According to
the V-Modell XT, a Project Advance Decision usually is a stand-alone document,
which contains the formal decision to pass a decision point. In our project, we de-
cided, to not make a separate decision document for each Project Advance Decision,
but to integrate the decision into the corresponding reports that have to be created in
every stage.

We made this commitment to enable a more simplified reporting mechanism that
corresponds to the project’s volume and is less work for all participants.

The V-Modell XT is explicitly prepared for such customisations. As we learned
during the project, sometimes there is no alternative to a customisation. In the WiBe
project for example, the Bidding Documents have to meet the UFAB-III standard
which differs structurally to the V-Modell XT’s required documents. This requires
hand-work because such situations are not tool-supported at the moment.

472 M. Kuhrmann, D. Niebuhr, and A. Rausch

Table 2. Project specific customization of the V-Modell XT for WiBE

Product Decision
Project Diary Regarding to the V-Modell XT a Project Diary should

be written. We decided not to do. We will provide
technical Reports instead of this.

Internal State Reports We decided to not write single Internal State Reports at
every meeting, but only for preparation of external
Reports. Internal State Reports are documents we in-
troduced. The V-Modell XT doesn’t know this type of
Product. So we have made an extension at this point.

Project Advance De-
cision

We decided to not produce Project Advance Decisions
as stand-alone products as required in the V-Modell
XT. We decided to extend the external project Reports
that have to be produced at every decision point with
an additional paragraph, which contains the necessary
passages and the formal decisions as well.

Requirements
Evaluation

Instead of a formal Requirements Evaluation we pre-
ferred a continuously review process by the project
members themselves and external industry reviewers.

A reached customisation decision and the corresponding documentation make
thinks really easy. All made decisions have to be documented in the Project Manual
and are obligatory for the whole project.

4 Summary

The WiBe project is the first pilot project in the V-Modell XT Beta-test phase. Many
of the new concepts have been proven as very inventive and practicable, e.g.:

− Communication – project meetings and a well defined reporting make the whole
process clear to everybody

− Flexibility – we were able to customise the V-Modell XT in order to meet our
requirements, thus we could focus only on relevant tasks during project operation.
Looking at certain tasks, we used the flexibility to meet the participants’ personal
interests as well as for integration of existing external standards, which define for
example the way that bidding documents have to be created.

Lessons we’ve Learned
Some lessons we have learned are: The new V-Modell XT is quite simpler to use
compared to the V-Modell 97.

Despite the strict activity policies, the product-centered viewpoint allows much
more flexibility. Because of this new orientation, the Tailoring is much easier to un-
derstand and overview.

Application of the V-Modell XT – Report from a Pilot Project 473

Remember: the V-Modell 97 contains about 180 activities and about 100 products.
The project manager have to know all those things if he wants to tailor the model.
This leads to a very complex Tailoring mechanism which was documented in a sepa-
rate book and required specialists.

The newc V-Modell XT has a new grouping unit – the process modules. At the
moment, the V-Modell XT provides about 20 modules. These modules are the base
for the Tailoring process and much easier to handle and understand.

Because we are still working on other pilot projects as well, we can say that an
average Product Repository after the Tailoring process consists of 30-40 document
templates. As we have mentioned before, this number also includes templates for the
project management products, thus an average V-Modell XT project consist of less as
20-25 core documents (products) that have to be created and maintained..

Conclusions
Nevertheless we have to say that the first contact with the V-Modell XT in the pilot
project was sometimes a little strange because there are some learning efforts.

So some project phases at the beginning were not conform to the V-Modell XT and
we had to invest a lot of work in correcting the mistakes made during this period.
Furthermore, we had to realise, that the V-Modell XT doesn’t cover all requirements
related to flexible tool-support for unforeseen management rules and formal ques-
tions. As an example, we sketched the problems according to the Bidding Documents
required by the UFAB-III compatible announcement. No tool supports such special
structures, thus hand-work is necessary.

We assume that these problems will happen again in further projects. To avoid this
upfront trainings are held or are currently in preparation. The trainings will address a
wide range of customers from the ordinary employee to the top manager.

On the other hand, the V-Modell XT is still in development, thus there will be a
well-defined further developing within the next few years.

References

1. Balzert, H.: Lehrbuch der Softwaretechnik Band 1/2, Spektrum Akademischer Verlag, 2.
Edition, ISBN 3-8274-0480-0 (2000)

2. The Standisch Group: Chaos Reports, http://www.standishgroup.com/chaos_resources/
index.php

3. Gnatz, M., Deubler, M., Meisinger, M., Rausch, A.: Towards an Integration of Process
Modeling and Project Planning. In: ProSim 2004, The 5th International Workshop on Soft-
ware Process Simulation and Modeling (May 2004)

4. Bergner, K., Broy, M., Moll, K.-R., Pizka, M., Rausch, A., Seifert, T.: Erfolgreiches
Management von Softwareprojekten. In: Informatik Spektrum, Band 27, No.5 (2004) 419–432

5. Meisinger, M., Rausch, A., Deubler, M., Gnatz, M., Hammerschall, U., Küffer, I., Vogel, S.:
Das V-Modell 200x – Ein modulares Vorgehensmodell. In: 11. Workshop der Fachgruppe
"Akzeptanz von Vorgehensmodellen"(Gesellschaft für Informatik) (April 2004)

6. The V-Modell XT Portal: http://www.v-modell-xt.de
7. Röthig, P.: WiBe 4.0 – Empfehlung zur Durchführung von Wirtschaftlichkeitsbetrachtungen

in der Bundesverwaltung, insbesondere beim Einsatz der IT. Schriftenreihe der KBSt, ISSN
0179-7263, Band 68 (August 2004)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 474 – 481, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Road Map for Implementing eXtreme Programming

Kim Man Lui and Keith C.C. Chan

Department of Computing,
The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
{cskmlui, cskcchan}@comp.polyu.edu.hk

Abstract. This paper proposes an implementation roadmap that shows how in-
experienced software teams in industrial developing areas in China can adopt
eXtreme Programming (XP) to produce software applications. Inexperienced
teams unfamiliar with XP can face difficulties in adopting at once all twelve XP
practices in a “big bang” implementation strategy. Intuitively, a step-by-step
approach might seem more practical; however, XP practices are heavily inter-
twined and mutually dependent, creating problems in terms of prioritizing and
justifying one instructional sequence over another. We propose a way to techni-
cally analyze the complex interrelationships between XP practices by identify-
ing cluster patterns. These patterns can then be used to assist us in sequencing
the introduction XP practices, helping both inexperienced teams and classroom
learners in using XP. This work has value in both industrial and educational
contexts.

Keywords: Managing Inexperienced Software Teams, Test-Driven Develop-
ment, Visual Data Mining, XP in China.

1 Introduction

There has been in China in recent years a considerable and increasing demand for
custom-made commercial software. This has seen a parallel increase in the number of
software teams operating there, doing outsourcing or developing product in-house.
Such teams are often small, inexperienced and lack practical knowledge of software
development application methodologies. Our goal is to help these teams produce
better software in such environments, with the view to developing a suitable paradigm
for quickly improving their software development products and processes.

Conventional software models, like CMM, are heavyweight and, where teams are
inexperienced, the straightforward adoption of such models is impractical as it is
time-consuming both to train a team of inexperienced programmers and to have them
implement the model. Such models are additionally unsuitable in that they emphasize
process capability and process maturity, and fail to provide the support that inexperi-
enced teams need in order to write better software and deliver business values. eX-
treme Programming (XP) would appear to offer a more suitable approach because XP
practices address programming management issues such as test case automation and

 A Road Map for Implementing eXtreme Programming 475

coding standards. This kind of emphasis would assist in improving the overall per-
formance of inexperienced teams and increase the ability of teams to run software
projects on budget and on time.

An important part of an XP approach is its implementation. A big bang approach to
roll-out is not likely to work for inexperienced teams. This paper proposes an alterna-
tive, explaining it in terms of an implementation road map and using a visual data
mining (VDC) technique to reveal a pattern that shows how twelve eXtreme Pro-
gramming practices support each other, thereby helping us to prioritize XP practices.

It is not within the broad scope of this paper to explore the IT decisions made by
manufacturing companies in developing areas but as a matter of background we might
proffer a number of tentative explanations as to why they might prefer to establish in-
house IT development teams and/or seek services from small local software houses
rather than using commercial off-the-shelf (COTS) software. One reason may be that
company decision-makers believe that their operations are unique. Another reason may
be the low cost of local programmers. A third reason may arise from the fact that in
many companies in China the IT Department is under the Finance Division and there
may be a misperception about the ease with which computer programs can be designed.

Section 2 provides some background about inexperienced software teams in China.
Section 3 reviews two major representations of software models that influence ap-
proaches to XP adoption. Section 4 proposes an XP implementation road map based
on patterns of XP practices revealed by visual data mining. Section 5 discusses the
road map and its potential applications in industry and in the classroom. Section 6
describes the contributions of this work.

2 Inexperienced Software Teams

In well-developed cities in China, well-trained and experienced developers are readily
available for software projects. However, as many new manufacturing plants are now
being built in developing areas, numerous small local software teams, either in-house
or external, software house, have been established to provide logistics, purchasing,
and manufacturing solutions. These software teams have the following common
features [1, 2].

i. The team members are not well trained in Software Engineering and Software
Project Management.

ii. The teams have a high proportion of inexperienced programmers
iii. Teams have a high turnover of good members as programmers seek opportuni-

ties in nearby well-developed cities.
iv. The educational background of team members is in an IT education system

that focuses on individual skills such as practical tools and computer lan-
guages, neglecting team dynamics such as software project management.

v. Team members rarely consider trying new ways to solve old problems
vi. Team members prefer step-by-step guidance when learning and applying new

skills
vii. They are willing to accept comments about their mistakes; however, they

might repeat the same kind of mistake after some time. This is a sign of imma-
turity and/or weak self-discipline.

476 K.M. Lui and K.C.C. Chan

Clearly, these are deficiencies that must be addressed. A systematic approach to
these deficiencies will seek to educate teams and will create a work framework that
improves efficiency and delivers business values. At the same time, however, we are
aware of the costs and ROI (Return of Investment) involved in implementing any staff
education scheme. Where staff turnover is high, the costs associated with staff train-
ing must of course be weighed in the balance along with other commercial considera-
tions. In this respect, we believe that our approach does not run the risk of overin-
vestment and may even contribute to staff retention.

3 Implementing and Assessing a Software Model

A software development model can be implemented and/or assessed in a number of
ways. Capability Maturity Model Integration (CMMI) for example has two represen-
tations: Staged and Continuous [3]. In staged models, a set of process areas are clearly
prioritized for implementation in different stages. In continuous models, less specific
guidance is provided as to the order of implementation. Rather, process areas are
measured for assessment and from this is derived a capability profile. At a specific
point in time, then, a capability profile can be used to guide process improvement.

eXtreme Programming similarly may be implemented and/or assessed in a staged
style or a continuous style, as shown in Fig. 1. Nawrocki et al. [4] have defined an XP
maturity model (XPMM) that distinguishes between different levels of advancement
in XP practices. They prioritize twelve eXtreme Programming practices in terms of
maturity. For example, different levels may represent an “On-site Customer” at different
levels: at Level 2, the customer can be collaborating through the Internet; at Level 3, the
customer pays frequent visits to the development team; at Level 4, the customer should
be available on a daily basis. (Note that Level 1 is not compliant at all.)

Inexperienced software teams are not able to adopt XPMM because they need time
to fully understand how each practice works individually and, most importantly, how

Fig. 1. Staged and continuous implementation

 A Road Map for Implementing eXtreme Programming 477

the practices support each other, which, as can be seen from Fig 2, can be rather
complicated. Intuitively, one approach might be for inexperienced programmers to
start with three or four XP practices and then to adapt more practices step-by-step.
However, once again with reference to Fig 2, it is by no means a simple matter to
determine which practice(s) should be introduced first, nor would it be any easier to
explain the why and how of this ordering to inexperienced programmers.

4 Toward eXtreme Programming from Testing

Explaining Fig 2, Beck observed that XP practices require other XP practices to keep
them in balance [5]. The strength of XP comes from the interactions of the parts. To
manage inexperienced software team using eXtreme Programming, we thus need to
find a way to demonstrate to such teams how the twelve XP practices interact.

It should be noted that it would be wrong to prioritize the practices only according
to the number of their links. All of the practices are important and inherent to the XP
approach [5], yet it is clear that, with eight links, testing may be a suitable starting
point as it offers the greatest number of alternative next steps.

Fig. 2. XP practices support each other. A line between two practices indicates that they rein-
force each other. [5]

Visual data mining lets human visualization participate in the decision making of
an analytical process. It is a visual tool for revealing complicated data patterns. Ap-
plied to Fig 2, this technique may reveal a pattern in Fig. 2 which would be of assis-
tance in designing a road map to XP implementation.

4.1 Exploring XP Practices Using Visual Data Mining

Let us revisit Fig 2. Some practices have many links with others, e.g. eight at Pair
Programming, while some have three links, e.g. On-Site Customer. This kind of

478 K.M. Lui and K.C.C. Chan

relationships is noticeable in a graph because only one vertex (i.e. one XP practice) is
looked at in relation to the others. However, when we try to look at two or more verti-
ces simultaneously, the picture may not be so coherent.

A graph with n vertices can be represented by an n×n matrix, where the entry at
(i,j) is 1 if there is an edge from vertex i to vertex j; otherwise the entry is null. For
example, in the graph shown in Fig 3, there is an edge between two vertices, Test-
ing (T) and Metaphor (M). The graph can be presented in a matrix as shown on the right
side in Fig 3. At (row T, column M) and at (row M, column T), is marked twice
corresponding to the single edge of the graph. Thus, the matrix is asymmetric.

Fig. 3. Graph representation vs. matrix representation

In this way, Fig 1 can be re-drawn as a matrix, the left picture in Fig. 4. However,
there is no meaningful pattern in this matrix.

The next step in our analysis involves a series of exchanging columns and rows of
the matrix. We define a function f(i,j)=(i+1,j)+(i-1,j)+(i,j+1)+(i,j-1) where (i,j)=1 if

Fig. 4. Clustered patterns discovered by visual data mining

 A Road Map for Implementing eXtreme Programming 479

the square at row i and column j is marked; otherwise (i,j)=0. The total value of f(i,j)

over the matrix is
= =

12

1

12

1

),(
j i

jif . By exchanging any two rows and their correspond-

ing columns, some points may move away from others, which decreases the total
value of f(i,j). Similarly, points may move closer to each other, which increases the
total value. Thus, f(i,j) over the matrix can be used as a heuristic function for breadth-
first searching; that is, rows and their respective columns are exchanged to maximize
the total value of f(i,j) [6]. Fig. 4. (right hand side) shows a result after searching that
reveals a cluster pattern.

4.2 From Testing to a Full XP Set

To draw a conclusion from that result (the right hand picture in Fig. 4), we need more
information. As mentioned, one XP practice, Testing, stands out. Testing is the core
of Test-Driven Development (TDD). As explained in [7], TDD is an iterative process
implemented in five sequential:

i. Use an XUnit tool and quickly add an automated unit test specifying a piece of
functionality that we are going to write

ii. Run all unit tests including the one just added in Step (i) and see the new unit
test fail as that part of the code has not yet been written.

iii. Quickly write the simple code to pass the new unit test
iv. Run all tests and see them all succeed
v. Refactor the code

Note that (i), (ii) and (iv) are about Testing in XP; (iii) about Testing and Simple
Design; and (v) about Refactoring. From this perspective, TDD is a subset of XP.
Thus, Fig 5 should be able to show us this subset and indeed we can circle one single
region where these three practices are represented. The XP practices form a cluster by
themselves in Fig 5 because of their relationships depicted in Fig 2. It should be noted
that Fig 5 is mathematically equivalent to Fig 2.

According to TDD and Fig 5, we can try to implement XP by adopting Test, Sim-
ple Design and Refactoring at Phase I. We then add one practice at phase II, two prac-
tices at phase III and the remaining practices at phase IV. In this way, we can draw
four contour lines, shown in Fig 5. Note that Pair Programming, which involves part-
ner rotation and Collective Ownership are closely connected. Both should be included
in the same phase. Therefore, Phase II contains Continuous Integration and the prac-
tices at Phase I.

Fig 5 is produced from Fig 2 using a visual data mining technique and provides an
easy reference for defining a road map to XP adoption for our own development envi-
ronment. For managing inexperienced programmers, who may lack self-discipline, we
should move Code Standard to Phase I. Thus, Table 1 illustrates a complete four
phase road map that can be used to assist inexperienced teams adopt eXtreme Pro-
gramming. Note that Table 1 is almost the same as Fig 5, except that Code Standard is
adopted at Phase I.

480 K.M. Lui and K.C.C. Chan

Fig. 5. An XP implementation map (note that Fig 5 is mathematically equivalent to Fig 2)

Table. 1. A four phase XP implementation road map

Stage XP Practices
1 Testing, Simple Design, Refactoring and Coding Standard
2 Continuous Integration
3 Pair Programming and Collective Ownership
4 Metaphor, 40 Hour Week, Small Release, On-Site Customer,

Planning Game

5 Inexperienced Teams at Work and Student Teams in Classroom

It is difficult for inexperienced teams to learn from the software experience of others
because they teams cannot associate it with their own knowledge and experience.
Such teams need step-by-step instructions and learn best when knowledge is well-
structured. The purpose of our road map is to facilitate the learning of inexperienced
teams by providing a clearer picture of the relationships among XP practices. So far,
we have obtained considerable positive feedback when using our method with in-
house software teams in China seeking to implement eXtreme Programming.

Our method has the advantage that it educates software teams so that they under-
stand what they should adopt and why. But, out method has some limitations. It does
not provide a timetable for the length of each implementation phase. Neither does it
suggest how many phases a software team should go through in adopting the full set
of eXtreme Programming practices.

Although the characteristics displayed by teams of university students in class-
rooms are in most respects the inverse of those of inexperienced work teams as de-

 A Road Map for Implementing eXtreme Programming 481

scribed in Section 2, it is our belief that the clarity that our method offers can equally
be applied in student instruction in XP practices. There are two kinds of difficult for
students: appreciation and complexity.

In appreciation, some XP practices at Phase IV such as On-Site Customers and 40
Hour Week appear to be very simple, but students can fully appreciate them only
when they run software projects in real world.

Complexity means the understanding of the reinforcement between XP practices.
In our experience teaching eXtreme Programming, we have found that while students
are usually able to explain the objectives of individual XP practices, they rarely have
any insight into how its twelve practices reinforce each other. It is hoped that our
proposed method will help students to gain this insight.

6 Contributions

Because making XP work is a matter of achieving synergy between the practices and
visual data mining is an effective tool for displaying the complicated relationships
among XP practices, the primary contribution of this work come from its use of visual
data mining to clarify how the twelve XP practices support each other, thereby reduc-
ing the learning burden for students and practitioners. Compared with experience-
based knowledge, our XP road map is easily explained to inexperienced program-
mers, and can be used to guide inexperienced software teams as they initially adapt
parts of XP and thereafter continuously improve their XP implementation. In industry,
organizations can use the proposed road map in their own roll-out of eXtreme Pro-
gramming, adapting it to match their culture and environment. In education, this paper
can serve as supplementary materials for XP learners and coaches.

References

1. Lui, K.M. and Chan, K.C.C., Managing Inexperienced Programmers by Managing Design-
Coding, Proceedings of European Software Process Improvement, Denmark, pp. 2.9-2.19,
(2000) On-line at http://www.iscn.at/select_newspaper/people/polytechnic.html

2. Lui, K.M. and Chan, K.C.C., Inexperienced Software Team and Global Software Team
Knowledge and Information Technology Management: Human and Social Perspectives, Ed-
ited by Gunasekaran, A., Khalil, O., and Syed, M.R., Idea Group, Hershey, PA, (2003), pp.
305-323.

3. Ahern, D.M., Clouse, A. and Turner, R., CMMI Distilled, Addison-Wesley, (2001).
4. Nawrocki, J., Walter, B. and Wojciechowski, A., Towards Maturity Model for eXtreme

Programming, Proceedings of the 27th EUROMICRO Conference, IEEE Computer Society,
Los Alamitos, pp. 233-239, (2001).

5. Beck, K. eXtreme Programming Explained: Embrace Change, Addison-Wesley, (1999).
6. Ibrahim, M.E. and Lui, K.M., Use of Knowledge Discovery Techniques in Management

Accounting, International Review of Accounting, Vol. 4, October, (1999), pp.22-38.
7. Beck, K. Test-Driven Development by Example, Addison-Wesley, (2003).

Automatically Analyzing Software Processes:
Experience Report

Rodion M. Podorozhny, Dewayne E. Perry, and Leon J. Osterweil

Texas State University, San Marcos, The University of Texas at Austin,
The University of Massachusetts, Amherst

Abstract. Sound methods of analysis and comparison of software pro-
cesses are crucial for such tasks as process understanding, process correct-
ness verification, evolution management, process classification, process
improvement, and choosing the appropriate process for a certain project.
The purpose of our research is to lay the foundations for a systematic
and rigorous comparison of processes by establishing fixed methods and
conceptual frameworks that are able to assure that comparison efforts
will yield predictable, reproducible results. The analysis framework pre-
sented here assumes that the comparison will be done relative to a fixed
standard feature classification schema for the processes used, and with
the use of a fixed formalism for modeling the processes. The aspect of the
system described in this paper is focused on functional analysis of pro-
cesses according to the predefined comparison topics, well formedness
constraints, and instrumented agents. The paper describes our experi-
ence using our analysis system and its application to a logistics software
process from the telecommunication domain.

1 Introduction

This work presents a novel approach for analyzing and comparing software pro-
cesses that enables one to significantly increase the objectivity and repeatability
of comparisons. To our knowledge, this is the first attempt at a partially au-
tomated analysis and comparison of software processes based on the artifacts
they produce. While our work focuses on the application of our analysis sys-
tem to software process analyses and comparisons, it is more general. It is also
applicable in domains other than software process, such as data-based compar-
ison of software applications for evaluation of continuous program optimization
techniques ([9]).

It is our belief that certain tasks (e.g. software development) are very unlikely
to be completely automated in the foreseeable future if ever. Thus there will be
a need for software process systems with human involvement in their execution.
We believe that the operation of such systems can be properly described and
analyzed with the use of the concept of a software process as introduced in [11].

One of the hallmarks of a mature scientific or engineering discipline is its
ability to support the analysis, comparison and evaluation of the artifacts with
which it deals. Systematic analyses and comparisons rest upon classification.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 482–497, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Automatically Analyzing Software Processes: Experience Report 483

Thus we believe that the establishment of a discipline of process engineering
requires the development of techniques and structures for supporting the clas-
sification, comparison, verification, evaluation, and improvement of processes.
Systematic, rigorous and automatable analysis techniques can help achieve the
goals of process engineering.

The analysis system discussed here assumes that the analyzed and compared
processes are in the same problem domain and have a similar purpose, but might
have certain differences in how they achieve their goals starting from the input
of the same kind and providing output of the same kind. Our approach is based
on the analysis and comparison of artifacts produced by the processes along the
execution paths prompted by similar input (e.g. similar formal requirements for
a software system fed to different software development processes). Thus our
approach also makes an assumption that the intent of the analyzed processes is
in response to the similar input is comparable and produces comparable artifacts.

In this paper we describe our experience analyzing and comparing two versions
of a telecommunications logistics process, what results we get from the process
analysis, how our system compares to other approaches, and lessons learned from
the experience.

2 Logistics Process Example

As our example we used a telecommunications ordering process employed by
Telcordia. The ordering process elaborates the activity of adding a service to
a customer. This company uses a proprietary process specification language for
rigorous specification of such logistics processes. Their logistics processes also use
a predefined set of artifact formats. In addition to the format specification, there
is a set of well-formedness conditions defined for the artifacts. One of the chal-
lenges the developers of these processes face is the task of change management.
After a change is made to the process the developers have to make sure that the
process still produces artifacts complying with the well-formedness conditions. If
the new version of the process produces an undesirable result then the developers
have to find out the cause. This is not always as trivial as it would seem even
for relatively small processes as not a single developer understands the process
in its entirety. There are also different possible interpretations of the process by
developers. The suggested comparison approach alleviates some of these prob-
lems by providing a rigorous analysis of process artifacts and suggesting possible
causes for the differences based on such an analysis.

The study assumed that two seemingly identical versions of the same process
need to be compared to find out if the artifacts produced comply to a certain
well-formedness condition, and to point out the reason for the differences if there
are any. Such a set-up is likely to highlight the benefits of the artifact-based
trace analysis technique that can be used to complement the static analysis of
the process template specification such as by Jamieson Cobleigh et al. ([4]).

The representation of the motivating example process template is depicted in
Fig. 1. We use the Little-JIL process language ([2]) to show software processes

484 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

OrderProcess

CollectCustData

customerData

CreateOrder

order

customerData

AssociateBundleToFeature

order

billDBupdate
features

SetupIPService

FQDNspec

agent: Manager

order

ConfigCallAgent

features
customerData
FQDN

configOutcome
FQDN

agent: ServiceRepBots

loc: order
loc: customerData

loc: billDBupdate
loc: FQDN
loc: features
loc: preorderOutcome

out: customerData
agent: OrderMgtBots
in: customerData
out: order

agent: BillingSysBots
in: order
out: billDBupdate
out: features

agent: NetworkSvcBots
in: orderSpec
out: FQDNSpec
loc: IPaddress
loc: modemConfig

agent: CallAgentBots
in: features
in: customerData
out: configOutcome
in/out: FQDN

Fig. 1. Order process

in this paper. The visual representation of the Little-JIL is based on a functional
decomposition. The steps are depicted as rectangles with a step’s name above
the rectangle.

The steps’ interfaces include specification of an agent class (agent: prefix)1,
local parameters (loc: prefix), input parameters (in: prefix, and output parame-
ters (out: prefix). The data flow is depicted along the decomposition links: the
inscriptions near the arrow into a step contain input parameters and that near
the arrow out of a step contain output parameters. A complete process specifi-
cation also includes the resource model that specifies the agents available in the
environment, the artifacts specification, and the agents’ problem solver compo-
nents specification that define the transformations from input artifact formats
to output ones. The process program declares the agent classes for steps. The
actual agents are bound to steps during process execution, therefore it is possible
to run the same process template in different environments.

An example of a well-formedness condition for this telecommunications or-
dering process is the need to base voice communication service on a data com-
munication service. If the ordering process does not establish that a customer
ordering the voice communication also needs the data communication then the
process creates malformed artifacts that result in billing the customer for the
voice service that will not function. To avoid this scenario the executing soft-
ware process (including the template and functionality of the agents respon-
sible for performance of the steps) has to be shown to comply with the well-
formedness condition. Any differences and their possible causes must be found,
be they in the process template or agent functionality, and must be reported. Our
comparison approach suggests a rigorous and automated way to provide these
results.

1 An agent is an entity responsible for execution of a step.

Automatically Analyzing Software Processes: Experience Report 485

3 Steps in Analyzing and Comparing Processes

In this section we discuss the use of an analysis system to analyze and compare
the example processes. Figures 2 and 3 illustrate the steps required by the
analysis system illustrated in the Little-JIL.

The current implementation of the process focuses on an artifact-based analy-
sis and comparison of two software processes. The software processes are assumed
to have structured artifacts with predefined formats such that the processes spec-
ify transformations between the artifact formats.

The process of analysis and comparison shown in Fig. 2 is automated by a
toolset. The steps for process execution and trace analysis are completely au-
tomated. The rest of the steps such as creation of the base framework, process
modeling, comparison topics specification have to be executed by a user in a
systematic way by following guidelines. The toolset assists the user in executing
the non-automated steps. For instance, it provides the Artifact Meta-Format for
artifact base framework specification and an agent framework for process speci-
fication. The non-automated steps are provided with guidelines for a systematic
manual execution.

3.1 Artifact Ontology Specification

The analysis process starts with constructing an initial base framework (BF)
for the artifact section (step Construct initial BF). The base framework
denotes a problem domain specific framework for artifacts, software process de-
composition units, and process features that can be derived on their basis. The
base framework can be thought of as a classification schema or ontology that
provides guidelines for grouping comparable activities, artifacts, or features of

CmprByArtifacts

Process modeling Process execution

ModelProcess A ModelProcess B Run process A Run process B

Construct initial
BF

Formalize Analyze
traces

ModelA, ModelB

BF, MF,
AMF,
source desc.
of Proc A, B

Model A ModelB

ProcA, BF, MF ProcB, BF, MF

ModelA
ModelB

TraceA
TraceB

ModelA ModelB

AMF, Environment AMF, Environment
TraceA TraceBClassify

arifact
elements

Tag same
meaning
elements

modelInput

Obtain traces

Trace and Topics

AMF, Proc A, B

BF

Formalized Comparison Topics, TraceA, TraceB,

Comparison results
(sets of step/agent combinations

 per a comparison topic)

Formalized

Comparison Topics

Comparison
Topics, BF, AMF

Comparison Topics

Contribution measure

 ranked by contribution measure

Fig. 2. Steps in analysis and comparison

486 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

Analyze traces

Define artifact Define artifact Perform consistency
checking

Decide on termination
Analyze traces

TraceA

TraceB

ArtSetA1
ArtSetB1

Form.
Comp.
Topics

Subset of
Form Comp
Topics

ArtSetA1, ArtSetB1, Subset of Form. Comp. Topics,
Influence measure

Sets of step/agent combinations ranked

Termination
Decision

by influence measure(comparison results)

Input to the initial instance of Analyze traces and results
of the previous iteration

set A set B
Choose formalized
comparison topic

Fig. 3. Analyze traces

software processes from the same problem domain. Software processes are likely
to be in the same problem domain if their purpose and functionality overlap.

The step is decomposed into the Tag same meaning elements and Clas-
sify artifact elements substeps to be executed sequentially. This step has a
substantial subjective involvement of a human user. The BF can be constructed
either from an existing ontology or it is generalized from the artifact formats of
the analyzed processes. The goal is to identify the semantically overlapping por-
tions of the artifact formats and tag the semantically similar elements of those
formats. This is done in the Tag same meaning elements substep based on
the source descriptions of the processes Proc A and Proc B. The output of
this substep is a table of correspondence of artifact elements from the original
process descriptions and their common naming. The correspondence is needed
only between artifact elements in the overlapping portion of the semantics of ar-
tifacts. Such an overlapping is likely to exist in processes from the same problem
domain and with the same purpose.

In the case of our analysis system we used a common artifact meta-format
(AMF) and the artifact element naming conventions for tagging. Thus artifact
elements are classified according to the AMF (step Classify artifact elements)
and artifact elements with the same meaning are named the same in the process
models and artifacts of the same class. The Tag same meaning elements
substep precedes the Classify artifact elements since it is beneficial to reduce
the number of elements to be classified. This reduction is the result of giving the
same names to the elements with the same meaning, so the classification decision
is made only once for both same named elements from different processes. In our
example the BF corresponds to the formats of artifacts used by the telecommu-
nications process. The process’s authors at Telcordia have already specified the
artifact formats rigorously. Since the two analyzed processes use the same ar-
tifact formats the task of identifying common ontology (BF) is simplified. The
categories of the artifact elements map directly to the categories of the ontology.
To obtain the BF specification in our example we wrote every artifact template
from Telcordia’s source process specification in the AMF. Thus we obtained
BF specification for all categories in artifacts used by both analyzed versions of

Automatically Analyzing Software Processes: Experience Report 487

<Node>
<MetaComponentClass>

<Attribute attrClass="java.lang.String"
name="name"
value="customerData"/>

<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027"/>

<Attribute attrClass="java.lang.String"
name="customerPhoneNumber"

value="000-000-00-00"/>
<Attribute attrClass="java.lang.String"

name="defaultName"
value="defaultValue"/>

<Attribute attrClass="java.lang.String"
name="customerStreetAddress"

value=""/>
<Attribute attrClass="java.lang.String"

name="customerZipCode"
value="11111"/>

</MetaComponentClass>
</Node>

<Node>
<MetaLinkClass>

<Attribute attrClass="java.lang.String"
name="name"
value="association"/>

<Attribute attrClass="java.util.Hashtable"
name="children"
value="Customer1223027RequestsServiceReq8745"/>

<Attribute attrClass="java.lang.String"
name="type"
value="association"/>

</MetaLinkClass>
</Node>

Fig. 4. Example of BF specification

the process: customerData, order, billDBupdate, FQDN, FQDNSpec, features,
modemConfig, IPaddress, preorderOutcome, configOutcome. An example of BF
specification is shown in Fig. 4. This figure shows specification of BF artifact
categories customerData and association. The category specifications also indi-
cate their properties. The actual artifacts used by pre-ordering processes would
contain elements that map to these categories and that might be considered
their instances. A user would specify the BF categories manually using the Ar-
tifact Meta Format to describe the artifact BF categories found in the original
description of the analyzed or compared process.

3.2 Process Modeling

Once the artifact section of the BF is defined, the modeling of the processes in
the same executable process modeling formalism can proceed. The input to this
step includes the base framework (BF), process modeling formalism (MF), arti-
fact meta-format (AMF), and the source description of the analyzed processes
Proc A and Proc B. It is preferable to feed rigorous specifications of processes
elaborated to the level of manipulation of the lowest level decomposition units
of artifacts.

488 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

This step is further decomposed into modeling of the individual processes that
can proceed in parallel. This step may require substantial human involvement
but can be automated in the case if the source descriptions are rigorously defined
by building a translator from the formalism used in the source descriptions to
the common formalism used for analysis.

The expressiveness of the process formalisms can influence the analysis results
if they do not allow modeling of the artifact elements or steps that manipulate
them related to the comparison topics. The output of the modeling step consists
of the process models in the common modeling formalism (ModelA, ModelB).
In our implementation we use the Little-JIL as the common modeling formalism
for process analysis and comparison. Thus the modeling involves representation
of the functional decomposition of the process, specification of the process step
interfaces, specification of the artifact formats in the AMF, specification and
development of the agents to execute the steps, instrumentation of the agents
per a step kind, specification and development of the step-specific GUIs, and the
definition of the environment to be the same for both processes (the developed
agents are included into the environment).

The original Little-JIL has been extended to generalize the agent and instru-
mentation specification for individual problem domains. The user must take care
not to overspecify the agents beyond the elaboration of the lowest level activities
from the source processes. If the source processes assume certain common low
level activities then it is advisable to use the same implementation for the agents
from both processes. The extended Little-JIL agent architecture allows for reuse
of agents’ problem solving components. The Little-JIL artifact specification and
the agents must use the artifact formats specified in AMF and complying with
the naming conventions for the artifact elements with overlapping semantics.

In our implementation of the analysis system the user would specify the pro-
cess template in the Little-JIL using the visual editor. An example of a process
template we created is shown in Fig. 1. We created two process templates for
the analyzed processes.

The user would also specify the agents for the process template using Java
and the domain specific agent framework. The framework allows specification of
low level agent actions (operations) and then specifying the sets of actions that
agents must execute in response to incoming events. In our case the vast ma-
jority of events processed by agents are generated by the Little-JIL interpreter.
These events carry information about assignment of certain tasks to agents. A
task corresponds to an instantiation of process steps. Any task assigned to an
agent goes onto that agent’s agenda list. The agent framework simplifies the
specification of agents by providing a uniform way to specify actions and by pro-
viding a generalized way to instrument the process. Every time a certain agent
executes an action the information about the action’s result is written to the ar-
tifact trace. The user only has to specify an action without explicit specification
of the instrumentation code.

The analysis system is limited by the level of elaboration of the source pro-
cesses. If the source process does not describe the activities at the level of ma-

Automatically Analyzing Software Processes: Experience Report 489

...
public synchronized void

started(AgendaItemEvent evt) {
AgendaItem item = evt.getAgendaItem();
...

if (itemName.equals(ResetModemStepName)) {
...
GetFQDN getFQDN = new GetFQDN();
ArchGraph[] args = {modemConfig};
ArchGraph fqdn = getFQDN.execute(args, agentStepID);
item.complete();
...

}
}

Fig. 5. Example of specification of NetworkSvcBots agent’s problem solver

nipulation of artifact elements then this method is unlikely to be applicable. The
generalized instrumentation components simplify the user’s task in the process
modeling stage. Nevertheless, the user must make subjective decisions regard-
ing continuity of the artifact concerns. The user must decide on the kind of
operation a given agent performs on a given artifact element when performing
a certain step (Operations = (Create, Derive, Retain, Modify)). Thus
every agent, when executing, would add an entry to the annotation lists of the
output artifact elements explaining the operation it performed on that element
and noting agent and step IDs and the timestamp. Also, the user must decide
which output artifact elements are going to inherit the annotation lists from the
input artifact elements. It is this decision that ensures the continuity of arti-
fact concern traces. It is likely that specifics of a given problem domain might
simplify this task. For instance, in logistics processes there is often a limited, pre-
defined set of artifact formats with predefined and explicit relationships between
elements from artifacts of different stages of a process.

Actions comprise the problem solving component of an agent. Part of the
problem solver for the NetworkSvcBots agent is shown in Fig. 5 as an example.
In this figure the started method is invoked in response to an event signifying the
start of a certain task assigned to an agent. If the task’s name is ResetModem-
StepName then the agent will perform the GetFQDN action among others. The
example shows the generalization of action specification. An action is instanti-
ated and then the action is executed when it is passed the input artifacts in a
graph-based Artifact Meta-Format (implemented as ArchGraph). Having a set
of domain specific actions it is fairly easy to create agents using this framework.
The user would create or reuse a set of actions specific to the problem domain
of analyzed processes so that to specify agents. Thus agents for the two versions
of the pre-ordering process reused a number of actions.

First we wrote a set of actions in Java for the agents of the analyzed processes.
The actions used the artifact categories specified in the AMF to represent manip-
ulation of artifacts. For instance, the getFQDN action manipulates the artifact
BF category FQDN. Then we wrote the automated agents that used the actions.
Our analysis system also allows for specification of human-assisting and human-
modeling agents by providing a framework for step-specific GUI specification.

490 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

For instance, the agents we specified for the analyzed process in Fig. 1 are Ser-
viceRepBots, OrderMgtBots, BillingSysBots, NetworkSvcBots, CallAgentBots.

3.3 Process Execution

The next step of the analysis system, Process execution, requires execution of
the so modeled and instrumented processes (ModelA, ModelB) on the same
input (modelInput). The result of such an execution is a set of two traces of
artifacts whose elements are annotated with a list of operations, agents, and steps
that were performed on them. The annotation lists in an artifact would cover the
trace until this artifact is produced. Thus product artifacts would contain the
most comprehensive annotation lists. The annotations of artifact elements are
partially ordered by timestamps by construction via the instrumentation code
that is run during the process execution. Thus every artifact element relevant to
the comparison topic2 must have a history of all manipulations done to it in the
annotation list. This step outputs the traces of artifacts with annotation lists
(TraceA, TraceB). The traces follow the execution paths through the process
models ModelA, ModelB that correspond to the same input modelInput
and hence are considered comparable.

The user obtains the artifact traces automatically by starting the Little-JIL
environment and running a process specification with the environment contain-
ing the domain specific agents. Since the artifact ontology and consequently the
artifact formats used by the agents of the processes are the same then it is pos-
sible to conduct a meaningful analysis and comparison of the artifacts. In our
example we ran the analyzed processes and obtained two traces of annotated
artifacts specified in the AMF. Unlike the BF specification in Fig. 4 the artifacts
contain the actual elements corresponding to the BF categories. An example of
customerData artifact specification is shown in Fig. 6. It was produced automat-
ically by running the process.

3.4 Comparison Topic Specification

The step for definition and formalization of comparison topics (Formalize Com-
parison Topics step) can be executed after the initial BF is constructed and in
parallel with the Process modeling and Process execution. This is reflected
by auxiliary decomposition steps Trace and Topics and Obtain traces. This
step implies specification of comparison topics in terms of first order logic formu-
las operating on the artifact elements with common naming conventions. This
step outputs Formalized Comparison Topics as a set of first order logic for-
mulas. In the case of our example the comparison topic is whether both processes
fulfill the requirement that a voice service must rely on an existing data service
in the customer’s service configuration. This requirement is reflected in a rela-
tionship from the voice service to the data service in the billDPupdate artifact.
2 The one that needs to be checked in order to determine if an artifact complies with

a certain comparison topic.

Automatically Analyzing Software Processes: Experience Report 491

...
<Node>

<MetaComponentInstance>
<Attribute attrClass="graph.model.ComponentClass"

name="class" value="customerData"/>
<Attribute attrClass="java.lang.String"

name="name" value="Customer1223027"/>
<Attribute attrClass="java.lang.String"

name="customerPhoneNumber"
value="617-234-92-32"/>

<Attribute attrClass="java.lang.String"
name="customerName" value="Edward Jackson"/>

<Attribute attrClass="java.lang.String"
name="customerStreetAddress"
value="962 Hill Dr."/>

<Attribute attrClass="java.lang.String"
name="customerZipCode" value="01403"/>

</MetaComponentInstance>
</Node>

<Node>
<MetaLinkInstance>
<Attribute attrClass="java.lang.String"

name="class" value="association"/>
<Attribute attrClass=

"graph.model.ComponentInstance"
name="source" value="Customer1223027"/>

<Attribute attrClass=
"graph.model.ComponentInstance"

name="dest" value="ServiceReq8745"/>
</MetaLinkInstance>

</Node>
...

Fig. 6. customerData artifact in graph-based AMF

One version of the process checks for the data service and establishes the nec-
essary relation. The other version omits this action and produces a malformed
artifact which would lead to a failure of the service request set-up in a deployed
telecommunications process. This comparison topic is formalized as a first order
logic rule in the Xlinkit rule specification language ([3]). The formalized com-
parison topic is phrased as ∀vs ∈ voiceservices ∃link ∈ associations
s.t. link.source = vs ∧ link.destination = ds, ds ∈ dataservices. The
Xlinkit rule specification we wrote for the comparison topic in our example is
shown in Fig. 7.

3.5 Artifact Trace Analysis

Next, the analysis process calls for analysis of artifact traces TraceA, TraceB
by way of consistency checking to the formalized comparison topics. This analysis
is done in the Analyze traces step. The step’s input consists of Formalized
Comparison Topics and annotated artifact traces TraceA, TraceB.

The step’s output forms the results of the artifact-based comparison - consis-
tency links between formalized comparison topics and process artifact elements
and sets of step/agent combinations ranked by the contribution measure per a
comparison topic. One of the main outcomes of such an analysis is comparison of
consistency links from the same comparison topic to artifact elements in different
processes. The consistency links help highlight whether:

492 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

...
<consistencyrule id="wellform1">

<header>
<description>

Voice service should be associated to data service
</description>

</header>
<forall var="vs" in="$voiceservices">

<exists var="l" in="$associations">
<and>

<equal op1="$vs/@name"
op2="$l/@source"/>
<exists var="ds" in="$dataservices">

<equal op1="$ds/@name"
op2="$l/@dest"/>

</exists>
</and>

</exists>
</forall>

</consistencyrule>
</consistencyruleset>

Fig. 7. Comparison topic example

– both comparison processes comply with a certain comparison topic,
– both comparison processes violate a certain comparison topic,
– one process complies with a certain comparison topic while the other violates

it.

The annotation lists help point out the steps and agents that are responsible for
the analysis outcome. In addition, it is very likely that the sets of step/agent com-
binations from different traces (processes) corresponding to the same comparison
topic are comparable. Such pairs of sets can give insights about the functional
similarities or differences between processes and aid the user in making a more
objective process comparison.

Choice of initial artifact sets. The set of product artifacts quite often is
most useful to be used as the initial artifact set because they contain the most
comprehensive annotation lists and they are likely to contain all the artifact
elements that need to be checked for comparison topics. Another advantage to
this choice of the initial set is high likelihood that the product artifacts are
explicitly defined in the process source description. To reduce the amount of
computation it is advisable to choose artifacts that are known to be relevant
for the chosen comparison topics. Thus, the initial artifact sets ArtSetA1 and
ArtSetB1 are defined by the steps Define artifact set A and Define artifact
set B. At this point the user can use the developed toolset to specify the artifact
sets to be analyzed from the lists of artifacts in the traces. The toolset visualizes
the artifacts as graphs based on their Artifact Meta-Format specification. A
general layout of the toolset’s interface is shown in Fig. 8. In our example,
using the toolset’s interface, we chose the artifact trace produce by one analyzed
processes as ArtSetA1 and the artifact trace produced by the other analyzed
process as ArtSetB1.

Automatically Analyzing Software Processes: Experience Report 493

Specify art set1 Specify art set2 Specify topics

Analyze

Analysis

Area for visualization of artifacts and analysis results

Fig. 8. Process analysis toolset GUI

Choice of comparison topics. Once the artifact sets are chosen, the user
should choose the comparison topic to be used for consistency checking. This is
done in the Choose formalized comparison topic step. The process analysis
toolset also lets the user to choose the topics from a list of files with specification
such as in Fig. 7.

Checking of artifacts’ consistency to formalized comparison topics.
Once the initial artifact sets for both processes and the formalized comparison
topic are chosen, the comparison process runs a consistency checker that pro-
duces consistency links between the formalized comparison topics and artifact
elements of the analyzed processes. The current implementation of the compar-
ison process uses the Xlinkit consistency checker by Christian Nentwich et al.
([3], [10]). Next, the user analyzes the two sets of artifact elements that have
consistency links to the same formalized comparison topics, but belong to dif-
ferent processes. By using the toolset, the user clicks the “Analyze” button and
receives results as sets of consistency links between the specified comparison top-
ics and artifact elements. The toolset also shows the steps and agents responsible
for the consistencies or inconsistencies based on the information collected in the
annotation lists of the traces. An example of analysis results is shown in Fig. 9.
In the figure the billDBupdate artifact is shown as a graph. The rule wellform1
corresponds to the comparison topic specified in Fig. 7. It stipulates that any
voice service must be based on a data service. In this case the consistency link
from the rule’s representation points to the artifact element responsible for the
complience (Voice service). The toolset also points out that the step Associate
Bundle to Feature and agent BillingSysBots are responsible for the com-
plience.

In our example, after we chose the artifact sets and chose the file with the
comparison topic, we pressed the “Analyze” button and received results repre-

494 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

Bundle User account

Package

Call waiting feature

Voice service

Data service

wellform1 rule

Due to "Associate Bundle to Feature" step by BillingSysBots
agent

Fig. 9. Example of analysis results

sentation that indicated the consistency link between the wellformed1 topic and
voice service artifact element of the billDBupdate artifact for the first process.
The toolset also showed it was due to the way agent BillingSysBots performed
step Associate Bundle to Feature. There was no consistency link from the well-
formed1 topic to elements in the artifacts of the traces of the other process. Thus
the two processes were functionally different due to actions the BillingSysBots
agent performed in step Associate Bundle to Feature.

4 Selected Comparison with Other Process Analysis
Approaches

In their earlier work on this topic, Xiping Song and Leon Osterweil proposed
techniques and structures for a disciplined and rigorous software process compar-
ison, and demonstrated their use by carrying out classifications and comparisons
of processes drawn from the narrow and specialized domain of software design
processes [12], [13]. These comparisons were guided by a formal comparison pro-
cess, Comparison of Design Methods (CDM), and were performed according to
a fixed base framework. The base framework can be thought of as a classification
schema and provides guidelines for grouping comparable activities, artifacts, and
features.

The need to compare modeled processes according to a fixed base framework
was also recognized somewhat earlier by Sjaak Brinkkemper et al. ([8]). However,
their comparison had no guidelines as explicit and formal as the CDM. The BF
suggested in ([8]) has a flat structure as well. The content and construction
method are different from the BF in our approach. The BF classes in ([8]) are
constructed on the basis of the elements of the process and artifact decomposition
units of the compared processes.

Automatically Analyzing Software Processes: Experience Report 495

Analysis of in-place software processes and measurement of the correspon-
dence of a particular process execution to its model have similar goals with
process comparison in that they attempt to evaluate processes. Some fairly re-
cent work in these directions has been done by Jonathan Cook and Alexander
Wolf ([5], [6], [7]).

While the above mentioned work by Alexander Wolf, David Rosenblum,
Jonathan Cook is a kind of retrospective analysis just as ours is, the kinds
of properties investigated by them focused on real-time performance of process
activities.

One of the more recent approaches in process comparison is by Abrahamsson
et al. [1]. The authors present comparison of Agile processes. They use an ad-hoc
comparison method for comparing processes by high level topics. The focus of
their comparison is on organizational and activity sequencing issues rather than
on the functional differences. This is primarily due to the fact that Agile software
development processes (such as Extreme Programming) omit any description of
the guidelines for artifact transformation by their activities. Instead they focus
on organizational and activity sequencing issues.

5 Lessons Learned and Future Directions

The lessons learned from using our process analysis system to compare and
analyze the two versions of the telecommunications logistics processes center
around the artifact focus, the substantial amount of preparation, and the utility
and advantages of the use of the system.

Artifact Focus. The focus on artifacts produced by processes is a very useful
one. First, it represents the raison d’etre of processes: the production of processes
and services on the basis of various input artifacts. Second, it avoids the tarpit of
the widely varying and differing ways that one might accomplish the same tasks.
The focus is on the results of the tasks and activities, which parts of the process
affect them in which ways, and whether they have certain desired properties or
not. And finally, while the ways in which artifacts may be produced vary widely,
the artifacts themselves in the same domain are far more likely to be much less
variable and far less the subject of disagreement.

Initially, Substantial Preparation. Process analysis and comparisons do not
come for free. There is, at least initially, substantial preparation to set the stage
for the analysis system. Currently very few processes are sufficiently specified
– in fact, this posed a significant problem in our research: there were very few
process descriptions in use that we could find that were defined in enough detail
to perform our experiments with our analysis system. However, if we are to
mature as an engineering discipline and move out the current craft stage, this
will have to change.

While there is substantial initial preparation, it should be noted that this
preparation serves in a variety of ways for subsequent analyses and comparisons
or processes in the same domain. For example, once the processes have been

496 R.M. Podorozhny, D.E. Perry, and L.J. Osterweil

formally specified, they may be used in a variety of comparisons and analyses.
Once the base framework has been established for a given domain, it can basically
serve for the analyses and comparisons of other related processes. The same is
true for the ontology and well-formedness conditions. They are substantially
applicable to other work in the same process domain.

Advantages. First, the most obvious advantage is the level of automation pro-
vided by the process analysis system. Once the initial preparation has been done,
the rest of the analysis is done automatically depending on what input is pro-
vided to the system. This is a significant improvement in the state of the art for
process comparisons and analyses.

Second, the various analyses and comparisons are repeatable. The points of
variability are well defined and have been determined in the preparation. The
only remaining point of variability is that where human responses are required
in the execution of the processes and that input is controllable as part of the
system execution.

And finally, as understanding of the processes grows, the various automated
analyses and comparisons can be extended and evolved in various ways to provide
deeper knowledge of the processes under consideration.

Limits. Because of the artifact focus, little has been done at this point to support
various useful kinds of process performance analysis. For example, we currently
do not support time and cost analyses for process - i.e. comparisons of race and
lapse times of processes, nor the amount of effort involved in process execution.

References

1. P. Abrahamsson, J. Warsta, M. T. Siponen, and J. Ronkainen. New Directions on
Agile Methods: A Comparative Analysis. In Proceedings of the 25th International
Conference on Software Engineering (ICSE 2003), Portland, USA, pages 244–254,
May 2003.

2. A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton, Jr., and
A. Wise. Little-JIL/Juliette: A Process Definition Language and Interpreter. In
Proceedings of the 22nd International Conference on Software Engineering (ICSE
2000), Limerick, Ireland, pages 754–757, June 2000.

3. C.Nentwich, L.Capra, W.Emmerich, and A.Finkelstein. xlinkit: a consistency
checking and smart link generation service. In ACM Transactions on Internet
Technology, 2(2), pages 151–185, May 2002.

4. J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil. Verifying Properties of Process
Definitions. In Proceedings of the ACM Sigsoft 2000 International Symposium on
Software Testing and Analysis (ISSTA 2000), pages 96–101. Portland, OR, August
2000.

5. J. E. Cook, L. G. Votta, and A. L. Wolf. Cost-Effective Analysis of In-Place
Software Processes. IEEE Transactions on Software Engineering, SE-24(8):650–
663, August 1998.

6. J. E. Cook and A. L. Wolf. Discovering Models of Software Processes from
Event-Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, July 1998.

Automatically Analyzing Software Processes: Experience Report 497

7. J. E. Cook and A. L. Wolf. Software Process Validation: Quantitatively Measuring
the Correspondence of a Process to a Model. ACM Transactions on Software
Engineering and Methodology, 8(2):147–176, April 1999.

8. S. B. Geert van den Goor, Shuguang Hong. A Comparison of Six Object-Oriented
Analysis and Design Methods. Technical report, University of Twente, Enschede,
the Netherlands, 1992.

9. T. Kistler and M. Franz. Continuous Program Optimization: Design and Evalua-
tion. IEEE Transactions on Computers, 50(6):549–566, June 2001.

10. C. Nentwich, W. Emmerich, and A. Finkelstein. Static Consistency Checking
for Distributed Specifications. In Proceedings of Automated Software Engineer-
ing 2001, San Diego, USA, 2001.

11. L. J. Osterweil. Software Processes are Software Too. In Proceedings of the
Ninth International Conference of Software Engineering, pages 2–13, Monterey
CA, March 1987.

12. X. Song and L. J. Osterweil. Engineering Software Design Processes to Guide
Process Execution,. Technical Report TR–94–23, University of Massachusetts,
Computer Science Department, Amherst, MA, February 1994. Appendix accepted
and published in Preprints of the Eighth International Software Proces Workshop.

13. X. Song and L. J. Osterweil. Experience with an approach to comparing software
design methodologies. IEEE Transactions on Software Engineering, 20(5):364–384,
May 1994.

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 498 – 506, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Status of SPI Activities in Japanese Software:
A View from JASPIC

Kouichi Sugahara1, Hideto Ogasawara2, Teruyuki Aoyama3,
and Tetsuya Higashi4

1 FUJIFILM SOFTWARE CO. LTD., 1-2-2, Manpukuji, Asao-ku,
Kawasaki 215-0004, Japan

ksugahar@ffs.fujifilm.co.jp
2 TOSHIBA CORPORATION, 1, Komukai-Toshiba-cho, Saiwai-ku, Kawasaki,

212-8582, Japan
hideto.ogasawara@toshiba.co.jp

3 Fuji Xerox Co. Ltd., KSP/R&D Business Park Bldg. 3-2-1 Sakado,
Takatsu-ku, Kawasaki-shi, Kanagawa 213-8508, Japan

Teruyuki.Aoyama@fujixerox.co.jp
4 TOSHIBA MEDICAL SYSTEMS CORPORATION,

Ultrasound Systems Division
1385, Shimoishigami, Otawara-Shi, Tochigi 324-8550, Japan

tetsuya.higashi@toshiba.co.jp

Abstract. For the effective promotion of software process improvement (SPI)
activities in the word, it is very important to establish a community beyond
various social/organizational barriers. Like the auto-mobiles industry, to share
various knowledge/experiences is to evolve one’s own industry. To promote
SPI activities in Japan, we established Japan SPI Consortium (JASPIC) in Oc-
tober 2000. In this paper, we describe the status of SPI practice in Japan
through our experience in various activities in JASPIC, analyze current issues
from software engineering point of view, and make some proposals for future
action.

1 Introduction

A number of software process evaluation frameworks, such as CMM, ISO/IEC
15504, etc., have been proposed and being used in many software organizations all
over the world. Also, many companies have installed a functional unit called SEPG in
their organization toward software process improvement. However, still there are
number of companies who can not proceed step forward because of the shortage of
human resources and/or the lack of sufficient technical/managerial knowledge neces-
sary for SPI.

To overcome these difficulties, it is important for SEPG staff in various companies
to have opportunity for exchanging information beyond the boundary of organizations.
Japan SPI Consortium (JASPIC) was established as a social mechanism to promote this
kind of mutual exchange among SEPG people in Japanese software industry.

Status of SPI Activities in Japanese Software: A View from JASPIC 499

2 Birth of JASPIC

The keyword “Process Improvement” became popular in Japanese software commu-
nity since the translation of Watts Humphrey’s book “Managing the Software Proc-
ess” was published in 1991 [3]. Around that time, many software companies were
trying very hard to get ISO9000s certification, but some engineers, people like SPIN
(Special Interest Group on Process) members in SEA (Software Engineers Associa-
tion) have already moved their concern to CMM.

SEA is a volunteer organization established in December 1985 to provide a "place
for software engineers or researchers, who are working in different environments such
as software houses, computer manufacturers, computing service bureaus, universities,
and research laboratories, to exchange their technical experience or knowledge freely
beyond the barriers of existing social organizations. It has been conducted various
activities to promote software engineering practice. One of the major technical events
in SEA is annual Software Symposium (SS). SEA-SPIN was kicked off at the BOF
session in SS-1996. In 1998, some of SEA-SPIN members volunteered to make offi-
cial Japanese translation of SW-CMM Technical Reports TR-24 & 25 responding a
request from CMU/SEI. They published the result open to public via official web
page of SEA.

Then SEI released CMMI. Soon, strong needs for Japanese translations of various
technical documents were emerged from the industry. But the large volume of transla-
tion task seems to be far beyond the work of small volunteer group. So, a new non-
profit organization JASPIC was established in October 2000 as a joint effort of sev-
eral SPI-sensitive companies.

3 Activities in JASPIC

The fundamental operating policy of JASPIC is “grass-root” or “bottom-up”. The
major activity in early stage (2000 - 2001) was to support translation work of CMMI
documents. After that work was finished, a number of special interested groups for
discussion and information exchange have been organized as the major function of
JASPIC and is active until now.

Now the number of member companies of JASPIC grew up to about 30, including
almost all of major software-oriented organizations. About the half of them are em-
bedded systems manufacturers and the other half are software houses doing enterprise
systems development and maintenance.

The regular activities of JASPIC are: (1) Bi-monthly general meeting, (2) Annual
general assembly meeting, (3) Special interest groups (SIG) and (4) Annual SEPG
Japan Conference (since 2003).

3.1 Theme of Special Interest Groups in JASPIC

SIG in JASPIC is organized in bottom-up style based upon grass-root proposal from
members. Now, the following 10 SIGs are active:

500 K. Sugahara et al.

(1) Practical Know-How SIG
Exchange information got from SPI activities in each company.

(2) IDEAL SIG
Discuss effective promotion style for each phase in IDEAL model.

(3) Change Management SIG
Study how to deal with process change.

(4) Development Environment/Tool SIG
Study of various open-source tools and use of them in process support envi-
ronment.

(5) Statistical Process Control SIG
Study statistical analysis and quantitative management in CMM level 4.

(6) Cyber Coaching SIG
How to establish effective mechanism for externalization of SPI knowledge

(7) PSP/TSP SIG
Intensive study of PSP/TSP.

(8) Core Competent Team SIG
Discuss how to introduce PSP/TSP into the company.

(9) People Process SIG
Discuss education/training issues of SPI.

(10) Future SIG
Discuss future vision for JASPIC and prepare long-range action plan.

These SIGs represent what kind of SPI-related issues are now considered important
in Japanese software industry.

3.2 Presentation Topics in SEPG Japan

JASPIC conducted Annual SEPG Japan Conference twice (2003 and 2004) success-
fully. There were about 40 presentations in each year, and the number of participants
was about 500 (fairly large comparing similar events in Japan).

Figure 1 shows the classification of presentation topics according to CMMI process
areas. And, Figure 2 shows the ration of CMM or CMMI related topics in the presen-
tations.

At the 1st Conference in 2003, the number of non-CMM presentations to discuss
SPI in general was little more than those on CMM process areas. Maybe because of
SPPG2003 was the first conference of this kind in Japan. At the 2nd conference in
2004, the number of CMM-related presentations became majority (about 2/3). This
trend shows the growth of practical interest about CMM. In the case of all presenta-
tions, many presenters discussed about organizational (OPF, OPD, non-CMM, etc.)
and/or training issues in SPI activities.

3.3 SPI Promotion Examples Based on the Activity Results of JASPIC

After establishment of JASPIC, the chance of information exchange about SPI has
increased. Moreover, various work products from SIG activities are being developed.
In this section, we show the SPI promotion examples based on the activity results of
JASPIC.

Status of SPI Activities in Japanese Software: A View from JASPIC 501

Fig. 1. Classification of Presentation Topics according to CMMI Process Areas

Fig. 2. Ration of CMM or CMMI Related Topics

3.3.1 Change of a Training Style
Conventionally, training such as development process or software engineering was
performed in class room style in Japan. Training is very important to promote SPI ac-
tivities. However, training of class room style is not necessarily effective and efficient.

In SEPG Japan, training is popular topic. In some presentations, there was a pro-
posal that it was better to change a training style into workshop from classroom for
effective training implementation. Many participants were received the stimulus from
these presentations. After SEPG Japan, some practical results were reported at Bi-
monthly general meeting.

3.3.2 Application of SPC SIG’s Products to Measurement Process
TOSHIBA is one of the JASPIC members, has been promoted SPI activities since
2000 [1].

SEPG leader training course is one of activity to accelerate SPI in TOSHIBA. The
time schedule of this course is shown in Figure 3. The purpose of this course, which
involves lectures and homework, is to provide the trainees with a detailed understand-
ing of each phase of IDEAL, a basic understanding of CMM, and knowledge of tech-
niques for promoting SPI. IDEAL consists of 5 phases, namely Initiating, Diag-
nosing, Establishing, Acting, and Learning.

Statistical Process Control SIG developed some materials for establishing meas-
urement process. These materials are being used into metrics module and SW-CMM
Level4 and Level5 module in this training course.

502 K. Sugahara et al.

Fig. 3. Time schedule of the SEPG leader training course

4 Consideration

In the previous section, we have described about the SPI activities around JASPIC.
Hereafter, we will do overall consideration and analysis about the status of SPI prac-
tice in Japan based upon software engineering point of view.

4.1 History of Software Engineering in Japan

In this section, we summarize the history of software engineering in Japan especially
about quality management aspects of the technology [1] [2].

4.1.1 Before 1980s
In this period, the major concern in software industry was quality assurance of large
application systems like banking, railroad seat reservation systems, etc. The major
players were mainframe computer manufactures. They have applied their know-how
accumulated in quality management in hardware manufacturing into software devel-
opment. The result was very much successful and known as world famous “software
factory system”.

Also, in this period, QC circle approach, which was well known in hardware manu-
facturing area, was introduced into software field. It was rather easy to incorporate
various support tools in software development environments because each manufac-
turer was using their own operating systems as the basis of environment. Many crea-
tive engineers invented their own software quality tools or management style and
practiced in their projects.

4.1.2 1980s
In this period, IT industry’s major concern was the “expansion of a scale”, because of
high-speed growth of Japanese economy. Many large application systems like 3rd
generation banking systems were developed, and a large number of engineers from
software houses were involved into these projects under Japanese style project sub-
contracting mechanism.

Status of SPI Activities in Japanese Software: A View from JASPIC 503

In this situation, it was necessary for system integrators (main-framers) to train
subcontractors about their system for project management and quality control. For
this purpose, there ware intensive effort of systematizing quality control and assur-
ance methods. The representative examples were “SWQC” of NEC, “Ayumi System”
of Fujitsu, etc. NEC’s approach was an example of software design improvement
system all over the organization different from traditional hardware manufacturing
field. Fujitsu’s system was a mechanism for transferring main-framer’s software qual-
ity management approach into software houses in subcontracting scheme.

This period can be summarized as the glorious age of Japanese style software qual-
ity management. Generally speaking, technology change was rather slow; OJT (On
the Job Training) of quality management was successful in many organizations.

4.1.3 1990s
From late 1980s, a rapid trend toward open systems has started. Also, globalization of
world economy brought Japanese software vendors into fierce international competi-
tion in the international marketplace. Big and long-range projects have disappeared.
Many open system development project were small in size and development cycle
was very short. Also, style of software business was sifted from product-oriented one
to service-oriented. Traditional quality management style succeeded in the domestic
market became rather out of date in this new situation and resulted lot of confusion in
project management and also in training.

At the same time, International standard ISO9001 has come out. Many companies
started to get ISO certification for competition in the international marketplace. Also,
other new framework like CMM, Six Sigma, etc. has come in. Many software compa-
nies who did not have strong technical identity rushed into certification racing. As a
result, SPI activities in field projects were slowed down.

4.1.4 2000s
Still the general trend in the industry is looking for the new ideas imported from over-
seas. But other voices for the needs of re-evaluating the strength of Japanese style
quality management became louder and louder. Some people are indicating needs to
establish new role of Japan in the international software engineering community.

4.2 SPI in Embedded Software Development

One of the uniqueness of Japanese IT industry is the strength in the embedded system
product manufacturing. In the past, importance of software components in these prod-
ucts was rather small comparing with hardware parts. Embedded software compo-
nents were developed in rather ad hoc style.

But the size and function of embedded products has been increased rapidly. For ex-
ample, in the case of high-function mobile telephone, the size of embedded software
is several million steps. Nowadays, software development project teams consist of
several hundreds engineers, and have a number of management layers.

One reason why many embedded system manufacturers joined JASPIC is that they
were not accustomed to this kind of large-scale software development and wants to
transfer quality/project management know-how from other members, especially from
software houses working in other industrial sectors. Current issues in embedded soft-
ware development are:

504 K. Sugahara et al.

- How to coordinate hardware development unit with software development unit
- How to deal with rapid growth of software size and shortening of project cycle
- How to manage large scale development project

From now on, embedded software will become more and more important along
with the penetration of a variety of products into the various aspects of society like
automobiles, home electric appliances, mobile terminals, etc. Japan has been leading
international market in some of these fields. In the future, it will be a unique role of
Japan to make contribution to the world by combining its high quality hardware manu-
facturing process with new style of software quality/project management method.

4.3 Weakness of University Education

From industrial viewpoint, current university education of software engineering is
insufficient, especially in terms of quality/project management. It is because of the
large gap between academia and industry. Organization like SEA or JASPIC has been
tried to narrow this gap, but still far way from completing its purpose. One other diffi-
cult social issue is the barrier of human resource exchange between two communities.

4.4 Status of SPI in Japan

The scheme of current scheme for SPI: The third party provides a process framework
and development team execute that process, looks like effective at a first glance. But
the failure of ISO9001 indicates that if developers did not have the ownership the
process will not be used actually.

Following table shows the status of SPI activity in Japan based upon historical
summary of software engineering and or experience in JASPIC. Table 1 shows the
historical trends of SPI in Japan.

Table 1. Historical trends of SPI in Japan

Item 1980s 1990s 2000s
Process Owner Developer Special Staff SEPG

 (or Developer)
Method of proc-
ess Construction

Documentation
based upon
Experience

Given Model Documentation
based upon Model

Training OJT Classroom Classroom and
Workshop

Important Point - Quality &
 Productivity
- Personal Training

- Accordance with
Model

- QCD
- Skill development

In the period from late 1990s to early 2000s, many companies just tried hard to get
certification of ISO9001 or to achieve CMM levels. But, presentations in SEPG Japan
indicate that this kind of miss understanding of models is gradually disappearing.

After entering 2000s, QCD requirement for software projects became tighter and
tighter. Also, globalization of development was accelerated in terms of outsourcing to

Status of SPI Activities in Japanese Software: A View from JASPIC 505

India or China. Under this situation, many software companies became more sensitive
about balance of QCD in their development process, and sharpening their core skills
for global competition.

4.5 SPI in Future

JASPIC member companies have been very eager to construct a knowledge-sharing
community beyond the organizational barrier. They all know that it is necessary to
rely on community power for solving various problems in SPI.

Usually, most of requirements and functions (user interfaces) of software system to
be developed are given by customer. Software developers can only show their creativ-
ity in the process of implementing these requirements and functions as a real system.
Fig 4 is the conceptual diagram of software development process.

Requirements

Functions (UI)

Given by Customer

Tool

Human
Management

technique

Engineering
technique

Process

Procedure

Requirements

Functions (UI)

Given by Customer

Tool

Human
Management

technique

Engineering
technique

Process

Procedure

Fig. 4. Conceptual Diagram of Software Development Process

Recently, many companies are sensitive about information disclosure. Of course,
we must be careful about information given from customers. But mutual exchange of
process-related in-house information through mechanism is important and very useful
for the development of software industry.

In JASPIC, member companies are sharing common issues in software process and
jointly trying to solve problems. Rapid growth of the number of membership companies
indicates that this open-process concept is accepted in Japanese software industry.

21century is the age of software. We should continue software process improve-
ment activity to encourage software developers. For that purpose, it is needed to pro-
mote information exchange beyond various social/organizational barriers. JAPSIC is
a test case to implement such a mechanism.

5 Summary

We have described short history of activity of JASPIC, and made an analytical con-
sideration about the status of SPI in Japan. Unique character of Software Process

506 K. Sugahara et al.

Improvement in Japan is that it is a collection of bottom-up cooperation among soft-
ware engineers beyond the organizational barriers in which they are working. JASPIC
is considered as a mechanism to promote this kind of mutual knowledge exchange.
We hope to enlarge this movement into international domain in future.

Acknowledgements

The sustained cooperation with Mr. Kouichi Kishida, SRA-KTL Inc., Mr. Yukihiko
Akasaka, NTT Data Corp., Mr. Takamasa Nara, Hitachi System & Services, Ltd., and
Mr. Kouji Kondo, Sony Corp. has significantly influenced many views and details of
this paper. Many fruitful discussions and debates with them are very much acknowl-
edged and appreciated.

References

1. Hideto Ogasawara et al, "Evolution of Software Process Improvement Activities in a Large-
Scale Organization”, Proceedings, CONQUEST (2004) 213-220

2. Michael A. Cusumano, “Factory Concepts and Practices in Software Development”, IEEE
Computer, January-March (1991) 3-32

3. Watts S. Humphrey. “Managing the Software Process”, SEI SEROES IN SOFTWARE
ENGINEERING, Addison-Wesley (1989)

M. Li, B. Boehm, and L.J. Osterweil (Eds.): SPW 2005, LNCS 3840, pp. 507 – 520, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Survey of CMM/CMMI Implementation in China

Zhanchun Wu 1,2, David Christensen3,
Mingshu Li1,4, and Qing Wang1

1 Laboratory for Internet Software Technologies, Institute of Software,
The Chinese Academy of Sciences, Beijing 100080, China

2 Graduate School of Chinese Academy of Sciences, Beijing 100039, China
{wzchun, wq}@itechs.iscas.ac.cn, mingshu@admin.iscas.ac.cn

http://www.cnsqa.com
3 One Market Ltd. Co, P.O. Box 58004, Whitby, Wellington, New Zealand

david_c@onemarket.co.nz
http://www.spiregister.com

4 Key Laboratory for Computer Science, The Chinese Academy of Sciences,
Beijing 100080, China

Abstract. Since 1999, the Chinese software industry has been using
CMM/CMMI to improve software process. By November, 2004, more that 180
appraisals have been conducted. But the number of CMM/CMMI users is fairly
low compared to the whole Chinese software industry. In addition, the growth
rate of appraisal numbers has fallen during 2004. Limited research has been
done to find out the obstacles for the wide-usage of CMM/CMMI in China. In
this research, by investigating most of the organizations who have been
appraised, reasons, success factors and benefits of CMM/CMMI
implementation are identified, problems which negatively impact the
CMM/CMMI usage are analyzed. Recommendations are made to the Chinese
software industry and government to solve those problems, which could help
those who want to or are using CMM/CMMI.

1 Introduction

In 1993, the Software Engineering Institute (SEI) released the Capability Maturity
Model (CMM)1 V1.1 with five staged maturity levels as a means to both appraise
maturity level and guide process improvement effort for software organizations [1].
This model has since been widely accepted around the world, especially in India
where the CMM helped many software companies to grow [2]. By August 2004, 3360
appraisals had been conducted for 2561 organizations worldwide, and more than half
of the appraisals have been conducted outside the United States [3]. In 2004, the
Capability Maturity Model Integration (CMMI) which integrated CMM for many
disciplines replaces the CMM. The two CMMI representations (staged and continuous
representation) provide more flexibility for process improvement [4].

1 CMM, CMMI, Capability Maturity Model, Capability Maturity Model Integration are
trademark of Carnegie Mellon University.

508 Z. Wu et al.

Before 1999, except for the multi-national company like Motorola, CMM was a
strange term to the Chinese software industry. The breakthrough appeared in July,
1999, when Advanced System Development Co. was rated as CMM level 2. By
November, 2004, 184 appraisals based on CMM/CMMI have been conducted for 134
software organizations [5].

By using CMM/CMMI, software organizations get some benefits such as more
disciplined management, improved project controllability and product quality[6].
These positive results suggest that more Chinese software organizations should use
CMM/CMMI.

But now, the number of companies which use CMM/CMMI is fairly low compared
to the whole Chinese software industry, say, less than 2% (134 out of 8900 software
organizations), and the growth rate of appraisal numbers went down in 2004.
Furthermore, higher maturity organizations are rarely seen, only 19 by now.
Compared to well-developed software nations like the United States and India,
Chinese software enterprises are rather immature. There is very little research on
finding obstacles which prevent CMM/CMMI being widely used in China.

To present an overall picture of CMM/CMMI implementation in China, this paper
researched background information of most organizations who have been appraised
(122 out of 134). The information includes organization size, product type, and
geographic location.

Further, Survey forms were sent to software companies and process improvement
consultants. By analyzing the data, this paper tries to answer such questions as: who is
using CMM/CMMI, and why? What are the benefits? What are the problems?
Meanwhile, recommendations are made to the problems. Hopefully, these
recommendations will help existing and potential CMM/CMMI users.

2 Current Status in China

In recent years, the Chinese software industry developed rapidly, especially after the
State Council issued No.18 Policies in 2000 [7] which spurred the growth of the
Chinese software industry. Since then, nearly 2000 software companies have been
established each year. By 2004, there are 8900 software organizations around China.

But the Chinese software enterprises are still rather weak in terms of profitability
and size. In 2002, the global software market was $662.5 billion, but only 2% was
taken by the Chinese enterprises while American took 40%. In addition, only 1/3 of
the software companies claimed profitability.

Roughly 6000 Chinese companies have less than 50 employees, only 240 have
more than 200 people, 25 have more than 1000 employees. On the other hand, our
neighbor India, who has a very successful software industry, has almost 400
thousands software engineers, and more than 1000 Indian software companies have
greater than 300 employees.

For maturity levels, the majority of the 134 CMM/CMMI–appraised Chinese
software organizations are CMM2 while 19 of them are CMM/CMMI4 or above. In
India where successful implementation of CMM/CMMI and other quality systems
plays an important role in the software society [8], 300 companies have been
appraised at different maturity levels, and 48 are CMM5 in early in 2003.

 A Survey of CMM/CMMI Implementation in China 509

By following the CMM/CMMI-rated organizations list provided by a major
CMM/CMMI consultancy company in China, we examined each organization’s
website, if any, to find background information such as size, product type, related
news, local government policies etc. This information provides us with an overall
image of CMM/CMMI implementation in China.

2.1 Maturity Profile and Growth Rate

From 1999 to November, 2004, there
were 184 CMM/CMMI appraisals for
134 software organizations in China.
Among the CMM appraisals, 100 are
CMM2, 46 are CMM3, 8 are CMM4
and 9 are CMM5. There are 8 CMMI2,
11 CMMI3, 2 CMMI5 appraisals too.
As shown in Table 1. From 2001-2003,
the number of appraisals rose rapidly.
By November, 2004, the growth rate of
appraisal numbers began to fall, as
shown in Figure 1.

Table 1. CMM/CMMI maturity profile in China

 CMM CMMI

Level2 100 8

Level3 46 11

Level4 8 0

Level5 9 2

2.2 Geographic Distribution

60% of the CMM/CMMI appraised organizations are concentrated in Beijing,
Shanghai, and Guangdong where the software industry is developed better than in
other areas. See Table 2.

There are special cases. In some
provinces, local government provides
strong support to CMM/CMMI
implementation for local software
enterprises. This support includes
rewarding each “successful” appraisal
within a designated time, organizing and
coordinating training, consulting and
appraisal activities for local software
companies. In most cases, a “successful”
appraisal is an appraisal that results in a
specified Maturity Level for the company

Fig. 2. Rapid growth in some special areas

Fig. 1. Number of appraisals 2000-2004

510 Z. Wu et al.

being appraised. This strong support makes the number of appraisals rise quickly
within the area. For example, before 2002 only two companies reached CMM2 in
Yunnan province [9], but in 2003 there are 10 companies rated as CMM2. Similar
support is provided by Shandong and Liaoning capital city’s government [10], [11].
See Figure 2.

Table 2. Number of the appraisals in different geographic areas.

Area Quantity Area Quantity

Beijing 54 Liaoning 10

Shanghai 13 Shandong 9

Guangdong 13 Zhejiang 4

Yunnan 13 Jiangsu 3

2.3 Organization Size

The term SIZE here refers to total number of employees in an independent entity as
opposed to the number of software developers (for instance, the total number of
employees in a whole company or a whole indecent R&D center). The reason we use
total employee number is that CMM/CMMI is a systematic approach. In addition to
the development team, the
quality department, HR de-
partment etc. are also inv-
olved in process improvement
effort.

Figure 3 shows different
organization size. From the
figure we can see, only 12% of
organizations have less than
50 people, 74% have over 100
people and 58% have more
than 200 employees.

2.4 Organization Type

There are many types of organization using CMM/CMMI. Because biding for
contracts in the finance, communication, or e-government areas typically requires a
certain level of CMM maturity, more organizations developing such applications use
CMM/CMMI, taking 2/3 of all, than other organization types. Outsourcing type
organizations are also CMM/CMMI users, taking 10%.

On the other hand, only 5 companies developing general application software or
middle ware have been appraised, taking only 4%. See Figure 4.

From the above information, we can see that there are quite few CMM/CMMI
users in China (less than 2% of all software organizations), and only 57 appraisals
were conducted in 2004. The appraisal growth rate is lower than 2003.

Fig. 3. Organization size

 A Survey of CMM/CMMI Implementation in China 511

R&D Center/Org,
12%

Outsourcing, 10%

Finance/Securities/
Insurance, 25%

Communication,
15%

Embeded/
Industry Control,

8%

General Application/
Middleware, 4%

Goveronment, 10%

Management IS,
16%

Fig. 4. Organization types

The majority of the appraised organizations are at the lower levels of maturity, and
there are few higher maturity companies for the time being. Compared to the Indian
software industry, this result is not very satisfactory.

In China, CMM/CMMI appraisals are conducted mainly in the areas where the
software industry is well-developed or CMM/CMMI is strongly supported by local
government. And most CMM/CMMI users have more than 100 people, majoring in
finance, communication, and government application areas and outsourcing.

3 CMM/CMMI Implementation Survey

3.1 Survey Method

After obtaining background information of those organizations who have been
appraised as discussed in the previous section, we designed survey forms consisting
of multiple choice and open-ended type questions which cover the 5 topics listed
below for both software organizations and SPI consultants. The objective of this
survey is to provide a deeper understanding of CMM/CMMI implementations in
China.

1. Drivers for using CMM/CMMI
2. Success factors to CMM/CMMI implementation
3. Benefits
4. Problems
5. Continuous improvement

The reasons we use SPI consultants as information source are, 1) consultants are
independent to any software organizations, and could provide authentic and objective
feedback. 2) consultants are process improvement professionals, and could provide a
more comprehensive pictures about CMM/CMMI implementation. 3) consultants
have deep understanding of the software companies that they work with, and could be
the representative of the software organization. We finally chose 5 consultants who
represent 50 companies.

To ensure the reliability and authenticity while remaining representational, we
carefully selected software companies to issue survey forms. The selection criteria are

512 Z. Wu et al.

1) there is at least one third-party personnel that knows the software company, so that
returned data could be verified. 2) from different maturity levels. 3) from typical size
and application type companies. 4) from different locations. Finally, we selected 30
companies to issue survey forms.

Meanwhile, authors of this paper personally have been involved in consulting,
training and appraisal for more than 20 software companies, and could further verify
authenticity and reliability of the returned survey data.

By now, we have received return survey forms from 23 software companies and 4
consultants who represent 38 software companies. The return rate is about 80%.

Once we received these forms, we further confirmed some vague data via e-mail,
phone calls and face-to-face interviews.

The returned survey forms are from 14 CMM2, 7 CMM(I) 3 and 2 CMM4 or
above companies. The size of these companies is from fewer than 50 to more than
1000 people. Besides consultants, different roles filled in the survey forms including
senior managers, quality managers, project managers, SQA, and developers. So the
information is not biased.

3.2 Survey Results

Major Drivers of CMM/CMMI Usage
In the survey form, we listed a set of possible reasons for using CMM/CMMI, and left
a blank row for companies to list any other reason they felt to be important. By
sorting the selection frequency (similar sorting method are used throughout this
research), the top three drivers listed in table 3.

Table 3. Major drivers

Rank Drivers Frequency
1 Self need 83%
2 Customer required 79%
3 Government reward 34%

From consultants survey form, we find the similar result. But for the small-medium
size enterprise (SMEs), all consultants believe that government supporting policy is
the top1 driver.

Success Factors
We define success as whether the CMM/CMMI can help software organizations meet
their business needs and solve their problems. According to our survey data, 39%
claim CMM/CMMI is “Very helpful”, while 57% think “Somewhat helpful” and 4%
say “Not at all”. Since 4% represents only one company in the survey, we eliminated
this data because further investigation is needed to find out if the answer is true.

After summarizing the returned survey forms, three major success factors are listed
below.

1) Senior management not only clearly defines process improvement goals
and provides resources, but also is personally involved in and monitors the
process improvement activities.

 A Survey of CMM/CMMI Implementation in China 513

2) SEPG members should have both management and technical experience,
and higher capability to coordinate and communicate.

3) Developers welcome software process improvement, as long as the process
can help their work.

SPI Benefits
From our survey data, the top 3 major benefits are “More disciplined management”,
“Project controllability improvement” and “Quality improvement”. Table 4 shows the
ranking sorted by selection frequency.

Table 4. Major benefits for all

Rank Benefit Frequency
1 More disciplined management 91%
2 Project controllability improvement 78%
3 Quality improvement 43%

Since the majority of Chinese software organizations have below 200 employees,
we can not expect CMM/CMMI to be widely used without their active involvement.
Therefore, in addition to overall results, we draw separate pictures for SMEs, both for
benefits and problems discussed in the next session.

By prioritizing benefits selection frequency of the SMEs, we see the results in
Table 5 that “More disciplined management” becomes the overwhelmingly No.1
benefit which is somewhat intangible. Yet the SMEs also improved project
controllability and product quality, the effectiveness, compared to the larger
organizations, is not that notable.

Table 5. Benefits for the SMEs

Rank Benefit Frequency
1 More disciplined management 95%
2 Project controllability improvement 58%
3 Quality improvement 33%

SPI Problems
Table 6 shows the problems according to all of the survey data. Again, we list the
problems especially for the SMEs as show in Table 7.

Table 6. Major Problems for all

Rank Problem Frequency
1 Over-complex and dogmatic process 65%
2 High cost 52%
3 Other 5%

Although cost is a universal problem, it is more severe for SMEs. To understand
deeply why cost influences SMEs more than the larger ones, we compare three
companies’ SPI investment and revenue. Company A has more than 500 employees,

514 Z. Wu et al.

company B has about 150 employees, and company C has 60. See Table 8. From the
table, the large company investment-revenue ratio is 0.7% which is much lower than
5-13% for the SMEs. For large companies with decent revenue, 0.7% of their yearly
revenue is not a heavy burden, but for the small and medium size company , 5-13% is
unbearable.

Table 7. Problems for the SMEs

Rank Problem Frequency
1 High cost 92%
2 Over-complex and dogmatic process 85%
3 Other 5%

Table 8. Cost comparison among large , medium and small companies

 Company A Company B Company C
Effort (man-year) 15 13 10
Capital /year (kRMB) 1100 800 500
Revenue (kRMB) 200,000 22000 6000
Investment/revenue ratio 0.7% 5% 13%

The second major problem is “Over-complex and dogmatic process”. When
interviewing SPI consultants, we find that since CMM/CMMI tells just “what to do ”,
SPI consultants often provide advices on “how to do it” at a strategic level while
leaving intensive, time-consuming tactical SPI effort to the clients, such as deeper
understanding of CMM/CMMI, carefully defining processes which match both their
own environment and CMM/CMMI requirements. Unfortunately many software
organizations simply take the advices of how to define a set of CMM/CMMI-
compliant processes and forget process usability which is hard to improve in a short
period of time. After all, there is normally an appraisal deadline set by outsiders, in
most cases, the government rewarding time-constraint. This makes many
organizations’ processes look CMM/CMMI compliant, but is very complicated and
dogmatic to use.

0

10

20

30

40

50

60

expec t ed Ac t ual

Fig. 5. CMM3 appraisals: expected vs. actual

1/3 of the software organizations complain about lack of automated supporting
tools. And this makes the above two problems even worse. For example, each KPA
requires measurement and analysis. Manual data processing brings extra management

 A Survey of CMM/CMMI Implementation in China 515

overhead. In addition, it is error-prone and not timely, and consequently does not help
process improvement very much, if not making procedures more complex.

It is interesting to note that, there is no evidence to support the CMM critics
“ignorant of the dynamics of innovation” [12], [13]. From all survey forms returned,
none selects the choice “CMM goes against innovation”.

Continuous Process Improvement Issues
According to the SEI [3], after another 19 months improvement, a CMM2
organization could reach CMM3. In China, before 2002, there 49 CMM2
organizations, but in 2004 there are only 18 of 49 rated CMM3. See Figure 5.

Thus we investigated the continuous process improvement issues. From returned
survey forms, 27% of organizations would like to “improve to higher maturity levels
when sitting on lower levels”, while others give a negative answer. The reasons for
NOT moving to higher maturity levels are shown in Figure 6.

Fig. 6. Reasons for NOT moving to higher maturity levels

4 Analysis and Recommendations

According to the survey results, high cost, over-complex and dogmatic process are the
two major problems for CMM/CMMI-based process improvement, especially for the
SMEs. Consequently, complex and dogmatic process limited the effectiveness of
process improvement. These problems prevent CMM/CMMI being widely used.

4.1 Impact Analysis

There are two contributors to the cost, or investment. First, labor-effort. To satisfy
KPA goals, management overhead should be put in. For instance, SQA, SEPG and
SCM altogether take 10-20% of development effort. Secondly, fixed fees. Appraisal
fees which cost 300-800kRMB in China. Plus, other fees such as extra training and
hardware/software facilities required. For any software organization, the SPI labor
effort is both inevitable and bearable. But when we add the fixed fees of which
appraisal fee take most part, things changed. For larger companies with decent
revenue, roughly 0.7% investment-revenue ratio is acceptable, while 5-13% is
relatively high for SMEs. See in Table 8.

Furthermore, the somewhat intangible benefit of “more disciplined management”
received by SMEs make them more cautious when investing on process improvement

516 Z. Wu et al.

activities. In fact, the government reward (about 500kRMB in some areas) plays a
major role for SMEs appraisals [9], [10], [11].

CMM/CMMI is not born to be complex and dogmatic [14]. As mentioned before,
time-constraints mean that some software organizations do not have time to skillfully
use CMM/CMMI and define processes to improve their usability. These complicated
and dogmatic processes, when executed, because some troubles which reduce the
effectiveness anticipated, especially for SMEs. A typical scenario is like this: for a
small team (3-5 people) in a small company, requirement changes could be done in
hours. But by following the ill-defined CMM/CMMI-compliant process, they have to
propose formal application forms, update requirement status table, run a formal
meeting to evaluate change impact, get official approval from all stakeholders, etc.
The procedures could take days, or even weeks while doing the same thing.

These two problems cause negative impacts on CMM/CMMI implementation, and
become major obstacles to CMM/CMMI large-scale usage in China. First, due to the
recent reduction or suspension of government support [15], SMEs are unable to bear
the cost by themselves to use CMM/CMMI, and on the other hand there are a limited
number of large software companies (240 in China). So it is natural to see the growth
rate of appraisal numbers fell down in 2004.

Second, the complex and dogmatic process, though it could be reinforced by senior
management, reduces SPI effectiveness. And this, in turn can not help companies.
The “NOT very successful” process improvement effort not only prohibits companies
moving to higher maturity levels, but also sets bad examples for other software
organizations to improve their process based on CMM/CMMI.

4.2 Recommendations

It is has been proved that once the process improvement does not satisfy an
organization’s needs, the SPI effort could not be rated as successful, or helpful [16],
[17]. Meanwhile, we also believe that process improvement should solve software
organizations’ business problems. In other words, SPI should meet an organization’s
needs and solve business problems. Based on this philosophy, we present the
following recommendations which focus on business needs and problems to both
government and software organizations.

a) Problem-measurement Approach
In order for the CMM/CMMI to be successfully used, a company must accurately
define the problems that it wants the CMM/CMMI to solve. Meanwhile, specific
measurements should be defined which can be taken within the company so that a
company can understand the impact, positive or negative, that their improvements are
actually making, and hence ensure that the implementation of their procedures,
techniques and processes is actually benefiting their business and their customers. The
more business problems are solved, the more benefits are received. And this makes
the high cost more worthwhile.

b) Partial Improvement At a Time
Based on continuous process improvement concepts, CMMI continuous
representation provides more flexibility for organizations to improve their processes.
For instance, if the major weakness of a company is to control their projects, Project

 A Survey of CMM/CMMI Implementation in China 517

Planning and Project Monitoring and Control should be the first two PAs to be
introduced for projects. Once they are proved to be successful, other PAs could be
introduced as needed until they reach a maturity level. And then move to a higher
level.

This method could reduce the process complexity and cost because the
implementation scope is limited.

Furthermore, we are happy to see now that, from the interviews with consultants,
more companies are rationally think about the SPI effectiveness. The “Partial
improvement at a time” method is more helpful to those who want to receive more
benefits rather than a rushed appraisal certificate.

c) Supporting Tools
Obviously, automatic tools could improve management efficiency and reduce
management overhead. Meanwhile, automatic tools could reflect the SPI effort
effectiveness such as improved quality over time, in a timely manner. Such on-time
support is also necessary for recommendation (a).

d) Government Policy Adjustment
Without government support, it’s hard to imagine how to initiate nation-wide
CMM/CMMI-based process improvement. But the government policy should be
move away from rewarding CMM/CMMI appraisals based on achieving a specified
Maturity Level. Rather than rewarding Maturity Level ratings, policy should reward
actual measured business improvements as outlined in (a) above.

5 Conclusions

In China, those who are implementing CMM/CMMI are relatively large organizations
driven by their own needs and customer requirements. SMEs using CMM/CMMI are
mainly due to the government encouragement policies.

Though benefits like “more disciplined management”, improved ”project
controllability ” and product quality have been seen, problems such as high cost and
over-complex process reduce process improvement effectiveness, and became the
major obstacles which limited the CMM/CMMI usage in China . We have already
seen that the number of CMM/CMMI users is not very large (134 out of 8900, less
than 2%), and appraisal growth rate fell in 2004. The majority of appraised
organizations are at lower maturity levels, while few software organizations reach
CMM4 and above.

Without solving these problems properly, large number of CMM/CMMI users and
higher maturity organizations can not be expected. Thus we put some
recommendations to both government and software organizations which hopefully
can help to alleviate the negative impact of these obstacles, and consequently make
CMM/CMMI more widely used in China.

We suggest that, CMM/CMMI-based process improvement should be treated as a
means to meets enterprises’ business needs and problems. Particularly, the
recommendations are for a problem-measurement approach, partial improvement and
government policy adjustment. Proper supporting tools are also highly recommended.

518 Z. Wu et al.

Further research is necessary to solve those problems associated with effective
CMM/CMMI implementation methods, alternative process improvement practices
and partial improvement methodologies.

Acknowledgement

This research is supported by the National Natural Science Foundation of China under
grant Nos. 60473060, 60273026 and the Hi-Tech Research and Development
Program of China (863 Program) under grant Nos. 2004AA112080, 2005AA113140.

Thanks to the SPI experts from Beijing SPIN and Soft Tech, an American-based
consultancy company. They have provided valuable data and information to this
research.

Colleagues Feng Yuan, Meng Huang, Juan Li, Xinpei Zhao and Fengdi Shu spent
lots of time to review this paper. Professor Xiaoyong Huai and Yongji Wang gave
many constructive suggestions. Their works are highly appreciated.

References

1. Mark C.Paulk et. al.: Key Practices of Capability Maturity ModelSM Version1.1, Technical
Report CMU/SEI-93-TR-24/25 (1993)

2. SEI: Process Maturity Profile of the Software Community, Aug (2004)
3. Qingyong Ji: Suggest from Indian software industry, http://tech.sina.com.cn/it/2004-12-

21/1606480894.shtml
4. CMMI Product Team: Capability Maturity Model® Integration (CMMISM), Version 1.1,

December (2001)
5. Marketing department: Quarterly Marketing Report, Soft Tech, December (2004)
6. Xiaoyu Sun: Neusoft CMM experience,

http://www.csdn.net/news/newstopic/9/9678.shtml
7. The States Council: No. 18, Some policies to encourage software and integratedcircuits

industry (2000)
8. Shanghai Foreign Trade Committee: Status of Chinese software industry,

http://www.shec.gov.cn:8001/shec/jsp/cyfz/cyfz_cyfzdt.jsp
9. Wu Xi: Kuming software, http://chengdu.ccw.com.cn/market/200303/0317_06.asp

10. Qingdao city government: Regulations on promoting software industry in Qingdao (2002)
11. Fei Xie, Yingchun Qiu: Shenyang Government Policies on Supporting CMM,

http://media.ccidnet.com/media/ciw/1196/g0201.htm
12. Reidar Conradi: Improving Software Improvement, IEEE Software, July/August (2002)

92-99
13. James Bach: The immaturity of CMM, American Programmer, September (1994)
14. James D. Herbsleb, Dennis Goldenson: A Systematic Survey of CMM Experience and

Results, ICSE, Berlin, Germany (1996) 323-330
15. Xioang: Beijing policies, http://www.china.org.cn/chinese/kuaixun/230696.htm
16. Michael Diaz, et. al.: How Software Process Improvement Helped Motorola, IEEE

Software, September/October (1997) 75-81
17. Pablo Straub, et. al.: Incremental, collaborative Software Process Improvement in a Tiny

Software Group, Proceedings of the XXII International Conference of the Chilean
Computer Science Society (2002) 187-194

 A Survey of CMM/CMMI Implementation in China 519

Appendix: List of Software Organizations Above CMM/CMMI3
November, 2004

CMM 3 List

1. Neusoft Group
2. TopSoft Group
3. Software Department, Lenovo Group Co., Ltd.
4. UFsoft Co., Ltd
5. Beijing NEC IC deseign Co.Ltd
6. Institute of Software, Chinese Academy of Sciences (ISCAS)
7. Chinasoft Network Technology Co., Ltd.
8. Wonders Information Co., Ltd.
9. Kingdee International Software Group Co., Ltd.
10.But'one Information Corporation
11.Powerise Software Park Co. Ltd.
12.Shanghai Baosight Software Co., Ltd.
13.Modern Hi-Tech Development Co., Ltd
14.Langchao Common Software Co., Ltd.
15.China Software SolutionsCenter
16.Suntek Technology Co., Ltd
17.Chengdu R&D Center of ZTE
18.PFU Shanghai Co., Ltd.
19.Platinum China Co., Ltd.
20.CVIC Software Engineering Co., Ltd.
21.HangZhou Sunyard System Engineering Co.,Ltd.
22.Shenzhen YLINK Computing System Co., Ltd.
23.Guangzhou Sinobest Information Technology Ltd.
24.BearPoint Global Development Center,Shanghai
25.Hangzhou Handsome Electronics Co., Ltd.
26.PeCan Co Ltd.
27.Yutong Sunshine Information Technology Corporation Ltd.
28.Beijing Founder Electronics Co., Ltd.
29.Peking University Founder R&D Center
30.Shanghai Newtouch Software Company, Ltd.
31.Chinasoft Co., Ltd.
32.SureKAM Corporation
33.Shanghai Boke Informaiton Co. Ltd.
34.Gever Tech
35.Natian Group
36.Beijing PANSKY Science and Technology Group
37.Foresee Technology Co. Ltd
38.Guangzhou Huawei Software Co. Ltd.
39.615 Institute of Avichina Industry and Technology Company Ltd.
40.iSoftStone Technologies Ltd
41.NEWGRAND Software Co., Ltd
42.Information Department of ICBC Beijing Branch

520 Z. Wu et al.

43.Guangdong Sunrise Electronics
44.Shanghai Xinguo IT Ltd.
45.Wuhan KMSoft IT Ltd
46.DHC

CMM4 List

1. Huawei Indian R&D Center
2. Huawei Beijing R&D Center
3. Bamboonetworks Guangzhou
4. Huawei Nanjing R&D Center
5. Software Department, Lenovo Group Co., Ltd.
6. Shanghai Baosight Software Co., Ltd.
7. Kingdee International Software Group Co., Ltd.
8. Chengdu R&D Center of ZTE

CMM5 List

1. Motorola Asia-pacific Telecommunication Solution R&D Center
2. Global Software Group-China Software Center (Motorola)
3. Neusoft Group
4. Motorola Chengdu Software Center
5. Dalian Haihui Sci-Tech Co., Ltd
6. Huawei Indian R&D Center
7. Hunan Changsha Newsky Technology Group Co., Ltd
8. DHC
9. China Software Solutions Center (HP)

CMMI3 List

1. Bright Oceans Corporation
2. Golden China Telecom Services Co.,Ltd
3. Shenzhen Financial Electronic Settlement Certer
4. Oceansoft information system Co., Ltd
5. Top Founder Information Systems
6. Shanghai Primeton Informations technology Co.Ltd
7. Fujian Fujitsu Communications Software Co., Ltd
8. Shanghai Xinguo IT Ltd.
9. American International Assurance IT Co., Ltd.
10.Sony Shanghai Technology Center
11.CHINA PUTIAN Institute of Technology

CMMI5 List

1. Hunan Changsha Newsky Technology Group Co., Ltd
2. Bamboonetworks Guangzhou

Author Index

Aoyama, Teruyuki 498
Avrunin, George S. 347
Awane, Satoshi 249

Basili, Victor 1
Bhuta, Jesal 332
Boehm, Barry 10, 332, 433
Boose, Emery 403

Chan, Keith C.C. 474
Chen, Bin 347
Chen, Wei 222
Chen, Yao 347
Chen, Yue 433
Chen, Zhihao 433
Christensen, David 507
Clarke, Lori A. 347, 403
Cobleigh, Rachel 347

Ding, Liping 235

Ellison, Aaron M. 403
Estublier, Jacky 25

Foster, David R. 403
Frederick, Kim 347

Ge, Jidong 360
Gong, Bo 277

Hadley, Julian L. 403
Hao, Kegang 151
Harada, Akira 249
He, Xingui 277
Henneman, Elizabeth A. 347
Higashi, Tetsuya 498
Hou, Hong 151
Hu, Haiyang 360
Hu, Hao 360
Hua, Qingyi 151
Huang, Liguo 108
Huang, Meng 122
Humphrey, Watts S. 35
Hwong, Beatrice 164

Inoue, Katsuro 249
Inoya, Yuji 249

Jeffery, Ross 43
Jensen, Chris 449

Kindler, Ekkart 287
Klappholz, David 376
Kuhrmann, Marco 463
Kusumoto, Shinji 249

Li, Mingshu 54, 317, 507
Liu, Weihong 277
Lü, Jian 360
Lu, Ping 360
Lu, Yansheng 136
Lui, Kim Man 474

Madachy, Raymond 389
Mao, Chengying 136
Matos, Gilberto 164
Matsushita, Makoto 249
Meyers, Steven 262, 332

Nejmeh, Brian A. 302
Nelson, Christopher 164
Niebuhr, Dirk 463
Ning, Anliang 151

Ogasawara, Hideto 498
Ohno, Osamu 249
Osterweil, Leon J. 68, 347, 403, 416, 482

Perry, Dewayne E. 482
Podorozhny, Rodion M. 482
Port, Daniel 376, 433
Pyster, Arthur 75

Qian, Guanqun 192

Raunak, Mohammad S. 416
Rausch, Andreas 463
Riddle, William E. 302
Rombach, Dieter 83
Rubin, Vladimir 287
Rudorfer, Arnold 164

522 Author Index

Scacchi, Walt 449
Schäfer, Wilhelm 91, 287
Shull, Forrest 1
Song, Xiping 164
Sugahara, Kouichi 498
Sun, Liang 235
Sutton Jr., Stanley M. 177

Tian, Licong 192
Tong, Jie 235

Wang, Jizhe 262
Wang, Qing 317, 507
Wang, Xi 136
Wang, Yongji 235

Warboys, Brian 100
Wise, Alexander 403
Wu, Zhanchun 507

Xue, Yunzhi 222

Yang, Liguang 122
Yang, Qiusong 235
Yang, Ye 122, 206
Ying, Qun 222
Yu, Bin 151

Zhang, Li 192
Zhao, Chen 222
Zhou, Bosheng 192

	Frontmatter
	Keynote Speech
	Evolving Defect ``Folklore'': A Cross-Study Analysis of Software Defect Behavior
	The Future of Software Processes
	Software are Processes Too
	The Software Process: Global Goals
	Achieving Software Development Performance Improvement Through Process Change
	Expanding the Horizons of Software Development Processes: A 3-D Integrated Methodology
	Unifying Microprocess and Macroprocess Research
	What Beyond CMMI Is Needed to Help Assure Program and Project Success?
	Integrated Software Process and Product Lines
	A Rigorous Software Process for the Development of Embedded Systems
	Active Models:A Possible Approach to the Integration of Objective and Subjective Process Models

	Process Content
	A Value-Based Process for Achieving Software Dependability
	A Development Process for Building OSS-Based Applications
	A Study on the Distribution and Cost Prediction of Requirements Changes in the Software Life-Cycle
	Requirements Engineering Processes Improvement: A Systematic View
	S-RaP: A Concurrent, Evolutionary Software Prototyping Process
	Aspect-Oriented Software Development and Software Process
	A Gradually Proceeded Software Architecture Design Process
	Process Patterns for COTS-Based Development

	Process Tools and Metrics
	Software Testing Process Automation Based on UTP -- A Case Study
	Evaluation of the Capability of Personal Software Process Based on Data Envelopment Analysis
	Project Management System Based on Work-Breakdown-Structure Process Model
	Spiral Pro: A Project Plan Generation Framework and Support Tool

	Process Management
	A Process Improvement Framework and a Supporting Software Oriented to Chinese Small Organizations
	Incremental Workflow Mining Based on Document Versioning Information
	A Framework for Coping with Process Evolution
	Software Process Management: Practices in China

	Process Representation and Analysis
	Process Elements: Components of Software Process Architectures
	Process Programming to Support Medical Safety: A Case Study on Blood Transfusion
	Translation of Nets Within Nets in Cross-organizational Software Process Modeling
	M(in)BASE: An Upward-Tailorable Process Wrapper Framework for Identifying and Avoiding Model Clashes
	Integrated Modeling of Business Value and Software Processes
	Process Technology to Facilitate the Conduct of Science
	Process Definition Language Support for Rapid Simulation Prototyping

	Experience Reports
	Evolving an Experience Base for Software Process Research
	Experiences in Discovering, Modeling, and Reenacting Open Source Software Development Processes
	Application of the V-Modell XT -- Report from a Pilot Project
	A Road Map for Implementing eXtreme Programming
	Automatically Analyzing Software Processes: Experience Report
	Status of SPI Activities in Japanese Software -- A View from JASPIC
	A Survey of CMM/CMMI Implementation in China

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

